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1. methodology
* theory
 application in continual learning

2. application in Predictive Domain Adaptation



Bayesian inference formalizes model inversion, the process of passing
from a prior to a posterior in light of data.

likelihood prior
posterior
p(yl6) p(6)
p(Bly) =
[ p(y,6)d6

marginal likelihood p(y)
(model evidence)



Approximate Bayesian Inference

There are two approaches to approximate inference. They have
complementary strengths and weaknesses.

Stochastic
approximate inference

in particular sampling

© design an algorithm that draws
samples 8, .. 60 from p(0]y)

@® inspect sample statistics (e.g.,
histogram, sample quantiles, ...)

M asymptotically exact
X] computationally expensive
[X] tricky engineering concerns

Structural
approximate inference

in particular variational Bayes

O find an analytical proxy q(@) that is
maximally similar to p(6|y)

@ inspect distribution statistics of q(8)
(e.g., mean, quantiles, intervals, ...)

M often insightful — and lightning-fast!
] often hard work to derive
[X] requires validation via sampling



Variational Bayesian Inference

Variational Bayesian (VB) inference generalizes the idea behind the Laplace

approximation. In VB, we wish to find an approximate density that is
maximally similar to the true posterior.

true
posterior
p(6ly) e e

divergence

KL[q||p]

hypothesis
class

best proxy

q(6)




Variational Calculus

Variational Bayesian inference is based on variational calculus.

Standard calculus
Newton, Leibniz, and others

* functions

fix e f(x)

* derivatives %

Example: maximize the
likelihood expression

p(y|8) w.rt. 6

Variational calculus
Euler, Lagrange, and others

* functionals
F:f 2 F(f)
.. dr
. derlvatlves-d?

Leonhard Euler
(1707 — 1783)

Swiss mathematician,
‘Elementa Calculi
Variationum’

Example: maximize the
entropy H[p] w.r.t. a
probability distribution

p(x)



Variational Calculus and Free Energy

Variational calculus lends itself nicely to approximate Bayesian inference.

o) =
=1 a(®) n 7555 do ke dervative withrespect 10 B
= [ g(8)In ggii; ZEz; dé Multiply and divide by q(8)
= [ q(6) (ln p?;?;) +In pq(i}ég))) de
= [ g(8)In p(zéi)/)dQ + [g(®)In Pg;;)dﬁ
KL[q||p] F(q,y)
divergence between free energy

q(8) and p(6]y)



Computing the free energy

We can decompose the free energy F(q,y) as follows:

= p(y.6)
F(q,y) = | q(6) In=7=>do

= [ q(@®Inp(y,0) do — [ q(B) Inq(6) de

=(Inp(y,0)); + Hlq]
| Y J | J

expected log- Shannon
joint entropy




Variational inference under
the mean-field assumption

p(y,6)
q(6)

[ field tion:
= Jr r q; X (lnp(y 6) — Zln ql) dé ;n(%a)n 'i] Zsz‘.;r;p on
f q; J_[q; (Inp(y,6) —Ing;) do — fq, quzlnql de
\j
‘f%(fII%MMMm“N_m%)m%ﬂ[%f[I%m[]%&Nﬂ%
__V ) \j \j

(Inp(y.6)q;

f q(0)In de

F(q,y) =

—

_ f ... ((np(r.6))q,))

dgj + C
qj

=—KL[(I_;'HGXP(GHP(}”H))Q-J)] T E



Variational inference under the mean-field assumption

In summary: This implies a straightforward
F(qy) = —KL[Q;II exp((m (y, 9))({_}_)] g algorithm for variational
| " inference:

Suppose the densities q\; = q(e\j) are kept
© |Initialize all approximate

posteriors g(6;), e.g., by
setting them to their priors.

fixed. Then the approximate posterior q(Qj)
that maximizes F(q, y) is given by:

t =argmaxF(q,y)
qj 5 qj Y ® Cycle over the parameters,

1 revising each given the
- | , 0 .
4 = (< np(y ))q\f) current estimates of the
others.
Therefore:
In qj’f = (Inp(y, 9))q\j —i I 7 © Loop until convergence.

==1(91')



Continual learning: data continuously arrive in non-i.i.d way or new tasks may
emerge. Continual learning models adapt to perform well on entire tasks in an
incremental way.

Variational Continual learning: merge online variational inference(VI) , Monte
Carlo VI and coreset data summarization method to yield VCL. This framework
is applicable to discriminative and generative models.



(n) ()N

sequentially arriving datasets {x, *,y; '}, 4
T N ¥y
p(0ID1.7) o p(0) [T ] p(vi™16,2:™) (6) [T p(Di16) o< p(6ID1.r-1)p(Drl6).
=l %=1 t=1

qt(H):argminKL( @) | —qt (8 )p(ptw)), fort =1,2,...,T.
qeQ

parametric modeling under mean-field assumption

%(9) = HdDle(Qt,dQMt,dand)
Ny
Lo (6(0) = > Eory o) |logp(yl™ 0, x1"™)| — KL(g:(0)]lg:1(8))

=1



Coreset: retains important training data from previous dataset

Algorithm 1 Coreset VCL
Input: Prior p(@).
Output: Variational and predictive distributions at each step {g:(8), p(y*|z*, D1.¢) }{=1.

Initialize the coreset and variational approximation: Cy < 0, o < p.
fort=1...T do

Observe the next dataset D;.

('t +— update the coreset using C';—1 and D;.

Update the variational distribution for non-coreset data points:

G:(0) + argminge o KL(q(0) || zG:—1(8) p(D: U Ci1 \ C16)). (2)
Compute the final variational distribution (only used for prediction, and not propagation):
¢ () « argmingeo KL(q(6) || th( )p(C110)).- (3)
Perform prediction at test input &*: p(y*|x*, D1.+) = [ ¢:(0)p(y*|0,x*)d6.

end for

p(8|D1:\Ct) = p(8|D1:4—1\Ci—1) p(Cr1\Ci|0) - p(D\C1]0) = Gi—1(0)p(Dy U Cr—1\C[0).

7 N\

previous posterior from likelihood from likelihood from new
data not in old coreset  data leaving coreset data not in new coreset

p(OID11) x p(OD1\ Ci)  p(Cil0) =~ @(O)p(Ci]6).

posterior from data likelihood from data
not in new coreset n new coreset




Accuracy

Permuted MNIST: This is a popular continual learning benchmark (Goodfellow et al., 2014a; Kirk-
patrick et al., 2017; Zenke et al., 2017). The dataset received at each time step D, consists of labeled
MNIST images whose pixels have undergone a fixed random permutation. We compare VCL to
EWC, SI, and diagonal LP. For all algorithms, we use fully connected single-head networks with
two hidden layers, where each layer contains 100 hidden units with ReLLU activations. We evaluate
three versions of VCL: VCL with no coreset, VCL with a random coreset, and VCL with a coreset
selected by the K-center method. For the coresets, we select 200 data points from each task.

- —&— SI (best, A = 0.5)
—&8— EWC (best, A = 100)

0.9 1 -®- EWC (A =1)

LP (best, A=0.1)
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Figure 2: Average test set accuracy on all observed tasks in the Permuted MNIST experiment.



whether useful for domain adaptation

architecture of neural network

unsurperised version of the VCL

one model or multiple models

execute it in a graph-based manner rather than a sequential order

or choose to use optimal transport or other topological-critical
methods to find a transfer path and perform VCL algorithm directly



