

Enhancing MovieChat with Keyframe Extraction for Efficient Long-Term Video Understanding

Naifan Zhang

2024

Improving memory efficiency and accuracy in long video understanding by enhancing MovieChat's memory management through keyframe extraction.

1

Research Background

Video understanding

aiming at interpreting video content

Various tasks

- Video Question Answering
- Video Classification
- Video Scene Segmentation

Limitation:

- 1. LLMs max input length
- 2. GPU memory consumption

自强不息 厚德载物

Tsinghua University

Research Background

Related Work

Motivation

Methodology

Experiments

Long video understanding

Reduce the computing requirements needed to analyze long videos while maintaining good accuracy

Methods

- Sampling
- Aggregation
- Memory Bank

. . .

- Short-term Memory Similar to computer's RAM
- 2. Long-term Memory Similar to computer's hard drive

Memory Consolidation

MovieChat

1. Breakpoint Mode

Short-term memory, Long-term memory, and Current video frames

2. Global Mode

Long-term memory

MovieChat offers an efficient approach to understanding long videos by combining memory management with multi-modal large language models.

Inference Mode

- **Uniform Sampling**: Selecting frames at regular intervals.
- **Boundary-Based Methods**: Detecting scene changes.
- Activity-Based Methods: Focusing on frames with significant motion.
- Visual Content-Based Methods: Analyzing visual features like color and texture.
- Clustering-Based Methods: Grouping similar frames and selecting representative ones.
- Text-Video Similarity-Based Methods: Choosing frames that match user queries.

It is recommended to conduct experiments to compare the performance, strengths, and limitations of various methods

Research Background

Related Work

Motivation

Methodology

Experiments

Motivation

Limitation: Loss of Critical Information During Memory Updates

Only Token similarity and not Token importance

Merged Keyframes with similar neighboring frames

Loss of critical information

Limitation: Inefficient Use of the Memory Bank

All memory bank as input without selection or filter

Prevent the memory bank for reducing computational load

Research Background

Related Work

Motivation

Methodology

Experiments

Limitation:

- 1. Loss of Critical Information During Memory Updates
- 2. Inefficient Use of the Memory Bank

Key improvements:

- 1. Keyframe Selection for Memory Updates
- 2. Text-Based Keyframe Selection
- 3. Sliding Window Memory Bank

Using Keyframe Selection for Long-term Memory Updates

1. Keyframe Extraction

Extract multi Keyframe and then stored in Long-term Memory

2. Similarity-Based Fusion

Memory consolidation as MovieChat for the remaining tokens

This approach addresses the problem of critical content disappearing due to the current update process.

- 1. Calculates the similarity
- 2. Selecte the top-N relevant frames

This approach further reduces the computational cost, while still maintaining response accuracy.

Sliding Window Memory Bank

Purpose:

Provide supplementary information with a longer temporal span

For N_{th} sliding window, with length L:

$$SW_N = \frac{1}{L} \sum_{i=1}^{L} CLS_i$$

Future work will explore more advanced methods

Sliding Winow Token Memory

Research Background

Related Work

Motivation

Methodology

Experiments

Experiments

Text-Based Keyframe Selection method

Benchmark: MovieChat-1k

Test: 170 videos, durations 10k -- 12k frames

Table 1: Accuracy on MovieChat-1k

Model	Acc
MovieChat	0.527
Ours with Text-based Key Frame Selection	0.513

MovieChat ---- 256 frames Ours ---- 128 framse

Result:

• Only half of the frames, the accuracy is closed to the original MovieChat

It is possible to reduce the number of frames required for processing, while maintaining similar response accuracy

Research Background

Related Work

Motivation

Methodology

Experiments

TREEE

Naifan Zhang

Dec 18th, 2024