User Tools

Site Tools


meeting_2022winter

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
meeting_2022winter [2023/01/09 21:40] yangmeeting_2022winter [2023/01/13 22:33] (current) yang
Line 4: Line 4:
  
 **Topic**: manifold learning basics and applications    **Topic**: manifold learning basics and applications   
 +
 +[[reading:instruction|讨论简要说明]] 
  
 ==== Schedule ====  ==== Schedule ==== 
 ^Date ^Presenter^ Reading ^ Slides/Notes ^ ^Date ^Presenter^ Reading ^ Slides/Notes ^
-|1.13          |   A1. Chapter 4.1-4.3              |  +|1.13    Jiahao Lai             |   A1. Chapter 4.1-4.3         {{ :meeting_2023winter:introduction.pdf |}}  [[https://meeting.tencent.com/v2/cloud-record/share?id=db6e586a-5230-4b6f-95b1-757081adf02f&from=3 | recording]]   |  
-|1.20          |   A1. Chapter 4.4-4.5              |+|1.20   Zhiyuan Peng & Dexu Kong|   A1. Chapter 4.4-4.5              |
 |1.27.  |        |   B1              | |1.27.  |        |   B1              |
 |2.3.          |   B2              | |2.3.          |   B2              |
Line 16: Line 18:
 ==== Reading material ==== ==== Reading material ====
  
-  - [[https://link.springer.com/book/10.1007/978-1-84882-312-9|“Manifold Learning”. Statistical Learning
and Pattern Analysis for Image and Video Processing]], Chapter 4,Nanning Zheng and Jianru Xue (A1)+  - [[https://link.springer.com/book/10.1007/978-1-84882-312-9|“Manifold Learning”. Statistical Learning and Pattern Analysis for Image and Video Processing]], Chapter 4,Nanning Zheng and Jianru Xue (A1)
   - [[   - [[
 https://people.cs.uchicago.edu/~niyogi/papersps/BNcolt05.pdf| Towards a Theoretical Foundation for Laplacian-Based Manifold Methods]]. (B1) https://people.cs.uchicago.edu/~niyogi/papersps/BNcolt05.pdf| Towards a Theoretical Foundation for Laplacian-Based Manifold Methods]]. (B1)
Line 24: Line 26:
 === Other paper candidates ===  === Other paper candidates === 
  
 +  * [[https://arxiv.org/abs/2011.01307|The mathematical foundations of mannifold learning]] 
   * Grassmann manifold:    * Grassmann manifold: 
      * [[https://arxiv.org/pdf/1808.02229v1.pdf|Grassmannian Learning: Embedding Geometry Awareness in Shallow and Deep Learning]],       * [[https://arxiv.org/pdf/1808.02229v1.pdf|Grassmannian Learning: Embedding Geometry Awareness in Shallow and Deep Learning]], 
meeting_2022winter.1673318434.txt.gz · Last modified: 2023/01/09 21:40 by yang