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2.1 Simplicial Complex



A (Geometric) Simplex

» Points {pg, P, ..., g} € R are (affinely) independent
if vectors v; = p; — po, 1 € |0,d], are linearly independent

» Geometric p-simplex o = { Vg, Vq, ..., Up}

Convex combination of p + 1 dffinely-independent points in RY
o= {Zfzoaivi la; =>0,Ya; =1}

» Examples
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A (Geometric) Simplex

» Points {pg, 1, ..., 04} € RN are (affinely) independent V2
)4 P

if vectors v; = p; — po, 1 € |0,d], are linearly independent

» Geometric p-simplex o = { Vg, Vq, ..., Up} Vo

Convex combination of p + 1 dffinely-independent points in RY
o= {Zfzoaivi la; =>0,Ya; =1}

(%1
3-simplex
» Simplex 7 formed by a subset of { vy, vy, ..., 1, } is called a face of o, denoted
byt o
A proper face of o is a simplex that is the convex hull of a proper subset of P;

(i.e.any face except g)
The (k — 1) — faces of g are called facets of o (o has k + | facets)



Simplicial complex

» A geometric simplicial complex K

A collection of simplices such that
If o0 € K, thenany face 7 S gisalsoin K

If c N’ + @, then 0 N g’ is a face of both simplices.

dim(K) = highest dim of any simplex in K

» Subcomplex L € K and L is a complex
» The p-skeleton of K consists of all simplices in K of dimension at most p

» Underlying space |K| of K
is the pointwise union of all points in all simplices of K,
i.e, |[K| = Uger{x | x € g}



Abstract simplicial complex

» An (abstract) p-simplex o = { vy, V4, ..., vp}
a set of cardinality p + 1

A subset T € g is a face of o

» An (abstract) simplicial complex K

A collection of simplices such that

If o € K, then any fact T € g is also in K

» Geometric realization of an abstract simplicial complex S

is a geometric simplicial complex K such that there is an isomorphism between
Vert(K) and Vert(S) inducing an isomorphism between all simplices in K and in S



Geometric realization

» Geometric realization of S in the standard simplex A ©¢ RN with N =
|[Vert(S)|

» Theorem:

Any abstract simplicial complex S of dimension d has a
geometric realization K C R2d+1

» Underlying space |S| of an abstract simplicial complex

is the underlying space of its geometric realization into the standard simplex A



Star and links

» Given a simplex T € K
Star: St(t) = {c €K |17 C 0}
Closed star: clSt(7) = Ugegyry L0 10" c o}
Link: Lk(t) ={o€clSt(t) |lonTt=0 }

b

St(a) = {la}, {a. b}. {a,d}.{a. [}, {a, b, d}}, St(@) = St(a) U {{b}, {d}, {/}. {b, d)})
St(f) = ({f}Aa, f1.Ad, 1), SH(f) = St(f) U {{al, {d})
St({a, b)) = {{a, b}, {a, b, d}}, St({a, b)) = St({a, b)) U {{a}, {b}, {d), {a, d), (b, d})

Lk(a) = {{P}.{d}. {f}. 1b.d}}), Lk(f) = {{a}. {d}}, Lk({a. b}) = {{d}}.

w
]




Simplicial map

» Intuitively, analogous to continuous maps between topological spaces

» Given simplicial complexes K and L
a function f: K — L is a simplicial map if
f(Vert(K)) < Vert(L)
for any o = {pg, ..., pa}, (o) = {f (o), ..., f(pg)} spans a simplex in L
» A function f: K — L is an isomorphism
if f is a simplicial map and it is bijective
» A simplicial map f: K — L induces a natural continuous function f': |K| — |L|
st f1(x) = Xiepo,a) @4if i) for x = Xiero.a1aiPi € 0 = {Po, -, Pa}

» Theorem:

An isomorphism f: K — L induces a homeomorphism f': |K| — |L|




A topological invariant — Euler Characteristics

» Given a d-dim simplicial complex K with n; number of i-simplices
» the Euler characteristics of K is defined as:
X(K) = Yi—o(=1)'n;

» Euler characteristics is a topological invariant, meaning that it does not change
under homeomorphism.

» Fact:

Any two simplicial complexes K and L with homeomorphic underlying spaces |K| =
|L| have identical Euler characteristics.




Triangulation of a manifold

» Given a manifold (with or without boundary) M, a simplicial complex K is a
triangulation of M

if the underlying space |K| of K is homeomorphic to M

» If K is a triangulation of d-manifold M
then the dimension of K is also d
for any vertex v € Vert(K),St(v) = B = R®



2.2 Nerves, Cech and Rips complex



Definition 2.8 ?ILJenre). Given a fimte collection of sets U = {U,}oea, we define the nerve of the
set U to be the simplicial complex N(U) whose vertex set is the index set A, and where a subset
{@o, aq, ..., o) C A spans a k-simplex in N(W) if and only if Uy, N Uy, N...NU,, # @.

N

» Hence Cech complex C"(P)
» isthenerve of F ={B(p,r) |pE€P }
» i.e, C"(P) = Nrv(F)




Nerve Lemma

» Nerve Lemma:

Let F be a finite set of closed, convex set in R%.Then Nrv(F) =~
|F|, that is, Nrv(F) is homotopy equivalent to |F| .

» Corollary:
C"(P) = Upep B(p,7),

i.e, C"(P) is homotopy equivalent to the union of r-balls around
points in P




Nerve Lemma

» Nerve Lemma:

Let F be a finite set of closed, convex set in R%.Then Nrv(F) =~
|F|, that is, Nrv(F) is homotopy equivalent to |F| .

» Corollary:
C"(P) = Uyep B(p,7),i.e,C"(P) is homotopy equivalent to the
union of r-balls around points in P

» Given a set of points P
approximating a hidden domain M
U"(P) = Upep B(p, ) approximates M
C"(P) approximates U" (P)




Cech Complex

» Given a set of points P = { p{, D5, ..., Pn} C R®

» Given a real value r > 0, the Cech complex C" (P) is the nerve of the set
{ B(pi, 7)}iefin

i_e’O' = {pio’ ""pis} € CT(P) |ff nje[(),s] B (pl])r) #: @

» The definition can be extended to a finite sample P of a metric space.




More on Cech

» Given a set of points P c R
C" (P) could have simplex of dimension larger than d

often only d-skeleton of C" (P) is needed
as U" (P) has trivial topology beyond dimension d



Rips Complex
» Given a set of points P = { p{, D5, ..., Pn} C R®

» Given a real value r > 0, the Vietoris-Rips (Rips) complex Rips” (P) is:
{ (piy piy» - 01,) | Br(pi,) N B, (Pij) +=0,VLjel[0,k]}

» Equivalently, purely metric view:

Rips™(P) = { (pi,, Piyr P2, ) | d (pil,pij) <2rvIieln k.

Rips complex shares the same edge set as the Cech complex w.r.t
same 7.

* ltis the induced by its edge set.




Rips and Cech Complexes

» Relation in general metric spaces
C"(P) € Rips"(P) € C?"(P)
Bounds better in Euclidean space

» Simple to compute

» Able to capture geometry and topology
One of the most popular choices for topology

inference from PCD in recent years

» However:
Huge sizes
Computation also costly

Much work on sparsified Rips complex

Figure 2.3: (left) Cech complex C"(P), (right) Rips complex VR"(P).



2.3 Sparse complexes



Delaunay Complex

» Given a set of points P c R
» Delaunay complex Del(P)
A simplex o = [pl-o,pil, ---»Pik] is in Del(P) if and only if

There exists a ball B whose boundary contains vertices of g, and that the interior of B contains
no other point from P.




Delaunay Complex

» Many beautiful properties

Connection to Voronoi diagram: given p € P
Voronoi cell of pis Vor(p) :== {x € R* | d(x,p) = d(x, P)}
If points from R? are in generic positions, then a geometric simplicial complex in R¢

Fact 2.4. For P c R4, Del (P) is the nerve of the set of Voronoi cells {Vy}pcp which is a closed
cover of RY.

» However,

Computationally very expensive in high dimensions




Cech and Delaunay

» Cech and Delaunay
Delaunay complex: Del(P) = Nrv({Vor(p) |p € P})
a-complex: Del” (P) = Nrv( Vor(p) nB(p,r) [ p €P})
Del"(P) € C"(P)
C" (P) typically has much larger size

Figure 2.5: Alpha complex of the point set in Figure 2.4 for an a indicated in the figure. The
Voronoi diagram of the point set is shown with dotted edges. The triangles and edges in the
: . . : . 1 h ith solid ed hich bset of the Del lex.
Figure 2.4: Every triangle in a Delaunay complex has an empty open circumdisk. cOMPICEX are Shown Wit SOUC edges WHICH are subset of te Lclatindy compiex



Witness complex Intuition

» L: landmarks from P, a way to subsample.

p LCP W(L,P)



Witness complex

» Using landmarks, but leveraging full points to build complex

» L: landmarks from P, a way to subsample.




Witness Complexes

» A simplex o = {qy, ..., qx} is weakly witnessed by a point x if d(q;,x) < d(q,x) foranyi € [0, k]
and q € Q \ {qo, ---, qi}-

19,95 1S weakly witnessed by p;
q193 1S weakly witnessed by p,

» Given a set of points P = { p1, D, ..., P} € R% and a subset Q S P

» The witness complex W (Q, P) is the collection of simplices with vertices from Q whose all
subsimplices are weakly witnessed by a point in P.

[de Silva and Carlsson, 2004] [de Silva 2003]
Can be defined for a general metric space

P does not have to be a finite subset of points



Witness Complexes

» Greatly reduce size of complex

Similar to Delaunay triangulation, remove redundancy

» Relation to Delaunay complex
W(Q,P) € Del Q if Q) € P c R4
W(Q,R%) = Del Q

» However,

Does not capture full topology easily for high-dimensional manifolds

Also expensive to compute



Graph Induced Complex
» [Dey, Fan,Wang, SoCG 2013]

» P: finite set of points

» (P,d): metric space

» G(P): a graph

» ) C P: asubset

» m(p): the closest point of p €
PinQ

Dey, Tamal Krishna, Fengtao Fan, and Yusu Wang. "Graph induced complex on point data." Proceedings of the twenty-ninth annual symposium on
Computational geometry. 2013.



Graph Induced Complex

» Graph induced complex G(P, Q,d):{qo, ..., qx} € Q

if and only if there is a (k+1)-clique in G(P) with vertices p, ..., Py such that
n(p;) = q;, forany i € [0, k].

o
» Graph induced complex depends on the metric d:
Euclidean metric

Graph based distance d

Computational geometry. 2013.

Dey, Tamal Krishna, Fengtao Fan, and Yusu Wang. "Graph induced complex on point data." Proceedings of the twenty-ninth annual symposium on



An example pipeline for high-D PCDs (point cloud data)

» Givena PCD P c R%

First, use a small radius § > 0, construct the |-skeleton of Rips®(P), denoted by
Gs(P);let d; be the shortest path distance metric on this graph.

Compute a sparse subset (subsample) Q C P

e.g, via the furthest point sampling, which guarantees to be a good subsample (more precisely
later in class when we talk about analysis of PCDs)

Compute the graph induced complex (GIC) G(P, Q,d)

Dey, Tamal Krishna, Fengtao Fan, and Yusu Wang. "Graph induced complex on point data." Proceedings of the twenty-ninth annual symposium on
Computational geometry. 2013.



Constructing a GIC

Definition 2.17. A subset Q0 € P 1s called a 6-sample of a metric space (P, d), if the following
condition holds:

-‘VpE P, there exists a g € Q, so thatd(p, g) < d.
@ is called o-sparse if the following condition holds:
o V(g,r) €O X Q with g # r, d(g,r) = 6.

The first condition ensures Q to be a good sample of P with respect to the parameter 6 and the
second condition enforces that the points in Q cannot be too close relative to the distance 6.

1. Cover the manifold
2. Not too dense

Dey, Tamal Krishna, Fengtao Fan, and Yusu Wang. "Graph induced complex on point data." Proceedings of the twenty-ninth annual symposium on
Computational geometry. 2013.



Graph Induced Complex

» Small size, but with homology inference guarantees

» In particular:

H, inference from a lean sample (40,000 sample points from a Klein bottle in R*)
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GIC can also be used as a way to sparsify graphs
while maintaining global structure.




Graph Induced Complex

» Small size, but with homology inference guarantees

» In particular:
H; inference from a lean sample

Surface reconstruction in R3

Topological inference for compact sets in R¢ using persistence

Dey, Tamal Krishna, Fengtao Fan, and Yusu Wang. "Graph induced complex on point data." Proceedings of the twenty-ninth annual symposium on
Computational geometry. 2013.



Comparisons

» Given a set of dense points P and a sparse subsample Q C P
Rips complex: completely ignores information in P
Witness complex: uses info.in P, but hard to compute and also weaker topo guarantee

GIC: uses info.in P, easy to compute, and with topo inference guarantees

S —

QEP Rips™(Q) w(Q,P) GICG"(Q,P)
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