3.3 Persistence Algorithm
[image:]
Note:
(1) Any filtration can be expanded into a simplex-wise filtration.
(2) The persistence diagram of the original filtration can be read from the diagram of this expanded simplex-wise filtration.

[image:]
[image:]
Note:
(1) A creator can only create one independent p-cycle and the others are its linear combinations with the existing ones in K_j−1.(see K9)
(2) for a creator, the p-betti number increases 1, and for a destructor,the (p-1)-betti number decrease 1.
(3) Why only these two case? If it is not a destructor, it’s boundary must be the boundary of another existed chain since a simplex can be added only when its facets(boundary) have been added already.Thus, this new simplex creates a p-cycle with the existed chain.

[image:]
[image:]
Note:
(1) persistent pairing number: the number of independent classes.
(2) persistent pair:no need of independence.But we are going to find out independent pairs.

1. Direct algorithm
[image:]
[image:]
example:
[image:]
[image:]
矩阵算法的直观就是从这个算法来的。

2. Matrix reduction algorithm
[image:]

[image:]
[image:]

[image:]
[image:]
[image:]
[image:]
[image:]

[image:]

[image:]
[image:]
[image:]
[image:]
Complexity:O(N^3)，N is the number of simplex.
[image:]

proof of theorem 3.6:
[image: E609312A4B6529CFBB6360912D9EB25B]

[image: F11A9DE900AC722385DC870AC4F36A0C]

[image:]
[image:]
[image: 311D913BB5F361D15E015983665DC611]
这样做的原因，我们只需要考察Dp，只是把所有p放在一起写成一个大矩阵才使用D。
[image: 0EC675196F2D3CE689239F0BF2527DB7]

[image: E756B20FDF61786B1E273E2EDB22E271]
[image: B9C0A2D7E6301ADE0BCA928E64591886]

[image:]
最后，补上之前的一个证明：
[image: 39E1F7158B084249BA50AA78D67A7BB5]
[image: 7AA9D1301543F2592403D11B4197A76C]
3. Efficient implementation
[image:]
[image:]
note:
if we can clear the column of σj, then it adds to a p-cycle. Otherwise, it destroys a (p-1)-cycle.

[image:]

如果Dd很大，而D1很小，则倒过来做cleaning：
[image:]

twisted matrix :[image:]
[image:][image:]
[image:]
[image:]
[bookmark: _GoBack]
image7.png
(p — 1)-simplex, has already been paired with a p-simplex a"] then a class also created by o; got
destroyed when a'; appeared. We can get the (p — 1)-cycle representing this destroyed class and
add it to do;. The addition provides a cycle that existed before o;. We update ¢ to be this new
cycle and look for the youngest (p — 1)-simplex o7 in ¢ and continue the process till we find one
that is unpaired, or the cycle ¢ becomes empty. In the latter case, we discover that ¢ = doj was a
boundary cycle already and thus oj creates a new class in H,(K). In the other case, we discover
that o is a negative p-simplex which destroys a class created by o;. We pair o7; with o;.

image8.png
Let us again consider the example in Figure 3.11 and see how the algorithm Pair works. From
K7 to Kg, eg is added. Its boundary is ¢ = (v2 + v4). The vertex vy is the youngest positive vertex
in ¢ but it is paired with e7 in K7. Thus, ¢ is updated to (v3 + v4 + v4 + v2) = (v3 + v2). The vertex
v3 becomes the youngest positive one but it is paired with es. So, ¢ is updated to (v + v2). The

image9.png
vertex v, becomes the youngest positive one but it is paired with eg. So, c is updated to be empty.
Hence ey is a positive edge. Now we examine the addition of the triangle 7y, from Ky to K.
The boundary of #;, is ¢ = (es + €5 + €9). The youngest positive edge e is paired with 7;o. Thus,
c is updated by adding the cycle destroyed by #1¢ to (es + es + €7 + €g). Since eg is the youngest
positive edge that is not yet paired, 71; finds eg as its paired positive edge. Observe that, we finally

ohta‘il N Iiat is destroyed by adding the negative triangle. For example, we obtain the loop

image10.png
o The boundary operator d, : C, — C,_; can be represented by a boundary matrix D, where
the columns correspond to the p-simplices and rows correspond to (p — 1)-simplices.

image11.png
Boundary Matrix
= -1 _
5 Kp—{al, ...,anp},l(p —{1'1.---.1'11,,,,}
» KP forms a basis for p-th chain group C,

» n,_1 X n, boundary matrix 4, s.t.
» Aplilljl = 1iffr; < o

» representing d,: C, — Cp_; W.rt. basis {al, o anp} and
[
abe abd acd bed
d ab (1 1
ac| 1 1
ad =
G A2= e | 1 1

image12.png
. . us
» Given a p-chain ¢ = };7, c;a;

» Under basis K?, vector representation of ¢ is
N T

» Boundary d,cis a (p — 1)-chain with vector
representation A, ¢ w.r.t basis K' p-1

1 2
ay ay ay 1
ad a3 ay” co
Az 2 2 2
pC = . .
1 2 np
Apyy Onyyy A,y Cn,

image13.png
e One can combine all boundary matrices into a single matrix D that represents all linear
maps P B 9 =P F(CF — Cp-1), that is, transformation of a basis of all chain groups
together to a basis of itself, but with a shift to a one lower dimension.

1 ifo;€d.oy
0 otherwise.

Dli, jl = {

image14.png
Definition 3.12 (Filtered boundary matrix). Let ¥ : @ = Ky < K| — ... — K, = Kbe a
filtration induced by an ordering of simplices (01,07, ...,0,) in K. Let D denote the boundary
matrix for simplices in K that respects the ordering of the simplices in the filtration, that is, the
simplex o in the filtration occupies column and row i in D. We call D the filtered boundary
matrix for F.

Given any matrix A, let row,[i] and col4[j] denote the ith row and jth column of A, respec-
tively. We abuse the notation slightly to let col4[j] denote also the chain {o7; | A[i, j] = 1}, which
is the collection of simplices corresponding to 1°s in the column coly[j].

image15.png
Definition 3.13 (Reduced matrix). Let low4[j] denote the row index of the last 1 in the jth column
of A, which we call the low-row index of the column j. It is undefined for empty columns (marked
with —1 in Algorithm 3). The matrix A is reduced (or is in reduced form) if lowa[j] # lowa[j’]
for any j # j’; that is, no two columns share the same low-row indices.

image16.png
Fact 3.8. Given a matrix A in reduced form, we have that the set of non-zero columns in A are all
linearly independent over Z,.

image17.png
We define a matrix A over Z; to be upper-triangular if all of its diagonal elements are 1,
and there is no entry A[i, j] = 1 with i > j. We will compute a reduced matrix from a given
boundary matrix by left-to-right column additions. A series of such column additions is equivalent
to multiplying the boundary matrix on right with an upper triangular matrix.

Now, we state a result saying that if a reduced form is obtained via only left-to-right column
additions, then for each column, the low-row index is unique in the sense that it does not depend on
how the reduced form is obtained. Using this result we show that persistence pairing of simplices
can be obtained from these low-row indices. Given an n; X ny matrix A, letA{Z‘ﬁ, a<bandc <d,
denote the sub-matrix formed by rows ato b, and columns from c to d. In cases when b = n, and
¢ = 1, we also write it as A := Aa ', for simplicity. For any 1 < i < j < n, define the quantity

ra(i, j) as follows:

ra(i, j) = rank (A7) — rank (A7,) + rank (477}) - rank (47™"). (3.5)

image18.png
Proposition 3.5 (Paring Uniqueness [106]). Let R = DV, where R is in reduced form and V is
upper triangular. Then for any 1 < j < n, lowg[j] = i ifand only if rp(i, j) = 1.

image19.png
Theorem 3.6. Let D be the m X m filtered boundary matrix for a filtration § (Definition 3.12).
Let R = DV, where R is in reduced form and V is upper triangular. Then, the simplices o7; and o
in F form a persistent pair if and only if lowg[j] = i.

image20.png
To compute the persistence diagram Dgm(F) for a filtration Fy, we first run MATPERSISTENCE
on the filtered boundary matrix D representing ;. Every computed persistence pair (o7, 07;) gives
a finite bar [(o)), f(0;)) or a point with finite coordinates (f(07;), f(c;)) in Dgm(Jy). Every sim-
plex o that remains unpaired provides an infinite bar [f(co7;), o) or a point (f(c7;), c0) at infinity
in Dgm(Jy). Observe that not every positive p-simplex o7; (column i is zeroed out) gives a point
at infinity in Dgm,,(Fy), the only ones that do are the ones that are not paired with a (p + 1)-
simplex whose column is processed afterward. A simple fact about unpaired simplices follows
from Fact 3.4.

image21.png
Fact 3.9. The number of unpaired p-simplices in a simplex-wise filtration of a simplicial complex
K equals its p-th Betti number 3,(K).

image22.png
Algorithm 3 MarPersiSTENCE(D)

Input:

Boundary matrix D of a complex with columns and rows ordered by a given filtration
Output:

Reduced matrix with each column j either being empty or having a unique lowp[/] entity

for j =1 — |colp| do
while 3j" < j s.t.lowp[j'] == lowp[;j] and lowp[j] # —1 do

g

2

3 colp[j] := colp[j] + colp[j']
4: end while

5. if lowp[j] # —1 then
6: i :=lowp[j] * generate pair (o7, 07;) *\
7: end if

8: end for

image23.png
It is worth noting that essentially the matrix reduction algorithm is a version of the classical
Gaussian elimination method with a given column order and a specific choice of row pivots. In
this respect, persistence of a given filtration can be computed by the PLU factorization of a matrix
for which Bunch and Hopcroft [57] gives an O(M(n)) time algorithm where M(n) is the time to
multiply two n X n matrices. It is known that M(n) = O(n“) where w € [2,2.373) is called the
exponent for matrix multiplication.

image24.jpeg

image25.jpeg
N il A YA

% tonf qiﬁ'j);\T% /Upﬁ 57

/—‘\/\p

) - i o T ‘I :
lﬂ’ t KKU’))“Z?J%WZ'% ﬂr“m)LP_{ 79 &b b%_% 2
1 f

image26.png
To this end, let Z’l; _, and B:‘H denote the (p — 1)-th cycle group and the (p — 1)-th boundary
group for Kj, respectively. Consider the persistence pairing function for I <i < j <n:

Wl = @ =B) - B =B, 36)

image27.png
On the other hand, note that forany 1 <a<b <n,

;;;{’l = rank(H:'fl):rank(anil) rank (Zg_,) —rank (Z3_, N B)_)). 37

image28.jpeg

image29.jpeg
P

image30.jpeg

image31.jpeg
vwp

/)

g R

[

)
1

Yanh (

ll)

75

N

rang (R

)]

N

Pk

A"
b
Gt

|

™
IV\

-
—

)

L
vl

image32.png
rank (Z4_, N BY_)) = || = rank (BY_,) — |3 = rank (&) - rank (R,).
Combining the above with Proposition 3.7, Eqn. (3.6) and Eqn. (3.7), we thus have that:
,U:;J;l = Ta“k(z;—l) —rank(Z’ 1N BJ_I) - (rank(-1) —rank(Z’ n (0 BJ)
— (rank (Z;)) - rank (Z}!, 0 Bj;_ D) +rank (Z5!) - rank (Z;, N B)_)
=rank (Z,_; NB/_) - rank (Z,_, N B/_}) + rank (Z;, N B/ 7)) - rank(z;,_l1 nB/)
= —rank (R,) + rank (R7)) — rank (R/™") + rank (R!) = rz(i, j) = rz(i, j) = roG,))-

By Proposition 3.5, the theorem then follows.

image33.jpeg
s
it O o (53
) \
o . .-)\ (sl \\‘ﬁ Géﬁi:
R o
7‘\1\\) ! = ¥
BV P N A il
\ 2 \
T — (%)
hind = ZJ%M%X\)
> 2 o \V\t [y x| 2
Zi})\b)ngf't‘/\;)/ K ;YUV \ 7E/"’7’7‘E)
Z ; \ ‘__”Hiw‘g\

ot M) Bt B) £z

image34.jpeg

image35.png
upward. In the case, that o; is a positive simplex, the entire column is zeroed out. In general,
positive simplices incur more cost than the negative ones because lowp[-] needs to be pushed all
the way up for zeroing out the entire column. However, they do not participate in any future
left-to-right column additions. Therefore, if it is known beforehand that the simplex o-; will be a
positive simplex, then the costly step of zeroing out the column j can be avoided.

image36.png
Chen and Kerber [95] observed the following simple fact. If we process the input filtration
backward in dimension, that is, process the boundary matrices Dp, p = 1,...,d in decreasing
order of dimensions, then a persistence pair (o', o) is detected from D, before processing the
column for o”~! in D,_;. Fortunately, we already know that o”~! has to be a positive simplex
because it cannot pair with a negative simplex o” otherwise. So, we can simply ignore the column
of o”~! while processing D,_1. We call it clearing out column p — 1. In practice, this saves a
considerable amount of computation in cases where a lot of positive simplices occur such as in
Rips filtrations. Algorithm 4:CLEARPERSISTENCE implements this idea.

We cannot take advantage of the clearing for the last dimension in the filtration. If d is the
highest dimension of the simplices in the input filtration, the matrix D, has to be processed for all
columns because the pairings for the positive d-simplices are not available.

image1.png
‘We assume that the input is a simplex-wise filtration that begins with an empty complex
2=Ky—=K —>K,—= - K, =K

where K \ Kj_| = o; is a single simplex for each j € [1,n].

image37.png
Algorithm 4 CLEARPERSISTENCE(Dy, D>,, Dg)
Input:
Boundary matrices ordered by dimension of the boundary operators with columns ordered by
filtration
Output:
Reduced matrices with each column for negative simplex having a unique low entry

1: MATPERSISTENCE(D ;)
2. fori=(d-1)— ldo

3 for j=1— |colp,| do

4: if o} is not paired while processing D, then

5 * column j is not processed if o} is already paired+\
6: while 37 < j s.t. lowp[j] # —1 and lowp, [/] == lowp,[j] do
7: colp,[/] := colp,[j] + colp,[j']

8: end while

9: if lowp[j] # —1 then
10: k :=lowp,[j] * generate pair (o, o)) *\
11: end if
12: end if
13: end for

14: end for

image38.png
If the number of d-simplices is large compared to simplices of lower dimensions, the incurred
cost of processing their columns can still be high. For example, in a Rips filtration restricted up to
a certain dimension d, the number of d-simplices becomes usually much larger than the number

of, say, 1-simplices. In those cases, the clearing can be more cost-effective if it can be applied
forward.

image39.png
Di(i, j) = Dp(n + 1= jym+1~i)

image40.png
12 3 4

image41.png
1

3 2

4

6

101

image42.png
Proposition 3.8. (0!, 0”) is a persistence pair computed from D), if and only if (o, 0P7") is
computed as a pair from D¥ by MATPERSISTENCE(D?).

image43.png
To apply clearing we process D; 1 after D}, by calling CLEARPERSISTENCE(D, -+ - , D3, DY)
because if we get a pair (07*!, o”) while processing Dj,, we already know that oP*! is a negative
simplex and its column in D; 1 cannot contain a defined low entry. This means that the column
of o”*! in D; 1 can be zeroed out and hence can be ignored. Now, the only boundary matrix that
needs to be processed without any clearing is D}. So, depending on whether Dy or D, is large,
one can choose to process the filtration in increasing or decreasing dimensions respectively.

image2.png
Fact 3.7. When a p-simplex o; = K;\K;_, is added, exactly one of the following two possibilities
oceurs:

1. A non-boundary p-cycle c along with its classes [c] +h for any class h € H,(Kj—1) are born
(created). In this case we call o a positive simplex (also called a creator).

image3.png
2. An existing (p — 1)-cycle c along with its class [c] dies (destroyed). In this case we call o
a negative simplex (also called a destructor).

% % % "

))) 3 .
N N b v
K (v, -) K (v2,—) Ks (vs,-) Ky (01, —)

U1 o

€g)

cr
b o b
K (v2, 6) K (vs, e7)

T Us

€g,
eg,

8 & o o %
! Ko(ey,—) Ko (€9, t10) Ky (s, tn)

Figure 3.11: Red simplices are positive and blue ones are negative. The simplices are indexed
to coincide with their order in the filtration. (-,-) in each subcomplex Kj(-, -) shows the pairing
between the positive and the negative. The second component missing in the parenthesis shows
the introduction of a positive simplex.

image4.png
Pairing. We already saw that destruction of a class is uniquely paired with the creation of a
class through the ‘youngest first’ rule; see the discussion after Fact 3.3. By Fact 3.7, this means
that each negative simplex is paired uniquely with a positive simplex. The goal of the persistence
algorithm is to find out these pairs.

image5.png
Definition 3.11 (Persistence pairs). Given a simplex-wise filtration F : Ky < K; < --- — K,
for 0 <i < j <n,wesaya p-simplex 0; = K; \ Ki—; and a (p + 1)-simplex o; = K; \ K;-| form a
persistence pair (7, 0;) if and only if 11/ > 0.

image6.png
Consider the birth and death of the classes by addition of simplices into a filtration. When
a p-simplex o is added, we explore if it destroys the class [c] of its boundary ¢ = do; if it is
not a boundary already. The cycle ¢ was created when the youngest (p — 1)-simplex in it, say
o, was added. Note that a simplex is younger if it comes later in the filtration. If o, a positive

