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Few-Shot Learning

Basic units of Meta-Learning are tasks, instead of samples
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Meta Learning

Meta Learning focus on how to adapt to new task quickly
By learning from a large collection of similar tasks
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Gradient-Based Meta Learning

MAML learns an initialization that quickly adapt to different tasks
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Finn C, et al. Model-agnostic meta-learning for fast adaptation of deep networks, ICML, 2017



Bayesian Meta Learning

Bayes ML learns a generative model that generates tasks.

mll?x Z logp(D3,D?)

(DS,D9)

lVariational Lower Bound
~ g : M M
' @ log [[[ (D) | = log [/p(g) [H/P(Dz‘|¢i)f9(<bi|9) dﬁbi] d9]
1=1 =1

- M
> Eqp:9) |10g (H/p(pi|¢i)p(¢‘i|9) d@')
I i—1

jN = Eq(050) i log ( / p(Dil¢i)p(9:l6) dqb@)_ — KL(q(0;9)p(9))

— KL (q(6;)|p(0))

M
> Eqgoi) | D Baioiin) 08 p(Ds]:)] — KL(q(bs; /\@-)Ip(qbz-lﬁ))] — KL(q(8;4)[[p(0))

| i=1
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Recast MAML as Bayes- ML

MAML Is a variant of Bayes ML, using truncated-GD as MAP inference.

Corollary (Santos, 1996) Consider a quadratic approximation

Then the k-step truncated gradient decent
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Grant E, et al. Recasting gradient-based meta-learning as hierarchical bayes, ICML, 2018



Conclusion

* Direct algorithm design provides more flexibility towards specific
problem, while Bayes approach offers interpretability and
uncertainty estimation.

* Their connection helps algorithm design and probabilistic tool
selection.



