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Introduction: transferability
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Transfer Learning: 
Model developed for task S may be useful for solving task T, if S and T related



Taskonomy ≈ Task + Taxonomy（分类论）
Disentangling Task Transfer Learning
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Task relationships exist
Can be computationally measured 
Tasks belonging to a structured space
Data efficiency: Transfers training data 8x-120x less than task-specific



Problem: Expensive Task Pairwise Computations 
(O(n^2))

26 Task-Specific Networks

3000 Transfer Networks （include 

high-order relations）

47,829 GPU hours
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Question: How can we efficiently 
estimate task transferability?
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Problem Formulation
Input: set of tasks T={(X1​,Y1​),(X2​,Y2​),...,(XN​,YN​)}
Goal: Find an “embedding” or “representation” vi ​= f(Xi​,Yi​) for each task. Utilize the 
distance between any two embeddings dist(vi​,vj​) approximates the transferability 
dist(vi​,vj​)≈Tr({Xi​,Yi​}→{Xj​,Yj​})
Problem 1: Transferability Recovery without Node Features 
Given partial A’ recover A (learn g(A′) ≈ A)
Problem 2: Transferability Recovery with Node Features 
Given A' and the node feature Z reconstruct A. g(A′, Z) ≈ A.
A: True transferability matrix between tasks.
A': Partial or observed transferability matrix 
between tasks.
Z: Task specific meta-information / task 
embeddings.
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Framework

• Given the task graph

Adjacency Matrix

• Task Embedding • Directed graph structure 
learning

Source Task Encoder Target Task Output
(e.g., curvature)Frozen

Representation Transfer Function

2nd order
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Matrix completion w/ and w/o task embedding
In transductive and inductive setting



Step1、 How to obtain affinity matrix ?
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I: Task-Specific Modeling

I: Task-Specific Modeling II: Transfer Modeling III: Normalization (AHP) IV: Taxonomy Extraction (BIP)

Image Source Output
(normals)Training data

Zamir et al. Taskonomy 2018



II: Transfer Modeling

Image

I: Task-Specific Modeling II: Transfer Modeling III: Normalization (AHP) IV: Taxonomy Extraction (BIP)

Training data
Target Output
(Curvature)

Image Source Output
(normals)Training data
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II: Transfer Modeling

Image

I: Task-Specific Modeling II: Transfer Modeling III: Normalization (AHP) IV: Taxonomy Extraction (BIP)
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II: Transfer Modeling

Image

I: Task-Specific Modeling II: Transfer Modeling III: Normalization (AHP) IV: Taxonomy Extraction (BIP)
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I: Task-Specific Modeling II: Transfer Modeling III: Normalization (AHP) IV: Taxonomy Extraction (BIP)

III: Normalization

Adjacency Matrix
 (pre-normalization)

strongweakZamir et al. Taskonomy 2018



I: Task-Specific Modeling II: Transfer Modeling III: Normalization (AHP)

III: Normalization

Adjacency Matrix
 (pre-normalization)

Adjacency Matrix 
(post-normalization) Ordinal Normalization

(基于序数的规范化)
 -Analytic Hierarchical 

Process.
(AHP)

strongweakZamir et al. Taskonomy 2018

？

Why we need 
normalization?

- Different output spaces
   (l2_loss = 0.01) ≠ (CE_loss = 0.01 )



Ordinal Normalization - Analytic Hierarchical Process (AHP)

• Quick example: Wt is the pairwise tournament matrix (锦标赛矩阵)

Adjacency Matrix 
(post-normalization)



Step2、how to get the task embedding from meta-info

• Given the task graph

Adjacency Matrix

• Task-embedding • Directed graph learning
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Matrix completion w/ and w/o task embedding
In transductive and inductive setting



Preliminary: Graph Autoencoder (GAE) & Variational Graph Autoencoder (VGAE)

[Kipf & Welling, 2016]

ENCODER
Inference
 layer

DECODER
Generative 

Layer

EMBEDDING
Latent space

Encoder

Decoder

Step3、Graph structure learning



Gravity-Inspired GAE

[Gravity-Inspired Graph Autoencoders for Directed Link Prediction]

A

X



Experiment Setting: Transductive and Inductive

• Transductive Learning
• In transductive learning, the testing set is known during training, but the labels of the testing set are 
unknown. The aim is to assign labels to the testing set without learning a generalized model that can 
be applied to unseen tasks – recover the missing point

• Inductive Learning
• In inductive learning, the model is trained without knowledge of the testing set. The goal here is to 
learn a generalized model that can be applied to unseen, new tasks – recover the hole graph structure



CV_tasks_baseline (GAE)
w/ one-hot embedding mse=0.0536 w/ task embedding mse = 0.0489 (+ 8%)

Transductive InductiveTransductive Inductive

Groundtruth

Input graph

Recover/
Reconstruct
graph



DGAE Transdictive results

Ground_truth Random_mask

mse: 20%+

Missing 
edge

GAE :w/ one-hot embedding mse=0.0536 
DGAE mse=0.00133

GAE :w/ task embedding mse = 0.0489 (+ 8%)
DGAE mse=0.00102

Recover the missing edges
w/o task embedding

Recover the missing edges 
w/ task embedding



NLP_Result
(Prompt Transferability)

Transductive

Inductive

Groundtruth

Colors of the task names indicate task types. Blue: 
SA. Green: NLI. Brown: EJ. Orange: PI. 

[On transferability of prompt tuning for natural language processing]



Next step
1. Find task meta-information in real-world 
medical and autonomous driving scenarios.
2. Try to incorporate the edge representation in 
directed graph learning.

Possible extensions
Multi-source transferability: Address the multi-
source ensemble selection challenge by utilizing 
hyper-graph learning combined with task 
embedding.

Questions？

v3

T1

(X1,Y1)

f

T2

(X2,Y2)

f

v1

v2 A

vn

z2

z1

z3 Zn

v4

Summary
1. Verified the feasibility of using directed graph learning to recover task transferability.
2. Enhanced the restoration of graph structure using task-specific representations.
3. Compared the recovery and reconstruction capabilities of directed graph models with 
undirected graph models.
4. Validated the efficacy and accuracy of our approach in both transductive and inductive 
settings across real-world CV and NLP tasks.


