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Background

• Sufficient annotated training samples are required for training while the labeling process of 
medical images is tedious and time-consuming.

• Transfer learning has been widely investigated to address the problem.

• Previous works mainly focused on the fine-tuning strategy to effectively adapt the knowledge from 
the pre-trained models to target tasks.
• model repositories like Hugging Face and PyTorch Hub

• these pre-trained models require less training time and have better performance and robustness

• Recent works observe that the pre-trained models cannot always benefit the downstream tasks.
• when the knowledge is transferred from a less relevant source, it may not improve the performance or 

even negatively affect the intended outcome



Background

• Existing methods measure the task-relatedness between source and target datasets.
• require source information available while medical images have more privacy and ethical issues and 

fewer datasets are publicly available than natural images.

• Directly measure the transferability of the pre-trained models without fully training based on the 
downstream/target dataset. 
• Log Expected Empirical Prediction (LEEP)

• Utilized the log-likelihood between the target labels and the predictions from the source model.

• Logarithm of Maximum Evidence (LogME)

• Computed evidence based on the linear parameters assumption and efficiently leverages the compatibility 
between features and labels.

• TransRate

• Evaluated the transferability of models with the compactness and the completeness of embedding space.

• Gaussian Bhattacharyya Coefficient (GBC)

• Applied the Gaussian distribution to each class, and estimate the separability between classes as the basis for 
transferability estimation. 



Challenges

• Previous works focused on classification and regression tasks without fully considering the 
properties of medical image segmentation.
• C&R tasks can use a single n-dimensional feature vector to represent each image, segmentation 

problems lack a global semantic representation.

• Propose class consistency to address the problem.

• Previous works focused on the relationship between the embeddings and downstream labels
without exploring the effectiveness of the features themselves. 
• Propose feature variety to address the problem.



Challenges

• Medical images face severe class imbalance problems.
• With excessive differences between foreground and background.

• Only sample the foreground voxels with a pre-defined sampling number which is proportional to the 
voxel number of each class in the image.

• For semantic segmentation tasks, the feature pyramid is critical for the segmentation output of 
multi-scale objects while existing works neglect it.
• Different decoders’ outputs are used in the sliding window sampling process.



Framework

•
• Class consistency employs the distribution of 

features extracted from foreground voxels of 
the same category in each sample to model 
and calculate their distance.

• Feature diversity utilizes features sampled in 
the whole global feature map, and the 
uniformity of the feature distribution 
obtained by sampling is used to measure the 
effectiveness of the features themselves.



Class Consistency

• The pre-trained models are trained with specific pretext tasks based on the upstream dataset.
• features extracted by the pre-trained models cannot perfectly distinguish the foreground and 

background of target data.

• If the features are generalizable, foreground region features will likely follow a similar distribution 
even without fine-tuning.
• Features extracted by the pre-trained model should be consistent within the class of the target dataset.



Class Consistency

• Given a pair of target data 𝑋𝑗 and 𝑋𝑗′ :

• The distribution of the features is modeled with the n-dimensional Gaussian distribution.

• The class consistency between the data pair is measured by the Wasserstein distance:

• Calculate the wasserstein distance of the distribution with voxels of the same class in a sample pair 
comprised of every two samples in the dataset.

• The pre-defined sampling number is proportional to the voxel number of each class in the image.

• The class consistency is defined as:



Feature Variety

• Class consistency is only concerned with local homogeneity of information while neglecting the 
integral feature quality assessment.
• learn some trivial solutions

• overfitted models have limited generalization capacity and are difficult to apply to new tasks

• Feature variety constraint measures the expressiveness of the features themselves and the 
uniformity of their probability distribution.
• Highly complex features are not easily overfitted in the downstream tasks and do not collapse to cause a 

trivial solution.



Feature Variety

• To prevent overfitting and trivial features, we expect the distribution of features in the feature 
space to be as uniform and dispersed as possible.

• Employ the hyperspherical potential energy to measure the expressiveness of the features and the 
uniformity of their probability distribution.

•

• 𝑣 is sampled feature of each image with point-wise embedding 𝑣𝑖
• L is the length of the feature, which is also the number of sampled voxels.  

• For the dataset with N cases, the feature variety is formulated as:
•



Overall Estimation

• As for semantic segmentation problems, the feature pyramid structure is critical for segmentation 
results.

• The final transferability of pre-trained model m to dataset t is defined as:

• where D is the number of decoder layers used in the estimation.

• decrease the sampling ratio in the decoder layer close to the bottleneck to avoid feature redundancy.



Experiment

• Conduct experiments on 3D CT images of The Medical Segmentation Decathlon (MSD) dataset:
• Task03 Liver: liver and tumor segmentation

• Task06 Lung: lung nodule segmentation

• Task07 Pancreas: pancreas and pancreas tumor segmentation

• Task09 Spleen: spleen segmentation 

• Task10 Colon: colon cancer segmentation

• For each dataset:
• use the other four datasets to pre-train the model 

• fine-tune the model on this dataset to evaluate the performance as well as the transferability 

• using the correlation between two ranking sequences of upstream pre-trained models.

• The baseline methods including TransRate, LogME, GBC and LEEP.



Metric

• Use weighted Kendall’s 𝜏 and Pearson correlation coefficient for the correlation between the 
Transferbility Estimation (TE) results and fine-tuning performance.

• For Kendall’s 𝜏:
• The Kendall’s 𝜏 ranges from [-1, 1]

• 𝜏 =1 means the rank of TE results and performance are perfectly correlated

• Assign a higher weight to the good models in the calculation, known as weighted Kendall’s 𝜏

• For Pearson coefficient:
• The Pearson coefficient also ranges from [-1, 1].

• Measures how well the data can be described by a linear equation.

• The higher the Pearson coefficient, the higher the correlation between the variables.



Results

• Visualize the average Dice score and the estimation value on Task03 Liver/Tumor Segmentation. 
• The vertical axis represents the average Dice of the model

• The horizontal axis represents the transferability metric results.

• Standardize the various metrics uniformly



Results

•

• Most of the existing methods are not designed for segmentation tasks with a serious class 
imbalance problem.

• These methods rely only on single-layer features and do not make good use of the hierarchical 
structure of the model.



Ablation Study

• Analyze the impact of class consistency 𝐶𝑐𝑜𝑛𝑠and feature variety 𝐹𝑣

1. Though 𝐹𝑣 can not contribute to the final Kendall’s 𝜏 directly, 𝐶𝑐𝑜𝑛𝑠 with the constraint of 
𝐹𝑣 promotes the total estimation result.

2. Compare the performance of the method at single and multiple scales to prove the effectiveness 
of the multi-scale strategy.

3. KL-divergence and Bha-distance are unstable in high dimension matrics calculation and the 
performance is also inferior to the Wasserstein distance.



Ablation Study

• Visualize the distribution of different classes.



Contribution

• Propose a transferability estimation method based on class consistency with 

feature variety constraint

• Raise the problem of model selection for upstream and downstream transfer 

processes in the medical image segmentation task.

• Raise the problem of  the ethical and privacy issues inherent in medical care and 

the computational load of 3D image segmentation tasks.
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