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Abstract—The Hirschfeld-Gebelein-Rényi maximal correlation
is a well-known measure of statistical dependence between two
(possibly categorical) random variables. In inference problems,
the maximal correlation functions can be viewed as so called
features of observed data that carry the largest amount of
information about some latent variables. These features are
in general non-linear functions, and are particularly useful
in processing high-dimensional observed data. The alternating
conditional expectations (ACE) algorithm is an efficient way to
compute these maximal correlation functions. In this paper, we
use an information theoretic approach to interpret the ACE
algorithm as computing the singular value decomposition of a
linear map between spaces of probability distributions. With this
approach, we demonstrate the information theoretic optimality
of the ACE algorithm, analyze its convergence rate and sample
complexity, and finally, generalize it to compute multiple pairs
of correlation functions from samples.

I. INTRODUCTION

The Hirschfeld-Gebelein-Rényi maximal correlation is a
variational generalization of the well-known Pearson correla-
tion coefficient, and was originally introduced as a normalized
measure of the dependence between two random variables [1].
We commence by formally defining this dependence measure
as much of our ensuing discussion will be motivated by it.

Definition 1 (Maximal Correlation). For jointly distributed
random variables X and Y , with ranges X and Y respectively,
the maximal correlation between X and Y is defined as:

ρ(X;Y ) , sup
f :X→R, g:Y→R :
E[f(X)]=E[g(Y )]=0

E[f2(X)]=E[g2(Y )]=1

E [f(X)g(Y )]

where the supremum is taken over all Borel measurable
functions. Furthermore, if X or Y is a constant almost surely,
there exist no functions f and g which satisfy the constraints,
and we define ρ(X;Y ) = 0.

It is easily verified that 0 ≤ ρ(X;Y ) ≤ 1, and ρ(X;Y ) = 0
if and only if X is independent of Y . It turns out that the
variational formulation of maximal correlation in Definition 1
shares deep ties with a class of statistical inference problems.
We consider inference problems with the general structure of
a Markov chain U → X → Y . Here, U represents some
feature of the data that we wish to make decisions on. This
feature is embedded in some data X , and we only get to
observe a noisy version of this data Y . We refer to X as the
latent variable, Y as the noisy observation, and the conditional
distributions PY |X as the observation model. A natural way

to solve this inference problem is to learn the statistical model
PY |U , i.e. a combination of the embedding of the feature U
and the observation model, so that we can directly extract the
information about U from the observations.

Unfortunately, this approach is difficult to use in many
applications. For example, in the “Netflix problem,” if we let
X be the user ID and Y the movie ID, it is challenging to
identify what feature U of a user is relevant to his or her
choice of movies. A different approach to such problems is to
focus only on the observation model. We try to find features of
the observation Y that carries as much information about X as
possible, and yet are simple enough so that further processing,
such as clustering and kernel methods, can be applied to make
the final decision. Most dimension reduction algorithms follow
this approach. For example, one way to establish the optimality
of principal component analysis (PCA) is to assume that X is
Gaussian distributed, and passes through an observation model
that adds white Gaussian noise. In this case, the principle
components of the observed Y can be shown to carry the
maximum amount of information about X .

We can interpret maximal correlation as a general formula-
tion for this approach. The optimization problem in Definition
1 tries to find a feature g(Y ) that is highly correlated with
some feature f(X), or equivalently, has high predictive power
towards some aspects of X . The advantage of finding such
a feature is that g(Y ) can be a general real-valued function.
In particular, it need not be a linear function of the data, and
the data itself need not be real-valued (categorical data). Thus,
this maximal correlation formulation provides a general basis
to select features from high-dimensional data. Our goal is to
extend this framework and develop practical algorithms. In the
ensuing discussion, we will present efficient algorithms that
solve the optimization problem in Definition 1 for real-world
data, show that both the formulation of maximal correlation
and the associated algorithms can be generalized to produce
an arbitrary number of features, and demonstrate that the
resulting approach is indeed different, superior, and more
general compared to existing methods such as PCA.

II. THE GEOMETRY OF MAXIMAL CORRELATION

We now develop a geometric structure that offers an al-
ternative view of the maximal correlation problem. Let PX
and PY denote spaces of distributions on X and Y respec-
tively, where |X |, |Y| < ∞. Consider the observation model,
PY |X : PX → PY , as a map that takes PX ∈ PX to



PY ∈ PY : ∀y ∈ Y, PY (y) =
∑
x∈X PY |X(y|x)PX(x),

which we write in vector notation as PY = PY |X ·PX . It turns
out to be inconvenient to consider probability distributions PX
and PY as vectors. Instead, we select a reference distribution
P0,X ∈ relint(PX ), and for every PX ∈ PX , we write:

∀x ∈ X , PX(x) = P0,X(x) +
√
P0,X(x)φ(x) (1)

where φ is a spherical perturbation vector in R|X | satisfying:∑
x∈X

√
P0,X(x)φ(x) = 0. (2)

This defines a one-to-one correspondence, PX ↔ φ, between
probability distributions in the neighborhood of P0,X and
associated spherical perturbation vectors. Using this corre-
spondence, we can think of the neighborhood of distributions
around P0,X as a vector space ΩX , {φ : satisfying (2)}. To
condense notation, we also write (1) in vector form as:

PX = P0,X +
[√

P0,X

]
· φ (3)

where
[√

P0,X

]
is a diagonal matrix with entries P0,X(x),

x ∈ X , and PX , P0,X , and φ are all treated as column vectors.
The reason for the seemingly unnatural choice of vector space
ΩX is the following result.

Lemma 1. If P (ε)
1 and P

(ε)
2 are two distributions in the

neighborhood of P0,X , with P (ε)
1 ↔εφ1 and P (ε)

2 ↔εφ2, then:

D(P
(ε)
1 ||P

(ε)
2 ) =

1

2
ε2‖φ1 − φ2‖22 + o

(
ε2
)
.

Lemma 1 follows from the second order Taylor approxi-
mation of Kullback-Leibler (KL) divergence. The result does
not change with the choice of P0,X in the neighborhood, or
if we switch the order of P (ε)

1 and P
(ε)
2 . It portrays that the

squared Euclidean `2-norm on ΩX is a good approximation of
the KL divergence when we focus on a small neighborhood of
distributions. In the same spirit, we will also use the Euclidean
inner product on ΩX to describe projections and orthogonality
in the variations of probability distributions.

We note that ΩX can also be viewed as functional space
over X . The functions we often use in inference problems are
the log-likelihood functions. Again considering P (ε)

1 and P (ε)
2

as defined above, we can write ∀x ∈ X :

Li(x) = log

(
P

(ε)
i (x)

P0,X(x)

)
= log

(
P0,X(x) + ε

√
P0,X(x)φi(x)

P0,X(x)

)
= ε

1√
P0,X(x)

φi(x) +O
(
ε2
)

for i = 1, 2, where log(·) denotes the natural logarithm. It can
be easily verified that the log-likelihood ratio, log(P

(ε)
1 /P

(ε)
2 ),

is associated in a similar manner to the vector φ1 − φ2.
This establishes a three-way association between a distribution
PX ∈ PX that lies in a neighborhood of P0,X , a vector
φ ∈ ΩX , and a function that we can evaluate over samples,
L : X → R, L(·) , φ(·)/

√
P0,X(·), which satisfies:

EP0,X
[L(X)] =

∑
x∈X

P0,X(x)L(x) = 0. (4)

We refer to such functions as score functions. They are used
to extract features from data. In this sense, the restriction (4)
is reasonable as adding a constant to a score function does not
help extract any useful information. For the same reason, we
also restrict score functions to be normalized:

EP0,X

[
L2(X)

]
=
∑
x∈X

P0,X(x)L2(x) = 1 (5)

which is equivalent to restricting the corresponding vector φ
to have unit norm.

As an example of how to exploit this structure, suppose
we observe a sequence of samples x1, . . . , xn, and wish to
evaluate the log-likelihood ratio between P1↔φ1 and P2↔φ2:

1

n

n∑
i=1

log

(
P1(xi)

P2(xi)

)
= Ên [L1(X)− L2(X)]

where Ên denotes expectation with respect to the empirical
distribution P̂xn

1
of the samples. For large n, P̂xn

1
is typically

restricted to a small neighborhood around some nominal
distribution P0,X , which represents our prior knowledge of
the samples. Thus, we can associate P̂xn

1
with a corresponding

perturbation vector ψ, and write:

1

n

n∑
i=1

log

(
P1(xi)

P2(xi)

)
=
∑
x∈X

P̂xn
1
(x) (L1(x)− L2(x))

= 〈ψ, φ1 − φ2〉 (6)

where 〈·, ·〉 denotes the Euclidean inner product, and the sec-
ond equality follows from letting P̂xn

1
= P0,X +

[√
P0,X

]
ψ,

representing L1 and L2 by φ1 and φ2 respectively, and
using (4). This result has an elegant geometric interpretation:
evaluating the empirical average of the log-likelihood function
is equivalent to projecting the displacement of the empirical
distribution from the prior knowledge P0,X to the direction
φ1 − φ2. In other words, we monitor the variation in the
empirical distribution only along a specific direction: the one
that is relevant to making decisions between P1 and P2.

For inference problems with memoryless models, the order
of the samples is irrelevant in the decision making. So, the
information of the data is carried by its empirical distribution.
Evaluating the empirical average of various score functions on
the data can therefore be viewed as monitoring the variations
of the empirical distribution along different directions, or
equivalently, extracting different partial information. When we
know how the desired feature is statistically “encoded” in the
data, we know which part of the information is “useful.” For
example, if PX|U=1 = P1 and PX|U=2 = P2, then (6) is
a sufficient statistic for U , and orthogonal components of ψ
can be discarded. Without this knowledge, we cannot deem
any part of the information as irrelevant. However, processing,
storage, or communication constraints often compel us to
discard some partial information, as is typical in Big Data
problems. Intelligently doing this without severely degrading
performance requires new performance criteria and analytic
structures to decompose information into parts that can po-
tentially be dissipated. The geometric structure we introduced
addresses such lossy information processing problems.



With our geometric structure, decomposing information re-
duces to decomposing the vector ψ ∈ ΩX . We fix an orthonor-
mal basis

{
u1, . . . , u|X |−1

}
of ΩX , and compute the inner

products 〈ψ, ui〉 for 1 ≤ i ≤ |X | − 1. Each ui corresponds to
a score function: ∀x ∈ X , fi(x) = ui(x)/

√
P0,X(x), and the

orthogonality of
{
u1, . . . , u|X |−1

}
implies that different score

functions are uncorrelated with respect to P0,X :

δij = 〈ui, uj〉 =
∑
x∈X

P0,X(x)fi(x)fj(x)

for every i, j, where δij is the Kronecker delta. We refer to
the inner products 〈ψ, ui〉 as scores (not to be confused with
score functions fi). By the completeness of

{
u1, . . . , u|X |−1

}
,

we can recover ψ if we collect all the scores. Hence, the set
of real-valued scores, 〈ψ, ui〉 = Ên [fi(X)] , 1 ≤ i ≤ |X |− 1,
is a different decomposition of the empirical distribution P̂xn

1
.

If the data samples X1, . . . , Xn are actually i.i.d. from
P0,X , and n is large enough so that the central limit theorem
becomes a good approximation, then the scores, 〈ψ, ui〉 for
1 ≤ i ≤ |X | − 1, are i.i.d. Gaussian distributed with variance
proportional to 1/n (in an exponential followed by local
approximation sense) [2]. At this point, there is no reason
to believe any score is more valuable or informative than any
other score. This remains true irrespective of our choice of
basis. The story is different, however, if we observe the data
through a memoryless observation model PY |X : PX → PY .
We construct the vector spaces ΩX and ΩY by choosing ref-
erence distributions P0,X ∈ relint(PX ) and P0,Y ∈ relint(PY)
respectively, such that P0,Y = PY |X ·P0,X . Using the notation
in (3), we can write PY |X as a map from ΩX to ΩY :

PY = PY |X · PX
⇔ P0,Y +

[√
P0,Y

]
·φY = PY |X ·

(
P0,X +

[√
P0,X

]
·φX

)
⇔ φY =

[√
P0,Y

]−1

· PY |X ·
[√

P0,X

]
· φX

where PX ↔ φX and PY ↔ φY , and we define:

B ,
[√

P0,Y

]−1

· PY |X ·
[√

P0,X

]
(7)

as the map from ΩX to ΩY . If we assume that the local
approximation condition of Lemma 1 holds, then the variation
φX between PX and P0,X has a KL divergence proportional
to ‖φX‖22, and the induced variation φY between PY and
P0,Y has a KL divergence proportional to ‖φY ‖22. We observe
that for any variation φX ∈ ΩX with fixed KL divergence
‖φX‖22 = δ, the KL divergence of the induced variation,
‖φY ‖22, depends on the direction of φX and the singular value
decomposition (SVD) of B. Equivalently, depending on the
SVD of B, some input features are corrupted severely by the
noisy observation model, while others are more observable
from the output end. Hence, we refer to B as the divergence
transition matrix (DTM) of the observation model.

In the definition of the DTM (7), we did not take into
account that both φX and φY must satisfy the constraint (2).
However, we can easily verify that u0 , [

√
P0,X(x), ∀x ∈

X ]T and v0 , [
√
P0,Y (y), ∀y ∈ Y]T are the right and left

singular vectors respectively, corresponding to a singular value

of σ0 = 1 for any DTM B. Translating this to the language of
functional spaces, u0 and v0 correspond to constant functions
over X and Y respectively. We could have incorporated
constraint (2) into the definition of B using projections to
the orthogonal complement subspaces of u0 and v0, but it is
convenient to define B as we have. So, we will simply keep in
mind that perturbation vectors in ΩX and ΩY are orthogonal to
u0 and v0, respectively, which means that they are spanned by
the remaining right and left singular vectors of B, respectively.
The next result presents some properties of the singular values
and vectors of the DTM.

Theorem 2. For any observation model PY |X , input reference
distribution P0,X ∈ relint(PX ), output reference distribution
P0,Y ∈ relint(PY), and corresponding DTM defined in (7),
the following are true:

1) u0 and v0 are always a pair of right and left singular
vectors respectively, corresponding to σ0 = 1.

2) All other singular values satisfy: 1 = σ0 ≥ σ1 ≥ σ2 ≥
. . . ≥ σK−1 ≥ 0, where K = min{|X |, |Y|}.

3) σ1 = ρ(X;Y ) is the maximal correlation, and the
functions corresponding to its right and left singular
vectors, u1 and v1, respectively:

∀x ∈ X , f∗(x) =
u1(x)√
P0,X(x)

∀y ∈ Y, g∗(y) =
v1(y)√
P0,Y (y)

are the maximal correlation functions solving the ex-
tremal problem in Definition 1 of ρ(X;Y ).

4) σ1 = ρ(X;Y ) is also characterized by:

ρ2(X;Y ) = lim
ε→0

sup
QX∈PX :

D(QX ||P0,X)= 1
2 ε

2

D(QY ||P0,Y )

D(QX ||P0,X)
(8)

where QY ∈ PY satisfies QY = PY |X · QX for any
QX ∈ PX . The supremum in (8) is achieved by choosing
QX as a perturbation of P0,X along the direction of u1,
i.e. QX = P0,X + ε

[√
P0,X

]
· u1.

We refer readers to [3] and the references therein for proofs
of these properties. The fourth property (8) in Theorem 2 pro-
vides an information theoretic interpretation of maximal corre-
lation and the geometric structure we described. It states that
two distributions P0,X and QX become less distinguishable
when passing through a noisy observation model, PY |X , in
the sense that the KL divergence is reduced: D(QY ||P0,Y ) ≤
D(QX ||P0,X). This is simply the data processing inequality.
More precisely, (8) illustrates that as long as P0,X and QX are
in a small neighborhood, the reduction in the KL divergence is
minimized when the difference between P0,X and QX is along
the first right singular vector u1. This is a tighter variant of the
data processing inequality. So, depending on the SVD structure
of B, different features of X are corrupted differently by the
noisy observation. The feature that is least corrupted is the one
corresponding to u1 and v1, i.e. the one that can be extracted
by using the score functions f∗ and g∗. Hence, returning to the



dimension reduction problem, when we do not know how the
desired feature U is encoded in X but know the observation
model PY |X , if we can only compute the empirical average
of a single score function to capture some information about
U , then the maximal correlation function g∗ corresponding to
the left singular vector v1 is a sensible choice.

We remark that given a finite number of samples y1, . . . , yn,
the finite length realization of the observation model also
adds extra noise to the empirical distribution of the observed
samples P̂yn1 [2]. It is proven in [4] that the distribution of this
noise also depends on the SVD of B. Nonetheless, it is still
true that features of X along the singular vectors with larger
singular values are less corrupted by the observation channel.

The result (8) depends critically on the local assumption that
PX and QX are close. For example, in [5], a slightly different
formulation with a ratio of mutual information terms was
studied, and a rather different result was derived as the local
assumption fails in this case. This nuance is elucidated in [3].
In practice, we often apply the score functions derived from the
SVD structure to data without considering how well the local
assumption holds. This is a heuristic engineering choice which
is taken because it leads to structured and efficient algorithms.

Theorem 2 can be generalized to the following result, which
addresses the problem of extracting k ≥ 1 features from data.

Proposition 3. For every 1 ≤ k ≤ K − 1, we have:

σk = max
{fi:i=1,...,k}
{gi:i=1,...,k}

min
1≤i≤k

E[fi(X)gi(Y )]

where the maximization is over all possible pairs of score
functions with the following constraints:

∀i ∈ {1, . . . , k} , fi : X → R, gi : Y → R
∀i ∈ {1, . . . , k} , E[fi(X)] = E[gi(Y )] = 0

∀i, j ∈ {1, . . . , k} , E[fi(X)fj(X)] = E[gi(Y )gj(Y )] = δij

and the expectations are taken over P0,X and P0,Y . The
optimizing score functions satisfy: ∀x ∈ X , f∗i (x) =
ui(x)/

√
P0,X(x), and ∀y ∈ Y, g∗i (y) = vi(y)/

√
P0,Y (y),

where ui and vi are the k pairs of right and left singular
vectors of B corresponding to σ1, . . . , σk, respectively.

Proposition 3 is straightforward to prove using the SVD. We
omit a statement regarding the information theoretic optimality
of f∗i and g∗i akin to (8). Regardless, Proposition 3 suggests
that upon observing a sequence of samples y1, . . . , yn, if we
are allowed to compute k scores, we should compute the
empirical averages of g1, . . . , gk, which correspond to singular
vectors of B. These scores are the most informative in the
sense of (8), and relate one-to-one to a collection of k features
of the X sequence in the sense of Proposition 3.

III. EFFICIENT ALGORITHMS TO FIND SCORE FUNCTIONS

In the approach we have presented so far, finding “optimal”
score functions is equivalent to computing the first few singu-
lar vectors of B. As we are interested in problems where X
and Y are very large, both computing the SVD of B and
estimating B itself are often formidable tasks. Fortunately,

with the help of the geometric structure we described, both
these issues can be resolved with computationally efficient
procedures. In this section, we will focus on computing a
single score function g∗ corresponding to σ1. The next section
will address the problem of finding multiple score functions.

Computing g∗ is equivalent to finding the maximal corre-
lation. This is a well-known problem in the literature, and a
standard solution is the Alternating Conditional Expectations
(ACE) algorithm [6]. We now delineate this algorithm using
the SVD notation we introduced. For a K ×K real matrix A
(taken to be square without loss of generality) with ordered
singular values σ0 ≥ σ1 ≥ . . . ≥ σK−1 and corresponding
normalized right singular vectors u0, u1, . . . , uK−1 ∈ RK , we
can find u0 using the power method from numerical linear
algebra [7]. We start with an arbitrary vector φ ∈ RK , and
repeatedly multiply ATA to it. Since ATA =

∑K−1
i=0 σ2

i uiu
T
i

by the spectral theorem, and φ =
∑K−1
i=0 αiui for some

αi ∈ R as {u0, . . . , uK−1} is an orthonormal basis, we can
write:

(
ATA

)m · φ =
∑K−1
i=0 σ2m

i αiui. Assuming α0 6= 0,
as m becomes large, the component corresponding to σ0 will
dominate the sum, and the resulting vector is aligned with
u0. In practice, we scale the intermediate vectors to have unit
norm once every few iterations for numerical stability. The
power method converges geometrically (exponentially) with
ratio σ2

1/σ
2
0 . We will ignore the σ0 = σ1 case, but even in

this case, the power method outputs some linear combination
of u0 and u1. Moreover, after computing u0, we can compute
u1 by selecting an initial guess φ that is orthogonal to u0.

We use this approach on the DTM B. Let our initial guess be
φ ∈ R|X | with corresponding score function ∀x ∈ X , f(x) =
φ(x)/

√
P0,X(x), and let ψ = B ·φ ∈ R|Y| with corresponding

score function ∀y ∈ Y, g(y) = ψ(y)/
√
P0,Y (y). Then, using

(7), we have for every y ∈ Y:

g(y) =
ψ(y)√
P0,Y (y)

=
1√

P0,Y (y)

∑
x∈X

B(x, y)φ(x)

=
1√

P0,Y (y)

∑
x∈X

PY |X(y|x)
√
P0,X(x)√

P0,Y (y)

√
P0,X(x)f(x)

= E [f(X)|Y = y] .

So, multiplying φ by B is equivalent to taking the conditional
expectation of f : E[f(X)|Y = y]. Likewise, multiplying ψ by
BT is equivalent to taking the other conditional expectation:
E[g(Y )|X = x]. Thus, the following ACE algorithm precisely
solves for the singular vectors of B corresponding to σ1.

Algorithm 1 ACE Algorithm
Require: knowledge of PX,Y

1. Initialize: randomly pick g(y), y ∈ Y
Center: g(y)← g(y)− E[g(Y )]

repeat
2a. f(x)← E[g(Y )|X = x], ∀x ∈ X
2b. g(y)← E[f(X)|Y = y], ∀y ∈ Y
2c. Regularize: g(y)← g(y)/

√
E [g2(Y )], ∀y ∈ Y

until E[f(X)g(Y )] stops to increase



In Algorithm 1, the initial choice of g(Y ) is constrained
to have zero mean. This is equivalent to setting ψ to be
orthogonal to v0, which corresponds to the constant function
on Y . This centering needs to be done only once at the
initialization step, since we have E[f(X)] = E[g(Y )] = 0 in
all of the following steps. Moreover, the regularization step 2c
does not have to be performed in every iteration; it is needed
only once in a while to avoid arithmetic underflow.

In practice, the main obstacle of applying this algorithm
is the requirement of the knowledge of PX,Y . Especially for
cases with large alphabets X and Y , estimating PX,Y can
require a lot of samples. A natural alternative is to replace
the conditional expectations in steps 2a and 2b by empirical
conditional averages. This gives the following algorithm.

Algorithm 2 ACE Algorithm with Finite Samples
Require: training samples {(xi, yi) : i = 1, . . . , N}

1. Initialize: randomly pick g(y), y ∈ Y
repeat: pick a subset of n samples

2a. f(x)← Ên[g(Y )|X = x], ∀x ∈ X
2b. g(y)← Ên[f(X)|Y = y], ∀y ∈ Y
2c. Regularize: g(y)← g(y)− Ên[g(Y )], ∀y ∈ Y

g(y)← g(y)/

√
Ên[g2(Y )], ∀y ∈ Y

until Ên[f(X)g(Y )] stops to increase

There are two main differences between Algorithm 2 and
Algorithm 1. Firstly, the centering step that forces g(y) to
be zero mean is removed from the initialization step and
performed repeatedly. This is because the empirical distribu-
tion P̂xn

1 ,y
n
1

might be different from PX,Y . Thus, a non-zero
mean might be introduced in the empirical averaging steps. As
σ0 = 1 is the largest singular value, we need to periodically
prune the component along v0; otherwise, it would dominate
the resulting function. Secondly, to simplify the analysis, we
assume that in each iteration we use a subset of n samples,
and that these subsets are non-overlapping from one iteration
to another. In practice, it is easy to use bootstrapping methods
to reuse some of the samples. The key to the success of this
algorithm is to select n large enough so that the empirical
averages are close to the true conditional expectations. In our
experiments, the algorithm converges exponentially fast. So,
only a few iterations are typically required for convergence,
and the difference between N and n is insignificant.

A. Sample Complexity of Learning the Maximal Correlation
Functions

Since we are particularly interested in problems where |X |
and |Y| are large and comparable, we assume that |X | = |Y| =
K for convenience. We further assume that the number of
samples N is much larger than K, which means estimating
the marginal distributions PX and PY is manageable, but
not large enough to provide an accurate estimate of the K2-
dimensional joint distribution. This allows us to make the
simplifying assumption that PX and PY are given.

It is notoriously difficult to estimate large dimensional
distributions like PX,Y . This is because a few of the entries,

PX,Y (x, y) for some x ∈ X and y ∈ Y , are inevitably very
small. Such entries appear very infrequently in the samples,
and thus, many samples are needed to see the frequency of
these values. We can perceive the ACE algorithm on samples
as an effort to circumvent this situation. It tries only to
estimate a part of the joint distribution, namely, the component
corresponding to the second largest singular value and its
corresponding singular vectors. We can then use this partial
knowledge of PX,Y for the purposes of inference. Intuitively,
we should expect the ACE algorithm to require fewer training
samples than algorithms that attempt a full estimation of PX,Y .

To rigorize this intuition, we consider the following esti-
mation problem. Suppose (xi, yi), i = 1, . . . , n, are drawn
i.i.d. from an unknown joint distribution PX,Y , and we are
interested in estimating E[f(X)g(Y )] from these samples for
a given pair of functions f : X → R and g : Y → R satisfying:

E
[
f2(X)

]
= E

[
g2(Y )

]
= 1. (9)

Note that we do not restrict the functions to be zero-mean.
So, the functions can have components along u0 and v0,
respectively. We seek to compute the rate at which the em-
pirical average Ên[f(X)g(Y )] converges, and quantify how
this rate varies for different choices of f and g. Specifically,
we study the maximal correlation functions f∗ and g∗, and
the functions ∀x ∈ X , f̌(x) , Ix=x0

(x)/
√
PX(x0) and

∀y ∈ Y, ǧ(y) , Iy=y0(y)/
√
PY (y0) for an arbitrary choice

of x0 ∈ X and y0 ∈ Y , where I denotes the indicator function.
It can be checked that f̌ and ǧ satisfy (9), and that their true
correlation is:

E
[
f̌(X)ǧ(Y )

]
=

PX,Y (x0, y0)√
PX(x0)PY (y0)

= B(x0, y0).

As we assume that both PX and PY are precisely given,
we treat the estimation of this correlation as the same as the
estimation of the entry PX,Y (x0, y0) of the joint distribution.
The correlation between f∗ and g∗ is generally high due
to Definition 1. In contrast, most f̌ and ǧ of interest have
smaller correlation than f∗ and g∗. For problems with large
alphabets, this gap is particularly significant. We will argue
that because of this gap, the estimation of the maximal
correlation, ρ(X;Y ), indeed requires a significantly smaller
number of samples than the estimation of a particular entry
PX,Y (x0, y0). In the ensuing discussion, we will retain the
SVD notation we have defined for B with PX replacing P0,X

and PY replacing P0,Y .
To quantify the sample complexity of an estimation, we con-

sider the following criterion. For any given pair of functions
f, g, we compute the number of samples, n, required such that
the probability:

P

(∣∣∣∣∣ Ên [f(X)g(Y )]

E [f(X)g(Y )]
− 1

∣∣∣∣∣ ≥ ∆

)
≤ γ (10)

for some small values ∆ > 0 and γ > 0. So, we allow the n-
sample empirical average to differ by a factor of (1±∆) from
the true value. We use this criterion to study the convergence
of Algorithm 2. Consider a particular iteration where we have
a guess f : X → R of the maximal correlation function.



Although f is not necessarily equal to f∗, we can decompose
it with respect to the basis defined by the singular vectors of
the DTM. To this end, we let φ ∈ ΩX be the perturbation
vector corresponding to f : ∀x ∈ X , φ(x) = f(x)

√
PX(x),

and expand φ in the form φ =
∑K−1
i=1 αi ui, or equivalently:

∀x ∈ X , f(x) =

K−1∑
i=1

αi f
∗
i (x)

where each f∗i , defined by ∀x ∈ X , f∗i (x) = ui(x)/
√
PX(x),

corresponds to the ith right singular vector of B, and the
coefficients {αi : i = 1, . . . ,K − 1} can be computed using
the inner products: αi = 〈φ, ui〉 = E[f(X)f∗i (X)].

After a round of empirical conditional expectation calcu-
lations, we get g : Y → R given by ∀y ∈ Y, g(y) =
Ên[f(X)|Y = y]. As before, we decompose g with respect
to the left singular vectors of B, which gives:

∀y ∈ Y, g(y) =

K−1∑
j=1

βj g
∗
j (y)

where each g∗j is given by: ∀y ∈ Y, g∗j (y) = vj(y)/
√
PY (y).

Moreover, we can write out each coefficient as:

βj = E
[
g(Y )g∗j (Y )

]
=
∑
y∈Y

PY (y) g∗j (y) Ên

[
K−1∑
i=1

αi f
∗
i (X)

∣∣∣∣∣Y = y

]

=

K−1∑
i=1

αi Ên
[
f∗i (X)g∗j (Y )

]
where we assume that the difference between the empirical
marginal distribution P̂yn1 and the true PY is negligible.

Thus, if n is large enough such that ∀i, j ∈ {1, . . . ,K−1},
Ên
[
f∗i (X)g∗j (Y )

]
is close to E

[
f∗i (X)g∗j (Y )

]
= σi δij ,

then the orthogonal expansion coefficients corresponding to
f∗1 and g∗1 dominate over iterations of the algorithm, and
the algorithm converges to the maximal correlation functions
exponentially fast. The sample complexity of Algorithm 2 is
therefore determined by the number of samples in a block,
n, which must be large enough such that (10) is satisfied for
sufficiently small ∆ and γ. The following result presents a
tight characterization of the n needed for this purpose.

Theorem 4. For any random variables X and Y with joint
distribution PX,Y , if X and Y are not independent, then for
any f : X → R and g : Y → R satisfying (9), we have:

− lim
∆→0+

1

∆2
lim
n→∞

1

n
log

(
P

(∣∣∣∣∣ Ên [f(X)g(Y )]

E [f(X)g(Y )]
− 1

∣∣∣∣∣ ≥ ∆

))

=
1

2

E [f(X)g(Y )]
2

VAR (f(X)g(Y ))
.

Theorem 4 illustrates that the large deviations rate of decay
of the probability in (10) is inversely proportional to the
squared coefficient of variation of f(X)g(Y ) as ∆ → 0+.
We now compare the estimation of the correlations between
f∗1 and g∗1 , and f̌ and ǧ. Using Theorem 4, the ratio of the
number of samples required to achieve the same precision level

∆ and confidence 1− γ (between f̌ , ǧ and f∗1 , g
∗
1) is:

G(B) ,
E
[
f̌(X)ǧ(Y )

]2
E [f∗1 (X)g∗1(Y )]

2

VAR (f∗1 (X)g∗1(Y ))

VAR
(
f̌(X)ǧ(Y )

) . (11)

This ratio depends on the true distribution PX,Y , and is thus
written as a function of the DTM B. We observe that in the
first term of (11), E[f∗1 (X)g∗1(Y )] is larger than E[f̌(X)ǧ(Y )]
in most cases of interest. On the other hand, when we square
f∗1 and g∗1 element-wise, intuitively, the property of high
correlation is lost. Hence, we expect the ratio between the
variances in the second term of (11) to be insignificant, which
means G(B) < 1 in most cases. This portrays that the maximal
correlation functions are not only good information carriers,
but the correlation between them is also easier to estimate
compared to other pairs of functions. Consequently, the ACE
algorithm converges fast; it requires fewer samples than that
needed to estimate an entry of the joint distribution.

Unfortunately, we cannot prove this for every DTM. In
principle, it might be possible to construct an example where
the ratio between the variances is also significant. However, we
cannot determine whether we are given such an “unfortunate”
DTM when we face a problem. It is our belief that such
cases are rare when K is large. We demonstrate this using
a numerical experiment, where we randomly generate PX,Y
using i.i.d. exponential entries followed by normalization. For
each PX,Y , we compute the ratio G(B) corresponding to
f̌(X) and ǧ(Y ) defined by some randomly chosen element
(x0, y0) ∈ X × Y . We then plot the average values of G(B)
with respect to K. Figure 1 indicates that the average G(B)
decreases as K increases, and the relationship between log(K)
and log(G) is linear. Intuitively, for a random K ×K matrix
PX,Y , the second largest singular value of B, ρ(X;Y ), scales
as 1/

√
K and E[f̌(X)ǧ(Y )] = B(x0, y0) scales as 1/K.

Thus, we expect a saving in the sample complexity by a factor
of 1/K. Indeed, the relationship found in our simulation is
G(B) ≈ C Kα, where C is a constant and α ≈ −1.05.

Fig. 1. Numerical experiment plot of average G(B) as a function of K.
In logarithmic axes, the relationship is almost linear, with an MSE fit of
log(G) = −0.9921− 1.0524 log(K), and Pearson correlation of −0.9996.

B. Comparison to Principal Component Analysis

It is instructive to compare the ACE algorithm to PCA,
because the two approaches have a clear resemblance in that
the SVD is used in both. In PCA, the observed data are real-
valued vectors y1, y2, . . . , yn ∈ Rm. We stack these vectors
together to form a matrix Y = [y1 y2 · · · yn], and compute the



SVD of Y . Then, we can project each observed m-dimensional
vector to k < m leading left singular vectors of Y to form a
reduced k-dimensional representation. In the ACE algorithm,
we observe the samples {(xi, yi) ∈ X × Y : i = 1, . . . , N}
where |X |, |Y| < ∞. We then compute a scaled version of
the empirical conditional distribution for each x ∈ X :

∀y ∈ Y, bx(y) =

√
PX(x)√
PY (y)

P̂Y |X(y|x) =
P̂xN

1 ,y
N
1

(x, y)√
PX(x)PY (y)

where we assume the marginal distributions PX and PY are
given or precisely estimated from the data. These vectors are
stacked together to form B = [bx, x ∈ X ], and we compute
the SVD of B. The scores computed by the ACE algorithm
are projections of P̂yN1 (properly scaled) onto the leading left
singular vectors of B. Hence, the two approaches are almost
identical. The key difference is that in the ACE algorithm,
we operate in the space of distributions rather than data.
Consequently, “a strong advantage of the ACE procedure is
the ability to incorporate variables of quite different type in
terms of the set of values they can assume” [6].

Another way to relate PCA and the ACE algorithm stems
from viewing the DTM as a map from the functional space
over X to that over Y . In the optimization of Definition 1, we
look for general functions f and g such that f(X) and g(Y )
are highly correlated. We can further restrict these functions
to lie in linear subspaces of the functional spaces since we
can still define the DTM as a linear map from a subspace
of functions over X to a subspace of functions over Y . The
entire discussion regarding the SVD structure and iterative
algorithms to compute optimal functions holds in this scenario.

A particular case of interest is when we have zero mean
random vectors X,Y ∈ Rm that have covariance matrices KX

and KY , respectively, and cross-covariance matrix KX,Y , and
we constrain the correlation functions to be linear functions.
With a little abuse of notation, we consider the linear functions
∀x ∈ Rm, f(x) = fTx and ∀y ∈ Rm, g(y) = gT y for some
f, g ∈ Rm. Then, we can specialize Definition 1 into:

max
f∈Rm, g∈Rm:

E
[
(fTX)

2
]
=E

[
(gTY )

2
]
=1

E
[
(fTX)(gTY )

]
. (12)

This is the setup of canonical correlation analysis (CCA),
and the optimizing arguments are f∗ = K

−1/2
X u and g∗ =

K
−1/2
Y v, where u and v the right and left singular vectors

of the matrix C , K
−1/2
X KX,YK

−1/2
Y , respectively [8]. This

matrix resembles the definition of the DTM B in (7). If we
wish to avoid directly solving the SVD, we can use a modified
version of Algorithm 1. Since we may get a non-linear function
after step 2a, f(x)← E[g(Y )|X = x], ∀x ∈ X , we project f
onto the subspace of all linear functions using a pertinent inner
product after step 2a. This is equivalent to minimizing the
mean squared error: minf∈Rm E[(f(X)− fTX)2]. Adding a
similar projection step after step 2b, it is easy to verify that
Algorithm 1 solves the CCA problem (12).

Such results with linear correlation functions rely only
on the second moments of X and Y . So, we can treat X

and Y as though they are jointly Gaussian distributed (as
commonly done in linear least squares estimation). Hence,
the extremal problem in Definition 1 is a generalization of
the Gaussian case. A further special case of CCA is when
the noisy observation model actually adds white noise, i.e.
KY = KX + σ2I and KX,Y = KX . This simplifies the
CCA problem as the covariance matrices defining C are jointly
diagonalizable. Consequently, g∗ = K

−1/2
Y v where v is given

by the first eigenvector of KY ; this is consistent with PCA.

IV. FINDING MULTIPLE SCORE FUNCTIONS IN PARALLEL

As we have discussed, when we use the ACE algorithm as
a dimension reduction tool, our goal is to identify the feature
of Y that is most correlated with some feature of X . This is
meaningful in applications where we do not know how the
desired feature U is embedded in the data X . So, we reduce
the observed data Y to a manageable number of scores that
capture sufficient information about U . It is therefore critical
that we can compute any k ≥ 1 of the most informative scores.
On this front, the existing literature mostly follows the original
formulation [6], where a generalization of the ACE algorithm
finds a feature f(X) and multiple score functions gj(Yj), j =
1, . . . , p, each operating on a part of the observed data Yj , j =
1, . . . , p, such that E[(f(X)−

∑p
j=1 gj(Yj))

2] is minimized.
With the geometric structure developed in this paper, a more

natural approach is to find k ≥ 1 pairs of score functions
fi : X → R, gi : Y → R, i = 1, . . . , k, such that each
gi(Y ) carries information about the corresponding fi(X). To
avoid redundancy between score functions, we impose the
additional constraints: ∀i, j ∈ {1, . . . , k}, E[fi(X)fj(X)] =
E[gi(Y )gj(Y )] = δij . Then, the optimal score functions are
given by the following extremal problem:

max
{fi:i=1,...,k}
{gi:i=1,...,k}

min
1≤i≤k

E [fi(X)gi(Y )]

which is solved in Proposition 3. These optimal correlation
functions correspond to the left and right singular vectors
of B associated to its k largest singular values excluding
σ0 = 1. The scores associated with g1(Y ), . . . , gk(Y ) reflect
the variation of the distribution of Y in a k-dimensional
subspace. As k increases, more information is captured in
these scores. We can show that these score functions can be
computed from training data with the lowest possible sample
complexity in the sense of Theorem 4, and are information
theoretically optimal in the sense of (8), i.e. they achieve the
optimal tradeoff between the computational complexity, k, and
the information loss. We next present an efficient algorithm
generalizing Algorithm 2 to find these score functions.

Observe that we can sequentially compute the leading k sin-
gular vectors of a K×K real matrix A by repeatedly running
the power iteration method with initial vectors that are orthog-
onal to all previously computed singular vectors. However, a
more desirable approach is to compute the k singular vectors in
parallel. We begin by randomly choosing φ0, φ1, . . . , φk−1 ∈
RK which form a matrix Φ = [φ0 φ1 · · ·φk−1], and update
these vectors by computing: Φ← ATA ·Φ. We must include



a regularization step that ensures that the vectors in Φ are
mutually orthogonal. A common technique is to use the Gram-
Schmidt process which forces each φi to be orthogonal to
φ0, . . . , φi−1. It is straightforward to verify that this procedure
converges to the k leading singular vectors of A.

Applying this parallelized algorithm to the DTM, we ini-
tialize by choosing k score functions: g1, g2, . . . , gk : Y → R,
which we stack into a vector: g : Y → Rk. This can
be interpreted as associating each value y ∈ Y with a k-
dimensional signature g(y). Given a collection of n samples
{(xi, yi) : i = 1, . . . , n}, we compute the empirical condi-
tional expectation analogous to step 2a in Algorithm 2:

f(x)← Ên
[
g(Y )|X = x

]
, ∀x ∈ X .

The resulting f : X → Rk can be construed as assigning a
k-dimensional signature to each value x ∈ X . To compute
this empirical conditional expectation, it is convenient to start
with an arbitrarily chosen initial guess of f . Upon observing
a sample (xi, yi), we can simply update the signature f(xi)
by moving it towards g(yi) with a step size of ∆/PX(xi),
where PX(xi) is the frequency that xi is observed and ∆ > 0
is essentially a learning rate. Moreover, the aforementioned
Gram-Schmidt regularization step is computationally expen-
sive as the process operates on K-dimensional vectors. To
instead operate on the k-dimensional signatures, we construct
the K × k matrix Ψ =

[√
PY
]
· G, where G = [g1 · · · gk]

and each gi is a column vector with entries gi(y), y ∈ Y . We
then compute the spectral decomposition of ΨTΨ = UΛUT ,
and whiten Ψ by updating: Ψ← Ψ · (UΛ−

1
2 ), or equivalently

updating: G← G · (UΛ−
1
2 ), which corresponds to updating:

g(y)←
(

Λ−
1
2UT

)
· g(y), ∀y ∈ Y.

This simple procedure ensures that Ψ has rank k and a
condition number of 1. When the algorithm converges, the
column vectors of Ψ form a basis for the k-dimensional
subspace spanned by the leading k singular vectors of B
excluding the one corresponding to σ0 = 1. Although we
do not recover these singular vectors, we can still perform
dimension reduction to the desired k-dimensional subspace.
We collect these ideas together as Algorithm 3.

In Algorithm 3, we assume as before that the marginal
distributions PX and PY are easy to estimate. In fact, although
we include steps 2a and 3a which estimate the marginals, we
assume that all operations involving them in the algorithm
are precise. Furthermore, we only use two different sets of
independent samples in steps 2 and 3 in order to simplify the
analysis. In reality, we can use partially or fully overlapping
sets of samples. Finally, we note that the number of samples
used in each iteration, n, is chosen according to Theorem 4.

V. CONCLUSION

In this paper, we developed a trinity of isomorphic vector
spaces including distributions in a neighborhood, spherical
perturbations, and score functions. We then illustrated the
elegant geometric formulation of maximal correlation as a
singular value of a linear map between such spaces. This

Algorithm 3 Parallel ACE Algorithm with Finite Samples
Require: training samples {(xi, yi) : i = 1, . . . , N}

1. Initialize: randomly pick g(y), y ∈ Y and f(x), x ∈ X
repeat:
2. Pick a subset of n samples, and for each sample (xi, yi):

2a. Update counter to estimate PX(xi)
2b. f(xi)← f(xi) + ∆

PX(xi)
g(yi)

3. Pick another subset of n samples, and for each sample:
3a. Update counter to estimate PY (yi)
3b. g(yi)← g(yi) + ∆

PY (yi)
f(xi)

4. Regularize:
4a. g(y)← g(y)− Ên

[
g(Y )

]
, ∀y ∈ Y

4b. Φ←
∑
y∈Y

PY (y) g(y) g(y)T

4c. [U Λ] = eig(Φ)

4d. g(y)←
(

Λ−
1
2UT

)
· g(y), ∀y ∈ Y

until Ên
[
f(X)T g(Y )

]
stops to increase

formulation engendered an iterative procedure, known as the
ACE algorithm, to compute maximal correlation functions
(informative features) from data. We characterized the infor-
mation theoretic optimality of these functions in a local data
processing sense. Furthermore, we provided a tight characteri-
zation of the sample complexity of the ACE algorithm to argue
that as the cardinalities |X | and |Y| become large, estimating
maximal correlation functions requires far fewer samples than
estimating arbitrary elements of the DTM. Finally, we gener-
alized the ACE algorithm to compute several informative and
mutually “orthogonal” score functions in parallel. This general
algorithm serves as a dimension reduction tool which can be
construed as performing PCA in the space of distributions
rather than data. As a final remark, we note that our algorithms
can also be used to fuse information from multiple sources of
data by taking unions over the corresponding alphabet sets.
Justifying this rigorously is a key future research endeavor.
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