

# Exploring Dynamic Collaboration Patterns Using Zigzag Persistence

Anping Zhang 2023.10.26

## Community Efforts During the COVID-19

**COVID-19 Emergency Response** 





**Business and School Re-opening Preparations** 





## "Shenzhen Pioneers" Volunteering Platform

#### **Time Period**

2020.2.14 - 2023.9.30

**Dataset** 

User ID
361114 Users in Total

#### **Issuer ID**

25278 Issuer in Total

### Records

More than 6.6 million volunteering records

### **Tasks**

Issued 1207304 Tasks

#### "Shenzhen Pioneers" Platform Screenshot



### **Collaboration Patterns**

Volunteer Activities

Collaboration Level

Sparse

Cohesive

## Topology of Collaboration Patterns

Low Collaboration Level Medium Collaboration Level (Sparse)



High Collaboration Level (Cohesive)



Conventional graph analysis methods (e.g. centrality and connectedness) do not account for higher-dimensional structures.

## Research Questions

 How to quantify dynamic collaboration patterns from a largescale volunteering dataset?

How to explain different collaboration patterns and changes?

## Methodology

Topological data analysis

Zigzag Persistence

Zigzag Persistence-based Framework

## Topological Data Analysis

- Topology is...
  - The study of holes
  - The Study of connectivity
  - Could think of it as space bending
- Betti Numbers
  - $\beta_0$  = # connected components
  - $\beta_1$  = # cycles
  - $\beta_2$  = # voids



© 2006 Encyclopædia Britannica, Inc.

A topologist is a person who cannot tell the difference between a coffee mug and a donut.

—so goes a joke about a little-known scientific field crowned Tuesday with a Nobel Physics Prize

## Simplicial Simplex and Complexes

- Geometric p-simplex is a convex combination of p+1 (affinely) independent points in  $\mathbb{R}^N$
- Complex K is a collection of simplices
  - dim(K) = highest dim of any simplex in K



Introduction Methodology Results Conclusion

## Vietoris-Rips Filtration for Graphs



## Zigzag Persistence for Graphs



## **Graph Construction**



Groups are defined as a set of users who participate in tasks that are issued by the same organizer.



## Zigzag Persistence-based Framework









## Experimental Results

City, District, and Street Level

## City-level: Betti Curve



## City Level: Pandemic Influence



## District Level: Normalized Conditional Entropy (NCE)

• **P-NCE**: Uncertainty on Users (U)' Participation Rate(P(u))

$$\hat{H}(X \mid U) = \frac{H(X \mid U)}{\sum_{u \in \mathcal{U}} H(X \mid U = u)} = \frac{-\sum_{u \in \mathcal{U}} \Pr(U = u)(P(u)\log(P(u)) + (1 - P(u))\log(1 - P(u))}{-\sum_{u \in \mathcal{U}} (P(u)\log(P(u)) + (1 - P(u))\log(1 - P(u))}$$

• O-NCE: Uncertainty on Choosing a Task Organizer(0)

$$\hat{H}(O \mid U) = \frac{H(O \mid U)}{\sum_{u \in \mathcal{U}} H(O \mid U = u)} = \frac{-\sum_{u \in \mathcal{U}} \Pr(U = u) \sum_{o \in \mathcal{O}} O(o, u) \log(O(o, u))}{-\sum_{u \in \mathcal{U}} \sum_{o \in \mathcal{O}} O(o, u) \log(O(o, u))}$$

## District Level: Organizational Speed $(\eta)$

### **Double Exponential Model**

$$NCE(t) = A * I * (e^{-\alpha t} - e^{-\beta t})$$

Where I is the peak value,  $A = f(\alpha, \beta)$ :

$$A(\alpha, \beta) = \frac{1}{e^{-\alpha \frac{\ln(\beta) - \ln(\alpha)}{(\beta - \alpha)} - e^{-\beta \frac{\ln(\beta) - \ln(\alpha)}{(\beta - \alpha)}}} \stackrel{\text{U}}{\geq} 50\%$$

### **Organizational Speed**

$$\eta = \frac{T_{\text{Half}}}{T_{\text{Fall}}} \approx \frac{\frac{1}{\alpha} - \frac{\ln(\beta) - \ln(\alpha)}{\beta - \alpha}}{n - \frac{\ln(\beta) - \ln(\alpha)}{\beta - \alpha}}$$



## District Level: Self-Organization Influence

Motivation: why did districts show different collaboration levels?



## District Level: Self-Organization Influence

Pearson Correlation T-Test (Correlation(P-Value))

|           | P-NCE&dim0    | P-NCE&dim1    | P-NCE&dim2    | O-NCE&dim0    | O-NCE&dim1    | O-NCE&dim2               |
|-----------|---------------|---------------|---------------|---------------|---------------|--------------------------|
| Guangming | -0.017(0.548) | -0.01(0.722)  | Na            | -0.031(0.276) | -0.018(0.520) | Na                       |
| Longhua   | 0.025(0.374)  | 0.016(0.575)  | Na            | 0.019(0.518)  | -0.032(0.261) | Na                       |
| Longgang  | -0.028(0.323) | -0.013(0.662) | -0.007(0.811) | 0.029(0.304)  | 0.001(0.972)  | <del>-0.058(0.042)</del> |
| Nanshan   | 0.075(0.008)  | 0.083(0.004)  | -0.046(0.105) | 0.013(0.659)  | 0.017(0.543)  | -0.01(0.727)             |
| Luohu     | 0.017(0.564)  | 0.045(0.113)  | -0.014(0.627) | 0.028(0.335)  | -0.013(0.647) | -0.007(0.795)            |
| Pingshan  | 0.032(0.267)  | 0.11(0.0001)  | -0.01(0.72)   | -0.02(0.484)  | -0.033(0.250) | -0.025(0.378)            |
| Futian    | -0.054(0.058) | -0.031(0.284) | -0.031(0.282) | 0.015(0.60)   | 0.067(0.018)  | 0.086(0.002)             |
| Baoan     | -0.009(0.756) | -0.004(0.885) | Na            | 0(0.99)       | -0.011(0.70)  | Na                       |

### Street Level: Point-of-interest Influence

### **Point-of-interest of 72 Streets**

| POI Type                                   | Yuanling Street | Pinghu Street |  |
|--------------------------------------------|-----------------|---------------|--|
| Science/Culture & Education Service        | 256             | 662           |  |
| Transportation Service                     | 267             | 900           |  |
| Governmental Organization & Social Group   | 103             | 462           |  |
| Tourist Attraction                         | 8               | 61            |  |
| Medical Service                            | 90              | 876           |  |
| Residential Area                           | 25              | 187           |  |
| Accommodation Service                      | 19              | 550           |  |
| Daily Life & Sports & Recreation Service   | 882             | 2292          |  |
| Industrial Park & Business Office Building | 38              | 339           |  |

### Street Level: Point-of-interest Influence

### **Regression Coefficients for Different POI Types**

**Definition 3.1.** The **persistence statistics** vector of  $\mu: B \to \mathbb{Z}_{>0}$  consists of:

- 1) the mean, the standard deviation, the median, the interquartile range, the full range, the  $10^{\rm th}$ ,  $25^{\rm th}$ ,  $75^{\rm th}$  and  $90^{\rm th}$  percentiles of the births p, the deaths q, the midpoints  $\frac{p+q}{2}$  and the lifespans q-p for all intervals [p,q] in B counted with multiplicity;
- 2) the total number of bars (again counted with multiplicity), and
- 3) the *entropy* of  $\mu$ , defined as the real number

$$E_{\mu} := -\sum_{[p,q] \in B} \mu_{p,q} \cdot \left(\frac{q-p}{L_{\mu}}\right) \cdot \log\left(\frac{q-p}{L_{\mu}}\right),$$

where  $L_{\mu}$  is the weighted sum

$$L_{\mu} := \sum_{[p,q] \in B} \mu_{p,q} \cdot (q-p). \tag{1}$$

Persistence Feature POI Matrix
$$Y = X * \beta$$

$$72 * 38 72 * 38 9 * 38$$

| •                                          |                          | <b>3</b> .              |                         |
|--------------------------------------------|--------------------------|-------------------------|-------------------------|
| POI Type                                   | Coefficient( $\beta_0$ ) | Coefficient $(\beta_1)$ | Coefficient $(\beta_2)$ |
| Science/Culture & Education Service        | 0.377                    | 0.243                   | <mark>0.570</mark>      |
| Transportation Service                     | 0.176                    | 0.135                   | 0.079                   |
| Governmental Organization & Social Group   | 0.264                    | <mark>0.479</mark>      | 0.167                   |
| Tourist Attraction                         | 0.138                    | 0.084                   | 0.107                   |
| Medical Service                            | 0.228                    | 0.165                   | 0.184                   |
| Residential Area                           | 0.520                    | 0.278                   | 0.277                   |
| Accommodation Service                      | 0.09                     | 0.188                   | 0.079                   |
| Daily Life & Sports & Recreation Service   | 0.264                    | 0.232                   | 0.084                   |
| Industrial Park & Business Office Building | 0.347                    | 0.529                   | 0.262                   |

## Conclusions

Conclusions & Future Work

### Conclusion & Future Works

- Conclusion
  - Quantify:
    - We proposed a zigzag persistence-based framework that can quantify collaboration patterns.
  - Explain:
    - We explained collaboration patterns at the city, district, and street levels, the
      results indicate that the pandemic, organizational levels, and regional points
      of interest individually influence volunteer collaborations, respectively.
- Future Works
  - Implement the framework on other dynamic datasets to verify model generalization.



## Fin

