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Detecting Urban Black Holes Based on Human
Mobility Data (2015)

1. When instantly detecting black holes in a time interval, we propose 1) a candidate selection
algorithm that finds candidate grid cells to start from and 2) a spatial expansion algorithm
that expands an edge in a candidate grid cell to a black hole. An upper bound of a grid cell’s
actual flow is defined to help select and prune candidate cells after each black hole is
detected.

2. We propose a continuous detection algorithm to further reduce the total cost of black hole
detection in multiple time intervals, utilizing both detected results in the previous time
interval and historical patterns of black hole over a long period.
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Figure 2: Framework of Black Hole Detection

3. We evaluate our method using Beijing road network and real GPS trajectories generated by
over 33,000 taxis, and bike trips generated by over 6,300 bikes in New York City. Two case
studies demonstrate that our method can detect black holes/volcanos representing unusual
events and human mobility patterns that can improve the urban planning of Beijing and the
operational efficiency of NYC bike sharing system. The performance evaluation proves that
our method outperforms baseline methods.
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Short-Term Forecasting of Passenger Demand under
On-Demand Ride Services: A Spatio-Temporal Deep
Learning Approach (2017)
1. The novel FCL-Net approach characterizes the spatio-temporal properties of the predictors,
captures the temporal features of non-spatial time-series variables simultaneously, and

coordinates them in one end-to-end learning structure for the short-term passenger
demand forecasting.
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2. We extract the potential predictors affecting short-term passenger demand and assess the
feature importance of these predictors via a spatial aggregated random forest.

3. Validated by the real-world on-demand ride services data provided by DiDi Chuxing in a
large-scale urban network, the proposed DL structure outperforms five benchmark
algorithms, including three conventional time-series prediction methods and two classical DL

algorithms.
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MSSTN: Multi-Scale Spatial Temporal Network for
Air Pollution Prediction (2019)
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1. We suggest to use a multi level graph data structure to better represent the geo-sensory
systems and better discover high level spatial temporal patterns. Further we propose a novel
deep convolutional neural network named MSSTN for the air pollution prediction task on the
proposed data structure.

2. Three subnets are specially designed for MSSTN in order to process multi-scale spatial
temporal data explicitly, that are a set of dilated casual convolutional network (DCN) named
T-Net, a set of graph convolutional neural networks (ChebNet) named S-Net, and a fusion
network with dense connections (MLPs as building blocks) named F-Net
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Multi-step inference using a auto-regressive inference procedure.

3. We deploy our model on a real world air pollution datasets, Urban Air Pollution Datasets in
North China, and result shows an outstanding performance compared to many state-of-the-
art methods.

MRZESERET NEZE) ERH TN

{EFT-net (DCN) F1S-net (GCN) LSBKMERZEE, BHF-net (MLPs) E&

Mining Regional Mobility Patterns for Urban
Dynamic Analytics (2019)

1. A novel region-aware mobility pattern mining framework. It considers both mobility pattern
extraction and OD region partition without overlap.

2. A kernel-based extension to the ACE algorithm for extracting maximal correlated features.
KACE is the first algorithm to solve the HGR maximal correlation problem with continuous
input and feature constraints.
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Algorithm 1 D-dimensional kernelized ACE for clustering.

Require: training samples {(x;, y;) :i =1, ..., N}
1. Initialize: randomly generate and regularize f;(x;),
gaWyi)i=1,---,Nd=1,---,D
repeat

2a. Feature iteration:

Y 8a (K (x).x0)
fa(xi) < =E—=—— K (x;,x) = 1 —|lx; — x|l

N LK ()
ga(yi) « ==——"— K. y) = 1—llyj=yil2

2b. Regularize: f;(-), gq4(-).d =1, ..., D.
Ja(xi) < fa(xi) — w fa(xi) « —Labd)
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N
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2¢. Gram-Schmidt:

ford =1to D do
fork=1tod —1do .
fota) < fa06) - AL 1o
84(x) < ga(x) = GrFAES 2 (x)

end for
end for
until H'E[f],2...D(x)7'g1!2...p(y)J stops to increase
3. Output: Region label of each point x; and y;
3a. OR(x;) <« Linkage cluster of f1.. p(x;),i =

1, -+, N with maximum cluster number N,,
3b. DR(y;) < Linkage cluster of g1 .. p(y),i =
1, , N with maximum cluster number N,

3. A thorough evaluation of KACE towards both feature and cluster results with real world data.
Feature evaluation shows KACE has tradeoff between correlation and distribution kurtosis
thus features are easier to be clustered. Cluster results show the versatility of our approach
in disentangling complicated mobility patterns comparing with both traditional methods and
state-of-the-art clustering algorithms.

4. Comprehensive case studies of both New York City and Beijing with real taxi data. Urban
dynamics analysis of NYC reveals people’s travel patterns between different functionalities in
the city. A three-year analysis of Beijing's mobility patterns reveals its city development and
urban sprawl through years.

region-aware mobility pattern mining, view the problem as: regional dependency between
OR and DR is maximized; points inside each cluster are close to each other.

Kernelized ACE; Gram-Schmidt othogonalization; cluster high-dimensional features into O/D
region labels using linkage clustering methods

Spatio-temporal Multi-Graph Convolution Network
for Ride-Hailing Demand Forecasting (2019)
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1. We identify non-Euclidean correlations among regions in ride-hailing demand forecasting

and propose to encode them using multiple graphs. Then we further leverage the proposed
multi-graph convolution to explicitly model these correlations.

2. We propose the Contextual Gated RNN (CGRNN) to incorporate the global contextual
information when modeling the temporal dependencies.
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3. We conduct extensive experiments on two large-scale real-world datasets, and the proposed
approach achieves more than 10% relative error reduction over state-of-the-art baseline
methods for ride-hailing demand forecasting.
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Urban ride-hailing demand prediction with multiple
spatio-temporal information fusion network (2020)

1. fuse multiple graph-level structure representation and pixel-level situation representation to
obtain a superior joint representation in ride-hailing demand prediction tasks.
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2. propose the Multiple Spatio-Temporal Information Fusion Networks (MSTIF-Net) to better
fuse multiple
situation awareness information and graphs representation. MSTIF-Net model integrates
structures of Graph Convolutional Neural Networks (GCN), Variational Auto-Encoders (VAE)
and Sequence to Sequence Learning (Seq2seq) model to obtain the joint latent
representation of urban ride-hailing situation that contain both Euclidean spatial features
and non-Euclidean structural features, and capture the spatio-temporal dynamics

3. We transfer hybrid GCN model from station-based or network-based scenarios to grid-based
scenarios by adjacency matrices modeling without any additional network data.
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Fig. 5. Overview of the Multiple Spatio-Temporal Information Fusion Network Model for urban ride-hailing demand prediction.

b
i : p
1*10*10 16*10*10 32*%10*10 |:| ' Zt
i i 1*10
—_— ! —_—] —
Sample
Xt
Conv2d Conv2d
BatchNorm BatchNorm :
LeakyReLu LeakyReLu Linear
1*10*10 16*10*10 32*10*10
-
£
ConvTranspose ConvTranspose
LeakyReLu LeakyReLu

Fig. 6. Computational framework for Conv-VAE. Both of Encoder and Decoder are parameterized with convolutional neural networks. And the
dimension of output z is 1 x 10.

4, We conduct extensive experiments on two large-scale real-world datasets, and the proposed
approach achieves superior performance than other state-of-art baseline methods for urban
traffic prediction.
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Short-term demand forecasting for online car-
hailing using ConvLSTM networks (2021)

1. The online ride-hailing order information with spatio-temporal feature information is
processed into pictures.

2. The Conv-LSTM neutral network is introduced to predict images.
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Fig. 1. (a) RNN model (b) FC-LSTM model.
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Fig. 4. Conv-LSTM Cell diagram.

3. Areal case was studied to demonstrate the feasibility of this neutral network in dealing with
short-term forecasting of online car-hailing demand.
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