
Progress Report

Data-driven map matching through regularity patterns

Yang Li∗

May 24, 2013

Following up my previous work on single-trajectory map matching, this report present a new formulation
of our map matching algorithm that captures regularity patterns in massive number of trajectories. It also
reports some findings on testing the density distribution of randomly generated trajectories on a grid map.

Overview

Map matching is the process of mapping a sequence of sparse GPS positions (trajectory) to paths on the
road network (map). In most cases there are many possible mappings for a given trajectory. However, we
observed from large number of trajectories and sub-trajectories that share the same source and destinations,
that there often exists one or few routes that are very popular, while other viable routes are almost not
taken at all. We call such behavior the regularity of trajectories. Our goal is to find such regularity from
massive trajectory data, and enforce this regularity when projecting trajectories onto the maps. In a boarder
picture, the proposed approach is motivated from the emergence of data-driven techniques in analyzing and
processing 2D images and 3D shapes. These techniques have shown the strength of analyzing a collection of
together as opposed to analyzing objects or pairs of objects in isolation.

We represent such regularity pattern using a small set of weighted low-order road segments, i.e., paths
on the map. These road segments describe sub-trajectories that are likely to be taken by existing or future
trajectories. To capture these road segments, we enumerate all road segments of a particular order, and then
extract these segments with high popularity scores. where the popularity score of a road segment is defined
as the sum of its similarity scores to all input trajectories.

Given the extracted road segments, the proposed approach perform map matching for each input tra-
jectory independently. This is done by stitching a subset of road segments to form the projected path of
each trajectory on the map. We formulate this step as a MAP estimation problem. The objective function
considers densities of the selected road segments, the consistency between selected road segments as well as
the smoothness of road segments.

Algorithm Details

Now we describe each step of the algorithm in detail. A simple grid map is used to illustrate the basic
concepts.

Segment sampling

Define an order k segment s (or simply k-segment) to be the sequence of edges with total length is less
than k units, while any segment that strictly contains s has length greater than k. (For simplicity, we can
think the unit as kilometer.) The segment sampling step is to find Sk, the set of all k-segments in a road
network.

To simplify the computation, we first interpolate long edges in the road network such that the maximum
edge length is l (l < k). Next we enumerate through all vertices on the road network. For each vertex v, we

∗Joint work with Peter Huang and Michael Kerber.

1



find all k-segments starting from v by traversing v’s k-neighborhood1in a depth-first recursion. A k-segment
is reported when a leaf u (u 6= v) of the neighborhood is reached. Figure 2. illustrates a simple case when
l=1 and k=2.

(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

Figure 1: All 3-segments starting from (0, 0)

Compute segment density

The density of a segment measures how likely it can be taken by future trajectories. Because of our assump-
tion that regularity exists in trajectories, we can approximate its value by analyzing the proximity between
the segment and it neighbouring trajectories.

Let T be the set of all trajectories. The density of segment s is defined as e−D(s), where

D(s) =
∑
Tj∈T

dH(s, Tj) =
∑
Tj∈T

max
si∈s

min
t∈Tj

d(s, t)

dH(s, Tj) is the one-sided Hausdorff distance. It provides an upper bound to the distance between the points
on segment s and trajectory Tj . We use the Manhattan distance for d(s, t) in our implementation.

1The k-neighborhood used here is different from the graph theory definition.

dH(s,T)

s
T

Figure 2: dH(s, Tj) is the one-sided Hausdorff distance.

2



Segment matching

The segment matching step maps an input trajectory to a collection of k-segments in Sk that best represent
the trajectory, and conform to the regularity pattern found in existing trajectories. We achieve this by
first projecting the input trajectory onto a set of candidate segments that are locally similar to the input,
compute the globally optimal sequence of segments, and finally stitch the segments into a complete path. As
shown in Figure 3, we are essentially lifting the trajectory into a higher dimensional space (segment space)
which encodes local geometry and regularity information around the sample points.

Segment space

Map space (M)

G(Sk)

trajectory Ti Path Pi

find optimal 
segments

Optimal segment 
sequence σi ∈ G

pr
oj

ec
t

st
itc

h

candidate 
segments

N(τi)

Figure 3: The segment matching process

Input processing

In order to match trajectories to segments, we subdivide the trajectories into partially overlapping compo-
nents τi of length k around sample points. (See Figure 4 .) However, overlapping is not required when two
consecutive components τi and τi+1 are far apart.

For each sub-trajectory τi, we define its candidate set Nε(τi) to be all segments whose Hausdorff distance
to τi is less than ε.

segment path

Figure 4: Subdividing a trajectory into overlapping and non-overlapping components.

Constructing segment graph

Next we construct a segment graph G(Sk), where (si, sj) is an edge if si and sj defer by exactly 1 edge.
Figure 5 shows the subgraph induced by the 10 segments given in a previous example (Figure 2). The weight
of an edge wi,j = dH(si, sj) is the Hausdorff distance between the end segments. We will use this graph to
find shortest paths between non-overlapping segments.

3



1 2
3

4

5

6 7
8

9

10

Figure 5: Subgraph of G(Sk) induced by segments in Figure 2

MAP estimation (tentative)

Let τ1, ..., τl be the subdivision of trajectory T , and let Nε(τ1), ..., Nε(τl) be the candidate sets of the sub-
trajectories. We build a Markov random field where the sites are τi, and each of which takes value from the
finite set Nε(τi).

Let A be an assignment function that maps τi to some sj ∈ Nε(τi). We define indicator vector x, 2 where
xi,a = 1 if A(τi) = sa, and 0 otherwise. We find the optimal assignment by solving the MAP estimation as
follows

x∗ = argminx
∑
i,a

Wi,axi,a + λ
∑
a,b

Qi,a;i+1,bxi,axi+1,b

∑
a

xi,a = 1

The first order potential function W captures the inverse density of segment sa and its deviation from τi.

Wi,a = −D(sa) + γ1dH(sa, τi)

The higher order potential Q is the distance from sa to sb on the segment graph G(Sk).

Qi,a;i+1,b = dGk
(sa, sb)

We can solve this optimization problem efficiently as in the single trajectory map matching algorithm.

Trajectory stitching

After obtaining optimal path σ = {s1, ..., sM} ∈ G(Sk), it is easy to compute its corresponding path P in
road network M , since all consecutive segments si and si+1 differ only by one vertex.

Experiments on segment density

The goal of the following experiment is to verify two important facts that our algorithm relies on: 1). Only a
small subset of segments have high density, and 2)trajectories can be constructed incrementally via low order
segments . Here is a description of the experiment setup.

On a 19 × 19 grid map, we generated 10,000 sparse trajectories of varying length. Since we want these
trajectories to simulate GPS trace of vehicles driving in a city, we enforce the following additional properties:

2For clarity, we define x as a |Sk| dimension vector. However, in the dynamic programming implementation, we only consider
segments in the candidate sets, hence |x| = |T |maxτ∈T (|N(τ)|).

4



• Trajectories can not turn 180◦, and have a limited number of left and right turns;

• All trajectory are within the boundary of the map (no cut off trajectories);

• The maximum deviation of a trajectory point from the nearest road is ε.

Figure 6: 200 trajectories from the generated dataset

The number of k-segments on the map for k = 1, 2, 3 and 4 are as listed in Table 1. By pruning trajectories
that are far away from the queried segment, we were able to compute the density efficiently.

k |Sk|
1 1520
2 4328
3 12456
4 35960

Table 1: Total number of k-segments in the 19× 19 grid map

The following plot shows the density distribution of all k-segments for k = 1, 2, 3, and4. We can see that
no matter what the value of k, at least 2/3 of the segments always have density very close to 0. In practice,
we can safely ignore these low density segments so that the search space in the optimization step is not too
large.

The next steps

Currently I am working on the implementation of the segment mapping step. After the system is in place, I
plan to perform more experiments for finding the best k for a given map, and for adjusting other parameters
in the algorithm.

We have also considered two ways of validating our algorithm. First we will compare the matching
result with the outcome of the single trajectory map matching algorithm I implemented previously. (Our
hypothesis is that the proposed method will yield better accuracy and regularity.) We also plan on manually

5



Figure 7: Density distribution of k-segments, sorted in descending order

labelling a small subset of trajectories to test whether the regularity found in our algorithm is consistent
with human perceptions.

6




