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Research Goal

Improving memory efficiency and accuracy in long
video understanding by enhancing MovieChat's
memory management through keyframe extraction.

HiEA L JEEEY Tsinghua University




Video understanding
aiming at interpreting video

content

Various tasks

* Video Question Answering
* Video Classification

* Video Scene Segmentation

Limitation:
1. LLMs max input length
2. GPU memory consumption
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What is this clip talking about now?

It shows a young man standing in a dugout on a
black background. He is then seen kneeling on
the field during a football game, followed by
two young men in a dugout. Next, we see a
young man standing on the field. And finally, we
see a group of young men standing on the field
and watching the game. The video also features
football players and fans, as well as a football

field, field, and dugout. J
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Question #2
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Has there been a black speaker in the video
so far?

Yes, there is @ man in a red shirt standing on a
street with a dark blue sky in the background,
and a man with a tie standing on a street with a
red car in the background. There is also a man
in a black suit and another man in a white
jacket standing in front of a building with a
street light.
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Long video understanding

Reduce the computing requirements needed to analyze long videos while maintaining good accuracy

Methods

Sampling
Aggregation
Memory Bank

Short-term Memory
Similar to computer’s
RAM

Long-term Memory
Similar to computer’s
hard drive
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Step 1: build adjacent frame pairs
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Step 2: calculate cosine similarity
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Step 3: select top-1 pair and merge
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[1] Enxin Song, Wenhao Chai, Guanhong Wang, Yucheng Zhang, Haoyang Zhou, Feiyang Wu, Haozhe Chi, Xun Guo, Tian Ye, Yanting Zhang, et al. Moviechat: From dense token to sparse memory for long video understanding. In Proceedings of the IEEE/CVF 3
Conference on Computer Vision and Pattern Recognition, pages 18221-18232, 2024.
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MovieChat

Short-term Memory
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Memory Consolidation
v

Long-term Memory
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Memory Consolidation
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Short-term
Memory:
16 frames
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Merged Tokens:
2 frames
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| 1.For each set of adjacent frames, 5
"« Calculate its cosine similarity. ./ -

2 Select the pair with the
greatest similarity.
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3.Merge the two frames then

s
4. Until reach the [
predefined count. !
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MovieChat

1. Breakpoint Mode

Short-term memory, Long-term
memory, and Current video frames

2. Global Mode

Long-term memory

Inference Mode
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MovieChat offers an efficient approach
to understanding long videos by
combining memory management with
multi-modal large language models.
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Has there been a black speaker in the video
so far?

Yes, there is a man in a red shirt standing on a
street with a dark blue sky in the background,
and a man with a tie standing on a street with a
red car in the background. There is also a man
in a black suit and another man in a white
jacket standing in front of a building with a
street light.
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Keyframe Extraction

Uniform Sampling: Selecting frames at regular
intervals.

Boundary-Based Methods: Detecting scene

changes.
Activity-Based Methods: Focusing on frames e
with significant motion. ol
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Visual Content-Based Methods: Analyzing
visual features like color and texture.

Clustering-Based Methods: Grouping similar s
frames and selecting representative ones. (3 Cluster
Text-Video Similarity-Based Methods:

Choosing frames that match user queries. ,
of various methods
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Video

)

Feature
Extraction

H

Proposal
Generation

Key Shot
Selection
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(b) Video Summarization

Tsinghua University

l Text
Encoder
Text

Similarity
Calculation

Visual
Encoder

(¢) Text-Video Frames Matching

Video

It 1s recommended to conduct experiments to
compare the performance, strengths, and limitations
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Motivation

Limitation: Loss of Critical Information During Memory Updates

Only Token similarity and not Token importance

¥

Merged Keyframes with similar neighboring frames

¥

Loss of critical information
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Short-term
Memoty:
16 frames

Y

Merged Tokens:
2 frames
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Motivation

Long-term Memory £

Limitation: Inefficient Use of the Memory Bank
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Prevent the memory bank for reducing L. o

computational load

All memory bank as input without selection or filter
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Methodology
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Limitation: v Memory Update
1. Loss of Critical Information /6‘9“‘ Encodse, £ grv— 2
. Sliding Winow Token Memory Short-term Memory KeyFrame
During Memory Updates S ——————————, E—— o ||
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2. Inefficient Use of the Memory  — Similar token ]
Bank l— \ — jJI
| e Text-Video Frame Similarity Based | (=~~~ —- r}?
- ‘ Sneston .' Keyframe Selection J‘ L - B B B
Key lmprOVementS: | | - l Long-term Memory :
1. Keyframe Selection for Memory Updates o
2. Text-Based Keyframe Selection 3
3. Sliding Window Memory Bank [ Large Langua Model ]
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Methodology

Using Keyframe Selection for Long-term Memory Updates

Tsinghua University

Memory Update

1. Keyframe Extraction
Extract multi Keyframe and then

. Short-term Memory
stored in Long-term Memory
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2. Similarity-Based Fusion
Memory consolidation as MovieChat
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This approach addresses the problem of critical content
disappearing due to the current update process.

Long-term Memory
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Methodology
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. Memory Update
Text-Based Keyframe Selection [2] p e N
Sliding Winow Token Memory Short-term Memory KeyFra_me ]
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Keyframe Selection lL_lL_lL_lL_|L_|
l Long-term Memory
Q-Former
1. Calculates the similarity This approach further reduces the computational cost,
2. Selecte the top-N relevant frames while still maintaining response accuracy.
[2] Hao Liang, Jiapeng Li, Tianyi Bai, Xijie Huang, Linzhuang Sun, Zhengren Wang, Conghui He, Bin Cui, Chong Chen, and Wentao Zhang. Keyvideollm: Towards large-scale video keyframe selection, 2024. 9
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Methodology
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Sliding Window Memory Bank | e IR D e R i
Purpose: l

Provide supplementary information with P

a longer temporal span S Eneote!

For Ny, sliding window, with length L: [ ___________ e J
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Future work will explore more advanced -
methods Sliding Winow Token Memory

HiEA L JEEEY Tsinghua University




Tsinghua University

Content

Research Background
Related Work
Motivation
Methodology
Experiments

Further Plan

HiEA L JEEEY Tsinghua University




singhua University

Experiments

Text-Based Keyframe Selection method

Benchmark: MovieChat-1k MovieChat ---- 256 frames
Test: 170 videos, durations 10k -- 12k frames Ours ---- 128 framse
Table 1: Accuracy on MovieChat-1k Result:
Model Acc * Only half of the frames, the
MovieChat 0.527 accuracy is closed to the
Ours with Text-based Key Frame Selection 0.513 original MovieChat

It 1s possible to reduce the number of frames required for processing,
while maintaining similar response accuracy
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Further Plan

Research Schedule

Reproduce MovieChat Framework

Conduct Experiments with Benchmarks

Test and Select Keyframe Extraction Method -

Develop Sliding Window Token and Memory Bank -
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Timeline 9
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ks for Listening.

Naifan Zhang
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