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Abstract Manifold learning methods are one of the most exciting developments in
machine learning in recent years. The central idea underlying these methods is that
although natural data is typically represented in very high-dimensional spaces, the
process generating the data is often thought to have relatively few degrees of free-
dom. A natural mathematical characterization of this intuition is to model the data
as lying on or near a low-dimensional manifold embedded in a higher dimensional
space.

In this chapter, we discuss the problem of nonlinear dimensionality reduction
(NLDR): the task of recovering meaningful low-dimensional structures hidden in
high-dimensional data. In many cases of interest, the observed data are found to
lie on an embedded submanifold of the high-dimensional space, e.g., images gen-
erated by different views of the same three-dimensional (3D) object. Intuitively,
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Figure 2: Tomato pictures token from 0, 50, and 100 degree angles. In total, there are 72( = %) different angles.
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Manifold:

Fig. 4.1 Manifold examples. Left: A curve in R? can be considered as a 1D manifold embedded
in the 3D Euclidean space. Middle: the set of points sampled from Swiss roll manifold. The set of
points sampled from S-shaped manifold

Manifold: A d-dimensional manifold M has the property that it is locally home-
omorphic with respect to R?. That is, for each x € R, there is an open neighborhood
around x, Ny, and a homeomorphism f: Ny — R?. These neighborhoods are referred
to as coordinate patches, and the map is referred to as a coordinate chart. The image
of the coordinate chart is referred to as the parameter space.



Embedding: an embedding of a manifold M into R? is a smooth homeomor-
phism from M to a subset of R”. The algorithms discussed in this chapter find
embeddings of discrete point sets, by which we simply mean a mapping of the point
set into another space (typically a lower dimensional Euclidean space). An embed-
ding of a dissimilarity matrix into R” is a configuration of points whose interpoint
distances match those given in the matrix.

Graph embedding: the embedding of a graph G on a surface M is a represen-
tation of G on M in which the points of M are associated with vertices and simple

arcs (homeomorphic images of [0,1]) and are associated with edges in such a way
that:

e the end points of the arc associated with an edge e are the points associated with
the end vertices of ¢;

e an arc includes no points associated with other vertices;
e {wo arcs never intersect at a point which is interior to either of the arcs.



Manifold learning in dimensionality reduction:

In the classical approaches to dimensionality reduction, various methods generate
linear/nonlinear maps like kernel PCA, kernel Fisher discriminant. They don’t explicitly
consider the structure of the manifold on which the data may possibly reside.

Manifold learning methods address the dimensionality reduction problem by
uncovering the intrinsic low dimensional geometric structure(local or global
geometry) hidden in their high-dimensional observations and constructing a
representation of the data in low-dimensional space.

How to construct a map using certain properties of the manifold?

Global Methods: preserve metircs at all scale

MDS(preserve inner product or Euclidean distance),

Isomap(preserve geodesic distance)

Local Methods: preseve local geometry of the data

LLE(find optimal linear reconstruction in a neighborhood),

Laplacian eigenmaps(embed vertices into a gragh and use graph Laplacian to
derive a smooth mapping)

Hybrid Methods: make use of both local and global properties of the manifold
LTSA



denote R¥*™ 3 X := [zq,...,2,] and RP*" 3 Y :=
[yla"'ayn]‘

Classical MDS : preserves the similarity of
the data.

Similarity measure of points: inner product
Cost function: STRAIN
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whose matrix form is:
minimize ¢ = [Pl 4 g )

where |- ||z denotes the Frobenius norm, and X ' X and
Y'Y are the Gram matrices of the original data X and
the embedded data Y, respectively.

The objective function, in Eq. (2), is simplified as:
1X'X -Y'Y|%
=tr[(X'X-Y'Y) (X' X-Y'Y)]
=tr[( X' X-Y V) X'X-Y'Y)]
=r[( X' X -Y'Y)?],

X'X=vAV', (3)
Y'Y =Q¥Q', (4)
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LetR"*" 5 M =V 'Q, so:
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tr(A?) + tr(M®M")?) —2tr(AMYM ).
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RV 5 g = 2(MEM " YME —2AM¥ =0
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where (a) is because M¥ # 0.
REEE 5 % — oM " (MIM )M —2M"AM £0

— M'(MY¥M' )M =M'(A)M
L MeMT = A, 6)
whose one possible solution is:
M =1, (7)
v = A. (8)

which means that the minimum value of the non-negative
objective function tr((A — M®M ")?) is zero.

We had M = V' ' Q. Therefore, according to Eq. (7), we
have:

V=1 = Q=V. 9)
According to Eq. (4), we have:
YTy =QuQ" Y QuruiQl = v =wiQ'
Q0 y _ AtVT, (10)

In summary, for embedding X using classical MDS, the
eigenvalue decomposition of X T X is obtained as in Eg.
(3). Then, using Eq. (10), Y € R™*" is obtained. Truncat-
ing this Y to have Y € RP*", with the first (top) p rows,
gives us the p-dimensional embedding of the n points. Note
that the leading p columns are used because singular values
are sorted from largest to smallest in SVD which can be
used for Eq. (3).

Kernel MDS / generalized classical MDS:

.
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where R"*" 3 G := X' X is the Gram matrix. If
R™ 3 g := [glv"'?gn] = [Gll,...,Gnn] = diag(G),
we have:

d?j =g, — 2Gi; + 9,
D=gl' -2G+1g' =1g' —2G +g1",

where 1 is the vector of ones and D 1s the distance matrix
with squared Euclidean distance (d?j as its elements). Let

R 5 H := T — 111" denote the centering matrix. We



double-center the matrix D as follows (Oldfofd, 2018):

1 1
HDH = (I--11")D(I — -11")
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=9I — —11T)E(r — —11"
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= —2(I — l11T)G(I— 11")=-2HGH
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HGH=HX'"'XH = ~5HDH. (1)

If data X are already centered, i.e., the mean has been re-
moved (X < X H), Eq. (11) becomes:

1
X'X=--HDH. (12)
2

use kernel matrix rather than gram matrix:

1
R"™" 5 K =~ HDH. (13)

K=VAV'. (14)

Then, using Eq. (10), Y € R™*" is obtained. It is note-
worthy that in this case, we are replacing X T X with the
kernel K = ®(X)'®(X) and then, according to Egs.
(10) and (14), we have:

K=Y'Y. (15)

Truncating the Y, obtained from Eq. (10), to have
Y € RP*"™, with the first (top) p rows, gives us the p-
dimensional embedding of the n points. It is noteworthy
that, because of using kernel in the generalized classical
MDS, one can name it the kernel classical MDS.



Metric MDS : preserves the distance of points
rather than the similarity.
Cost function: stress/sstress function

minimize
{yé}?:l
o\ 1
o Z?:l Z?:l,j<i (d:c(-Tz': zj) — dy(y;, yj)) :
g =
) Dl Z?:l,j<i dz (i, ;) ’
(16)
or, without the normalization factor:
minimize
{yi 1
1
n T 2 2
- (z S Gl — ) ) |
i=1 j=1,j<i

(17)
where d,(.,.) and d, (., .) denote the distance metrics in the
input and the embedded spaces, respectively.
the matrix form: ||D — D'||Z

Other criteria for MDS have also been studied, for example, the STRESS and
SSTRESS given by |[D —D'||% and ||D? — D|[%, respectively. However, the

Use gradient descent or Newton’s method to solve (16)
since it doesn’t have closed-form solution.

Non-Metric MDS :

In non-metric MDS, rather than using a distance metric,
dy(x;,x;), for the distances between points in the em-
bedding space, we use f(d,(x;,x;)) where f(.) is a non-
parametric monotonic function. In other words, only the
order of dissimilarities is important rather than the amount
of dissimilarities (Agarwal et al., 2007; Jung, 2013):

dy(Yi, ;) < dy(Yp, y,) =
fldy(yi,y;)) < fldy(zk, yo))-

The optimization in non-metric MDS is (Agarwal et al.,
2007):

(20)
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Isometric Feature Mapping(lsomap):
In classical MDS, we use Euclidean distance

n n
minimize ¢ = E E (EUZTZBJ — yg—yj)za
{y:}io, i=1 j=1

1
XX = —§HDH.

which is not suitable for a nonliearly embedded
manifold. Thus in kernel MDS, we use kernel matrix
to substitute the gram matrix.

R s K = —%HDH.

Isomap is a special case of kernel MDS. Isomap
uses an approximation of the geodesic distance in
above matirx D.

Geodesic distance: the length of shortest path
between two points on the possibly curvy manifold.

e,
, Hi &J’ y
A8y

Calculation of the geodesic distance is very difficult
because it requires the knowledge of differential geometry.
Therefore, Isomap approximates the geodesic distance

by piecewise Euclidean distances.

The shortest path is found using algorithms such as the
Dijkstra algorithm or the Floyd-Warshal algorithm.

!
ngg') = minz |75 — 7iga|2,
T
=2

R™*n o K = —%HD(Q)H.

1. Find the neighborhood for each point x;.

2. Compute the shortest path distance between all pairs of points using Dijkstra’s
or Floyd’s algorithm, and store the squares of these distances in a matrix.

3. Apply classical MDS to the distance matrix.

Isomap dimensionality

Fig. 4.4 The Swiss roll data set, illustrating the 2D embedding recovered by the Isomap in step
three, and how the residual variance decreases as the dimensionality d is increased. Left: the true
manifold; middle: the 2D embedding recovered by the Isomap with neighborhood graph overlaid;
right: the residual variance decreases as dimensionality increases



Landmark Isomap: Hence, we have A = R R. The eigenvalue decomposi-
One drawback of Isomap is its quadraic memory requirement;  tion (Ghojogh et al., 2019a) of A gives:

jche ge.odesic distance matrix is dense,making the Isomap A=USUT (55)
infeasible for large data set.

[ _ 13 _ s (1/2)yrT
Nystrom Approximation: — R R=UXU = R=3"/7U . (50

Nystrom approximation is a technique used to approximate Moreover, we have B = R S so we have:

a positive semi—deﬁnitfe matrix using merely a subset.of 1ts B— (2(1 /2)UT)T §—pUuni/2g

columns (or rows) (Williams & Seeger, 2001). Consider a (@

positive semi-definite matrix R™*™ > K > 0 whose parts = U'B=x"8 — §=nVIUTB,
are: (57)

C=815=plpgs\-YAsi—12" B

A | B .
R™" 5 K = [ﬂ—] : (52) _BUux'vTB® BTA B, (58)

Therefore, Eq. (52) becomes:

A| B
B' |B"A'B |’

where A € R™*m B ¢ RmX(-m) and C €
R(n—m)x(n—m) iy which m < n. K~

(39)

K is the similarity matrix or distance matrix. Instead of
computing K, we designate m data points to be landmark
points and compute A and B. Our goal is to approximate C.

After computing K, we need to do eigenvalue
decomposition of the kernel matrix and compute Y.

_ T o A EYT
As the matrix K is positive semi-definite, by definition, it K=vay K=Y'Y Y=4av

can be written as K = O'0O. If we take O = R, S] Recall that Eq. (14) decomposes the kernel matrix into
where R are the selected columns (landmarks) of O and S eigenvectors and then Eq. (10) embeds data. However, for
are the other columns of Q. We have: big data, the eigenvalue decomposition of kernel matrix is
- intractable. Therefore, using Eq. (55), we decompose an

K=0"0= [RT] R, S| (53) m x m submatrix of kernel. Comparing Eqgs. (15) and (53)

S shows that:
T T .
— [ng IS{TS'] (52) [;T g] . (54) R™" 3Y =[R, S| (a) =/2AyT w12y T R

(60)



