Dynamic Graph Attention Network

1. Sessions
· Let  denote a set of volunteers and  a set of organisers. Each volunteer is associated with a set of organisers ordered by timestamps :

where  is the -th session of volunteer . 
· A session can be viewed as a sequence of volunteer participation in a short horizon. 
· Each session is characterized by a set of user behaviours: 

where  is the total amount of organisers in a session and  is the -th organizer ‘consumed’ by user  in the -th session.
· Individual volunteer’s preferences are represented as short-term sessions given by  

· Individual volunteer’s current session is given by: 

· Neighbor’s actions are given by: 

· Neighbor’s short-term preference is given by


· To reduce computational cost, the friends’ short-term interests were represented by the most recent sessions.  









A modified schematic view of DGRec for dynamic volunteer recommendation system
[image: Diagram

Description automatically generated]
2. Volunteer’s individual interests
Individual interests of volunteers are expressed as short-term dynamic interests which are modeled using Recurrent Neural Network (RNN). We represent short-term dynamic preferences of a user as their most recent session:  where each token,  in the session corresponds to the volunteer’s participation for a task initiated by a particular organizer .   RNN infers a user’s current session: by recursively combining representations of all previous tokens with the latest token:  , where  represents the user’s interests and  is a non-linear function (LSTM) denoted as follows:






 is the sigmoid activation function. 



3. Neighbor’s short-term interests.
The interests of a neighbor are categorised as short and long-term preferences. For a target user’s current session , the neighbour’s short-term interests are represented by their sessions just before session . Neighbor’s latest task participation,  is modeled by RNN, where each token in the session corresponds to the neighbor’s participation in a task  initiated by an organizer . The final output of the short-term interests is given by . Here we use  instead of  to capture time dependencies. 

3.1. Neighbour’s long-term interests
Since long-term interests express a neighbour’s average preference, we represent them with a time insensitive single vector , where   is the corresponding -th row of the user embedding matrix, . The user embedding matrix  is a  matrix reflecting a volunteer’s task participation. 
We finally combine the short and long-term preferences of a neighbour using a non-linear transformation  where   is the transformation matrix and . 

4.  Volunteer task preference
One important task is to represent volunteers’ participation in organizers’ tasks while inherently capturing their preferences. Each task is characterized by location and we associate each user with task location denoted by . Additionally, we use LDA to extract topics from task description. Six main topics were identified and associated with each task, denoted as . We define volunteers’ task-based preference as a joint combination of task type and its corresponding location, represented as , where is opinion aware interaction volunteer representation, and   is a Multi-Layer Perceptron (MLP) fusing the information of task type and its location. 





5. Unified Graph
We construct the social network graph,  where nodes indicates target volunteers and their neighbors; and edges  correspond to their friendship. Each node utilizes its respective user’s dynamic representations as features. 
A target user’s behavior depends on his/her dynamic individual preference and social influence from neighbors. Therefore, a unified representation of a volunteer’s preference is obtained by using an attention mechanism to determine the weight of neighbor  on target volunteer  that is propagated along the edges of the network. 
The dynamic feature graph is constructed such that the nodes correspond to the user and her friends, that is, for target user , with  neighbors, the graph consists of  nodes. The initial representation of target volunteer  is used as node features . Similarly, a neighbor’s node features  are given by the combined representation of the short and long-term interests . While the features of the target volunteer changes whenever the volunteer participates in a new task, the neighbor’s features remain unchanged for the duration of the timestep . 
Following DGRec, Song et al (2019), the features of each node are propagated using an attention mechanism as follows:

 
where		  is the similarity between target volunteer and all aggregated neighbors’ preferences and  represents the weight of neighbor  on target volunteer . This design preserves volunteer’s individual preference while harnessing the impact of each neighbor 
A self-connection edge to reflect a user’s revealed interest, , is also included and we further provide the weights to combine the features as follows:

where  represents a mixture of user ’s neighbours’ interests at layer , then followed by a non-linear transformation  and  is the learned weight matrix at layer  The final representation of each node is obtained by stacking this attention layer  times.

6. Recommendation
In our framework, a volunteer’s interest is determined by her dynamic short-term preference and the social influence from neighbors. The final representation of a volunteer  is therefore given by integrating volunteer’s recent behavior and social influence as follows:
, where  denotes the user’s dynamic interests and  is the combined final user’s representation that reflects social influence.  is a linear transformation matrix. 
We let  to be the next organizer and predict the probability of  using a softmax function:

where  is the embedding of organiser  and  is the total number of organisers.  corresponds to ’s set of friends while  denotes the neighbor’s actions.

7. Training
Since we are considering user ’s preference and influence from social network, the training loss is defined by maximizing the log likelihood of observed organisers in all user sessions as follows:



The loss function is optimized using gradient descent.
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