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Graph Transformer Overview

 GNNSs are biased towards encoding local structure and unable
to capture global or long-range information (e.g. over-
smoothing, over-squashing)

» Graph Transformers (GT) attend information over all nodes and
hence are not limited to local aggregation.
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Positional Encodings
« General GT architecture is less expressive in distinguishing non-isomorphic
graphs than standard GNNs because attentions are permutation-invariant.

» Well-designed positional encodings (PE) are needed to capture graph structure.
» Analogous to language models: RoPE and contextual PE
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Positional Encodings
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Positional Encodings

* In particular, GNNs are limited in their capability of detecting graph
structure such as triangles or cliques.
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Message Passing

» Topological Deep Learning (TDL) defines a class of new domains
with high-order relations and proposes a class of models that
perform message passing on corresponding domains.

* While other architectures equivalent to higher-dimensional k-WL
tests have been proposed, they suffer from high computational and
memory complexity, and lack the key property of GNNs: Locality.

TDL tackle this problem by considering local higher-order
interactions.



Message Passing

Traditional Discrete Domains Domains of Topological Deep Learning
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Message Passing

Topological Neural Network with 3 Layers

Message passing
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Message Passing
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Message passing steps
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