
CTDA Reading Group Chapter 2.1 – 2.3

Anping Zhang

Lecture Notes From Course DSD 291 Taught by Prof. Yusu Wang

https://sites.google.com/ucsd.edu/dsc291-190-tda


2.1 Simplicial Complex



A (Geometric) Simplex

 Points 𝑝0, 𝑝1, … , 𝑝𝑑 ⊂ 𝑅𝑁 are (affinely) independent 

 if vectors 𝑣𝑖 = 𝑝𝑖 − 𝑝0, 𝑖 ∈ 0, 𝑑 , are linearly independent

 Geometric 𝑝-simplex 𝜎 = { 𝑣0, 𝑣1, … , 𝑣𝑝}

 Convex combination of 𝑝 + 1 affinely-independent points in 𝑅𝑁

 𝜎 = { σ𝑖=0
𝑝

𝑎𝑖𝑣𝑖 ∣ 𝑎𝑖 ≥ 0,σ𝑎𝑖 = 1 }

 Examples
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A (Geometric) Simplex

 Points 𝑝0, 𝑝1, … , 𝑝𝑑 ⊂ 𝑅𝑁 are (affinely) independent 

 if vectors 𝑣𝑖 = 𝑝𝑖 − 𝑝0, 𝑖 ∈ 0, 𝑑 , are linearly independent

 Geometric 𝑝-simplex 𝜎 = { 𝑣0, 𝑣1, … , 𝑣𝑝}

 Convex combination of 𝑝 + 1 affinely-independent points in 𝑅𝑁

 𝜎 = { σ𝑖=0
𝑝

𝑎𝑖𝑣𝑖 ∣ 𝑎𝑖 ≥ 0,σ𝑎𝑖 = 1 }

 Simplex 𝜏 formed by a subset of { 𝑣0, 𝑣1, … , 𝑣𝑝} is called a face of 𝜎, denoted 

by 𝝉 ⊆ 𝜎

 𝐴 𝒑𝒓𝒐𝒑𝒆𝒓 𝒇𝒂𝒄𝒆 𝑜𝑓 𝜎 𝑖𝑠 𝑎 𝑠𝑖𝑚𝑝𝑙𝑒𝑥 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙 𝑜𝑓 𝑎 𝑝𝑟𝑜𝑝𝑒𝑟 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑃;

 (𝑖. 𝑒. 𝑎𝑛𝑦 𝑓𝑎𝑐𝑒 𝑒𝑥𝑐𝑒𝑝𝑡 𝜎)

 𝑇ℎ𝑒 (𝑘 − 1) − 𝑓𝑎𝑐𝑒𝑠 𝑜𝑓 𝜎 𝑎𝑟𝑒 𝑐𝑎𝑙𝑙𝑒𝑑 𝒇𝒂𝒄𝒆𝒕𝒔 𝑜𝑓 𝜎 (σ has k + 1 facets)
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Simplicial complex

 A geometric simplicial complex 𝐾

 A collection of simplices such that

 If 𝜎 ∈ 𝐾, then any face 𝜏 ⊆ 𝜎 is also in 𝐾

 If 𝜎 ∩ 𝜎′ ≠ ∅, then 𝜎 ∩ 𝜎′ is a face of both simplices.  

 dim(𝐾) = highest dim of any simplex in 𝐾

 Subcomplex 𝐿 ⊆ 𝐾 and 𝐿 is a complex

 The 𝒑-skeleton of 𝐾 consists of all simplices in 𝐾 of dimension at most 𝑝

 Underlying space 𝐾 of 𝐾

 is the pointwise union of all points in all simplices of K, 

 i.e, 𝐾 = 𝜎∈𝐾ڂ {𝑥 ∣ 𝑥 ∈ 𝜎}



Abstract simplicial complex

 An (abstract) 𝑝-simplex 𝜎 = { 𝑣0, 𝑣1, … , 𝑣𝑝}

 a set of cardinality 𝑝 + 1

 A subset 𝜏 ⊆ 𝜎 is a face of 𝜎

 An (abstract) simplicial complex 𝐾

 A collection of simplices such that 

 If 𝜎 ∈ 𝐾, then any fact 𝜏 ⊆ 𝜎 is also in 𝐾

 Geometric realization of an abstract simplicial complex 𝑆

 is a geometric simplicial complex 𝐾 such that there is an isomorphism between 

𝑉𝑒𝑟𝑡 𝐾 and 𝑉𝑒𝑟𝑡 𝑆 inducing an isomorphism between all simplices in 𝐾 and in 𝑆



Geometric realization

 Geometric realization of 𝑆 in the standard simplex Δ ⊂ 𝑅𝑁 with 𝑁 =
|Vert S |

 Underlying space 𝑆 of an abstract simplicial complex

 is the underlying space of its geometric realization into the standard simplex Δ

 Theorem: 

 Any abstract simplicial complex 𝑆 of dimension 𝑑 has a 

geometric realization 𝐾 ⊂ 𝑅2𝑑+1



Star and links

 Given a simplex 𝜏 ∈ 𝐾

 Star:  𝑆𝑡 𝜏 = {𝜎 ∈ 𝐾 ∣ 𝜏 ⊂ 𝜎}

 Closed star:  𝑐𝑙𝑆𝑡 𝜏 = 𝜎∈𝑆𝑡ڂ 𝜏 { 𝜎′ ∣ 𝜎′ ⊂ 𝜎 }

 Link:  𝐿𝑘 𝜏 = 𝜎 ∈ 𝑐𝑙𝑆𝑡 𝜏 𝜎 ∩ 𝜏 = ∅



Simplicial map 

 Intuitively, analogous to continuous maps between topological spaces

 Given simplicial complexes 𝐾 and 𝐿
 a function 𝑓:𝐾 → 𝐿 is a simplicial map if

 𝑓 𝑉𝑒𝑟𝑡 𝐾 ⊆ 𝑉𝑒𝑟𝑡(𝐿)

 for any 𝜎 = 𝑝0, … , 𝑝𝑑 , 𝑓 𝜎 = 𝑓 𝑝0 , … , 𝑓 𝑝𝑑 spans a simplex in 𝐿

 A function 𝑓: 𝐾 → 𝐿 is an isomorphism 

 if 𝑓 is a simplicial map and it is bijective

 A simplicial map 𝑓: 𝐾 → 𝐿 induces a natural continuous function 𝑓′: 𝐾 → 𝐿
 s.t 𝑓′ 𝑥 = σ𝑖∈ 0,𝑑 𝑎𝑖𝑓(𝑝𝑖) for 𝑥 = σ𝑖∈[0,𝑑] 𝑎𝑖𝑝𝑖 ∈ 𝜎 = {𝑝0, … , 𝑝𝑑}

 Theorem:

 An isomorphism 𝑓: 𝐾 → 𝐿 induces a homeomorphism 𝑓′: 𝐾 → 𝐿



A topological invariant – Euler Characteristics

 Given a 𝑑-dim simplicial complex 𝐾 with 𝑛𝑖 number of 𝑖-simplices

 the Euler characteristics of 𝐾 is defined as: 

 𝜒 𝐾 ≔ σ𝑖=0 −1 𝑖𝑛𝑖

 Euler characteristics is a topological invariant, meaning that it does not change 

under homeomorphism. 

 Fact:

 Any two simplicial complexes 𝐾 and 𝐿 with homeomorphic underlying spaces 𝐾 ≅
𝐿 have identical Euler characteristics. 



Triangulation of a manifold

 Given a manifold (with or without boundary) 𝑀, a simplicial complex 𝐾 is a 

triangulation of 𝑀

 if the underlying space |𝐾| of 𝐾 is homeomorphic to 𝑀

 If 𝐾 is a triangulation of 𝑑-manifold 𝑀

 then the dimension of 𝐾 is also 𝑑

 for any vertex 𝑣 ∈ 𝑉𝑒𝑟𝑡 𝐾 , 𝑆𝑡 𝑣 ≅ 𝐵𝑑
𝑜 ≅ 𝑅𝑑



2.2 Nerves, Cech and Rips complex



Nerves

 Hence Čech complex 𝐶𝑟 𝑃

 is the nerve of 𝐹 = 𝐵 𝑝, 𝑟 𝑝 ∈ 𝑃

 i.e, 𝐶𝑟 𝑃 = 𝑁𝑟𝑣 𝐹



Nerve Lemma

 Nerve Lemma:

 Let 𝐹 be a finite set of closed, convex set in 𝑅𝑑. Then 𝑁𝑟𝑣 𝐹 ≃
|𝐹|, that is, 𝑁𝑟𝑣 𝐹 is homotopy equivalent to 𝐹 .

 Corollary:

 𝐶𝑟 𝑃 ≃ ,𝑝∈𝑃𝐵(𝑝ڂ 𝑟), 

 i.e, 𝐶𝑟 𝑃 is homotopy equivalent to the union of 𝑟-balls around 

points in 𝑃



Nerve Lemma

 Given a set of points P

 approximating a hidden domain M

 𝑈𝑟 𝑃 = ,𝑝∈𝑃𝐵(𝑝ڂ 𝑟) approximates M

 𝐶𝑟 𝑃 approximates 𝑈𝑟(𝑃)

 Nerve Lemma:

 Let 𝐹 be a finite set of closed, convex set in 𝑅𝑑. Then 𝑁𝑟𝑣 𝐹 ≃
|𝐹|, that is, 𝑁𝑟𝑣 𝐹 is homotopy equivalent to 𝐹 .

 Corollary:

 𝐶𝑟 𝑃 ≃ ,𝑝∈𝑃𝐵(𝑝ڂ 𝑟), i.e, 𝐶𝑟 𝑃 is homotopy equivalent to the 

union of 𝑟-balls around points in 𝑃



Čech Complex

 Given a set of points 𝑃 = 𝑝1, 𝑝2, … , 𝑝𝑛 ⊂ 𝑅𝑑

 Given a real value 𝑟 > 0, the Čech complex 𝐶𝑟 𝑃 is the nerve of the set 

𝐵 𝑝𝑖 , 𝑟 𝑖∈ 1,𝑛

 i.e, 𝜎 = 𝑝𝑖0 , … , 𝑝𝑖𝑠 ∈ 𝐶𝑟 𝑃 iff 𝑗∈[0,𝑠]𝐵ځ 𝑝𝑖𝑗 , 𝑟 ≠ ∅

 The definition can be extended to a finite sample 𝑃 of a metric space. 



More on Čech

 Given a set of points 𝑃 ⊂ 𝑅𝑑

 𝐶𝑟 𝑃 could have simplex of dimension larger than 𝑑

 often only 𝑑-skeleton of 𝐶𝑟 𝑃 is needed

 as 𝑈𝑟 𝑃 has trivial topology beyond dimension 𝑑



Rips Complex

 Given a set of points 𝑃 = 𝑝1, 𝑝2, … , 𝑝𝑛 ⊂ 𝑅𝑑

 Given a real value 𝑟 > 0, the Vietoris-Rips (Rips) complex 𝑅𝑖𝑝𝑠𝑟 𝑃 is: 

 { 𝑝𝑖0 , 𝑝𝑖1 , … , 𝑝𝑖𝑘 ∣ 𝐵𝑟 𝑝𝑖𝑙 ∩ 𝐵𝑟 𝑝𝑖𝑗 ≠ ∅, ∀ 𝑙, 𝑗 ∈ [0, 𝑘 ]}. 

 Equivalently, purely metric view: 

 Ripsr P = { 𝑝𝑖0 , 𝑝𝑖1 , … , 𝑝𝑖𝑘 ∣ 𝑑 𝑝𝑖𝑙 , 𝑝𝑖𝑗 ≤ 2𝑟, ∀ 𝑙, 𝑗 ∈ [0, 𝑘 ]}. 

• Rips complex shares the same edge set as the Cech complex w.r.t 

same 𝑟. 

• It is the clique complex induced by its edge set. 



Rips and Čech Complexes

 Relation in general metric spaces

 𝐶𝑟 𝑃 ⊆ 𝑅𝑖𝑝𝑠𝑟 𝑃 ⊆ 𝐶2𝑟 𝑃

 Bounds better in Euclidean space

 Simple to compute

 Able to capture geometry and topology

 One of the most popular choices for topology

inference from PCD in recent years 

 However: 

 Huge sizes

 Computation also costly 

 Much work on sparsified Rips complex



2.3 Sparse complexes



Delaunay Complex

 Given a set of points 𝑃 ⊂ 𝑅𝑑

 Delaunay complex 𝐷𝑒𝑙 𝑃

 A simplex 𝜎 = 𝑝𝑖0 , 𝑝𝑖1 , … , 𝑝𝑖𝑘 is in 𝐷𝑒𝑙 𝑃 if and only if 

 There exists a ball 𝐵 whose boundary contains vertices of 𝜎, and that the interior of 𝐵 contains 

no other point from 𝑃. 



Delaunay Complex

 Many beautiful properties

 Connection to Voronoi diagram:  given 𝑝 ∈ 𝑃

 Voronoi cell of 𝑝 is 𝑉𝑜𝑟 𝑝 ≔ {𝑥 ∈ 𝑅𝑑 ∣ 𝑑 𝑥, 𝑝 = 𝑑 𝑥, 𝑃 }

 If points from 𝑅𝑑 are in generic positions, then a geometric simplicial complex in 𝑅𝑑

 However, 

 Computationally very expensive in high dimensions



Čech and Delaunay

 Čech and Delaunay

 Delaunay complex: 𝐷𝑒𝑙 𝑃 = 𝑁𝑟𝑣( 𝑉𝑜𝑟 𝑝 𝑝 ∈ 𝑃 )

 𝛼-complex: 𝐷𝑒𝑙𝑟 𝑃 = 𝑁𝑟𝑣 𝑉𝑜𝑟 𝑝 ∩ 𝐵 𝑝, 𝑟 𝑝 ∈ 𝑃 )

 𝐷𝑒𝑙𝑟(𝑃) ⊆ 𝐶𝑟 𝑃

 𝐶𝑟 𝑃 typically has much larger size



Witness complex Intuition

 𝐿:  landmarks from 𝑃,  a way to subsample. 

𝑃 𝐿 ⊆ 𝑃 𝑊(𝐿, 𝑃)



Witness complex

 Using landmarks, but leveraging full points to build complex

 𝐿:  landmarks from 𝑃,  a way to subsample. 

𝑃 𝐿 ⊆ 𝑃 𝑊(𝐿, 𝑃)



Witness Complexes

 A simplex 𝜎 = 𝑞0, … , 𝑞𝑘 is weakly witnessed by a point x if 𝑑 𝑞𝑖 , 𝑥 ≤ 𝑑 𝑞, 𝑥 for any 𝑖 ∈ 0, 𝑘
and 𝑞 ∈ 𝑄 ∖ {𝑞0, … , 𝑞𝑘}. 

 Given a set of points 𝑃 = 𝑝1, 𝑝2, … , 𝑝𝑛 ⊂ 𝑅𝑑 and a subset 𝑄 ⊆ 𝑃

 The witness complex 𝑊 𝑄,𝑃 is the collection of simplices with vertices from 𝑄 whose all 

subsimplices are weakly witnessed by a point in 𝑃. 

 [de Silva and Carlsson, 2004] [de Silva 2003]

 Can be defined for a general metric space

 𝑃 does not have to be a finite subset of points

𝑞1𝑞2𝑞3 is weakly witnessed by 𝑝1
𝑞1𝑞3 is weakly witnessed by 𝑝2



Witness Complexes

 Greatly reduce size of complex

 Similar to Delaunay triangulation,  remove redundancy 

 Relation to Delaunay complex

 𝑊 𝑄, 𝑃 ⊆ 𝐷𝑒𝑙 𝑄 if 𝑄 ⊆ 𝑃 ⊂ 𝑅𝑑

 𝑊 𝑄,𝑅𝑑 = 𝐷𝑒𝑙 𝑄

 However, 

 Does not capture full topology easily for high-dimensional manifolds

 Also expensive to compute



Graph Induced Complex

 [Dey, Fan, Wang, SoCG 2013]

 𝑃:  finite set of points

 (𝑃, 𝑑):  metric space

 𝐺(𝑃):  a graph 

 𝑄 ⊂ 𝑃: a subset

 𝜋 𝑝 : the closest point of 𝑝 ∈
𝑃 in 𝑄

Dey, Tamal Krishna, Fengtao Fan, and Yusu Wang. "Graph induced complex on point data." Proceedings of the twenty-ninth annual symposium on 

Computational geometry. 2013.



Graph Induced Complex

 Graph induced complex 𝒢 𝑃, 𝑄, 𝑑 : 𝑞0, … , 𝑞𝑘 ⊆ 𝑄
 if and only if there is a (k+1)-clique in 𝐺 𝑃 with vertices 𝑝0, … , 𝑝𝑘 such that 

𝜋 𝑝𝑖 = 𝑞𝑖 , for any 𝑖 ∈ [0, 𝑘].

 Graph induced complex depends on the metric 𝑑: 

 Euclidean metric

 Graph based distance 𝑑𝐺
Dey, Tamal Krishna, Fengtao Fan, and Yusu Wang. "Graph induced complex on point data." Proceedings of the twenty-ninth annual symposium on 

Computational geometry. 2013.



An example pipeline for high-D PCDs (point cloud data)

 Given a PCD 𝑃 ⊂ 𝑅𝑑

 First, use a small radius 𝛿 > 0, construct the 1-skeleton of 𝑅𝑖𝑝𝑠𝛿 𝑃 , denoted by 

𝐺𝛿 𝑃 ; let 𝑑𝐺 be the shortest path distance metric on this graph. 

 Compute a sparse subset (subsample) 𝑄 ⊂ 𝑃

 e.g, via the furthest point sampling, which guarantees to be a good subsample (more precisely 

later in class when we talk about analysis of PCDs) 

 Compute the graph induced complex (GIC) 𝒢 𝑃, 𝑄, 𝑑𝐺

Dey, Tamal Krishna, Fengtao Fan, and Yusu Wang. "Graph induced complex on point data." Proceedings of the twenty-ninth annual symposium on 

Computational geometry. 2013.



Constructing a GIC

Dey, Tamal Krishna, Fengtao Fan, and Yusu Wang. "Graph induced complex on point data." Proceedings of the twenty-ninth annual symposium on 

Computational geometry. 2013.

1. Cover the manifold 

2. Not too dense



Graph Induced Complex

 Small size, but with homology inference guarantees

 In particular: 

 𝐻1 inference from a lean sample (40,000 sample points from a Klein bottle in 𝑅4)

GIC can also be used as a way to sparsify graphs 

while maintaining global structure. 



Graph Induced Complex

 Small size, but with homology inference guarantees

 In particular: 

 𝐻1 inference from a lean sample

 Surface reconstruction in 𝑅3

 Topological inference for compact sets in 𝑅𝑑 using persistence

Dey, Tamal Krishna, Fengtao Fan, and Yusu Wang. "Graph induced complex on point data." Proceedings of the twenty-ninth annual symposium on 

Computational geometry. 2013.



Comparisons

 Given a set of dense points 𝑃 and a sparse subsample Q ⊂ 𝑃

 Rips complex:  completely ignores information in 𝑃

 Witness complex:  uses info. in 𝑃, but hard to compute and also weaker topo guarantee

 GIC:  uses info. in 𝑃, easy to compute, and with topo inference guarantees

𝑄 ⊆ 𝑃 𝑅𝑖𝑝𝑠𝑟 𝑄 𝑊(𝑄, 𝑃) GIC 𝒢𝑟(𝑄, 𝑃)
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