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Manifold: 





How to construct a map using certain properties of the manifold?
• Global Methods: preserve metircs at all scale
• MDS(preserve inner product or Euclidean distance), 
• Isomap(preserve geodesic distance)
• Local Methods:  preseve local geometry of the data
• LLE(find optimal linear reconstruction in a neighborhood), 
• Laplacian eigenmaps(embed vertices into a gragh and use graph Laplacian to                

derive a smooth mapping)
• Hybrid Methods: make use of both  local and global properties of the manifold
• LTSA

Manifold learning in dimensionality reduction：
• In the classical approaches to dimensionality reduction, various methods generate 

linear/nonlinear maps like kernel PCA, kernel Fisher discriminant. They don’t explicitly 
consider the structure of the manifold on which the data may possibly reside.

• Manifold learning methods address the dimensionality reduction problem by 
uncovering the intrinsic low dimensional geometric structure(local or global 
geometry) hidden in their high-dimensional observations and constructing a 
representation of the data in low-dimensional space.



Classical MDS : preserves the similarity of  
the data.
Similarity measure of points: inner product
Cost function: STRAIN 



Kernel MDS / generalized classical MDS: 



use kernel matrix rather than gram matrix: 



Metric MDS : preserves the distance of  points 
rather than the similarity.
Cost function: stress/sstress function

Use gradient descent or Newton’s method to solve (16) 
since it doesn’t have closed-form solution. 

Non-Metric MDS :

the matrix form: 



Isometric Feature Mapping(Isomap):
In classical MDS, we use Euclidean distance

which is not suitable for a nonliearly embedded 
manifold. Thus in kernel MDS, we use kernel matrix 
to substitute the gram matrix.

Isomap is a special case of kernel MDS. Isomap 
uses an approximation of the geodesic distance in 
above matirx D.
Geodesic distance: the length of shortest path 
between two points on the possibly curvy manifold.

Calculation of the geodesic distance is very difficult 
because it requires the knowledge of differential geometry. 
Therefore, Isomap approximates the geodesic distance 
by piecewise Euclidean distances. 
The shortest path is found using algorithms such as the 
Dijkstra algorithm or the Floyd-Warshal algorithm.



Landmark Isomap:
One drawback of Isomap is its quadraic memory requirement: 
the geodesic distance matrix is dense,making the Isomap 
infeasible for large data set.
Nystrom Approximation:

K is the similarity matrix or distance matrix. Instead of 
computing K, we designate m data points to be landmark 
points and compute A and B. Our goal is to approximate C.

After computing K, we need to do eigenvalue 
decomposition of the kernel matrix and compute Y.


