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Bayesian vs Neural Networks

1 Causal Inference: How does drinking 10% more water in the
morning reduce aging?

2 Explainability: "Doctor, here is my neural net & its 97% accurate!"

3 Parsimonious: Imagine a data set with 0 data points and a prior.

Figure 1: (a) Regression output using NN with 2 hidden layers, (b)
Regression output using Gaussian process framework; Source: Goan
and Fookes (2020).
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Challenges in Bayesian Networks

Main Challenges (Opportunities?)
1 Model & Computational Complexity
2 Application (BNN, BCNN, BGCN, etc)
3 Modeling Assumptions & Approximation

Gaussian Assumptions:
• Symmetry: distribution is centred around the mean, µ
• Homoskedastic variance, σ2

Note:
• Does not model heavy tails
• Does not model asymmetry

→ BN that apply Gaussian assumptions may lead to suboptimal
performance
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Research Goal

• A common approach to BN involves learning linear regression-based
Graphical Models.

However:

• Distribution of microarray intensities show a clear skew (Friedman
et al., 2000, 2004; Ben-Dor et al., 2000)

• Financial data is heavy tailed (Muvunza, 2020, 2021)

• Wind Power Forecasting Error is leptokurtic (WPFE) (Hodge and
Milligan, 2011);

• Image denoising, (Achim and Kuruoglu, 2005; Rabbani et al., 2006)

• Neural Network parameters (Simsekli et al, 2019)

→ We aim to model BN as Directed-Acyclic Cauchy Graphs (DAGs)
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Why Cauchy?

• Has closed-form solutions
• Has heavy tails
• Is highly skewed
• Is parameterized by scale x0, and location γ parameters

Challenge:
• Mean & Variance are unknown
• Moments do not exist

(a) Cauchy dist. (b) Gaussian dist.

Figure 2: Gaussian process does not best describe heavy tailed data
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Contributions

Our contributions are as follows:
1 We propose novel Cauchy Graphical Models (CGLearn), a

new class of multivariate Cauchy densities that can be
represented as Directed-Acyclic Graphs (DAGs) with arbitrary
network topologies.

2 We conduct extensive experiments on synthetic and real world
data & the results demonstrate the efficacy of our approach.

3 We propose Cauchy-based GCN to overcome the lack of
generalization and expressiveness inherent in popular
techniques used in structural learning.
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Bayesian Network Models

Suppose we have the following DAG network:

Figure 3: DAG representing dependencies of variables in a network

P(A,S ,E ,O,R,T ) = P(A)P(S)P(E |A, S)P(O|E )P(R|E )P(T |O,R)

PB(X ) =

|X |∏
i=1

p(Child,Xi | Parents,Pa(Xi ))
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Cauchy density

The most common parameterization for stable distribution is defined by
Samorodnitsky and Taqqu (1994): A random variable X is S(α, β, γ, δ) if
it has characteristic function:

E (expitX ) =


exp

(
−γα|t|α

[
1 − iβ(tan πα

2 )(signt)
]
+iδt

)
if α ̸=1

exp

(
−γ|t|

[
1 + iβ 2

π (signt) ln |t|
]
+iδt

)
if α = 1

The parameter α is the index of stability and signt = 1 if t > 0, 0 if
t = 0 and −1 if t < 0.
→Cauchy density is derived when α = 1 and β = 0:

ϕX (t) = exp(−γ|t|[1 + 0] + iδt)

ϕX (t) = exp(−γ|t|[1 + 0])
ϕX (t) = exp(−γ|t|)
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Cauchy Density

Given ϕX (t) as the characteristic function of Cauchy, we can obtain
the Fourier Transform as follows:

F (x) = F(ϕX (t))

F (x) =
1
2π

∫ ∞

−∞
e−itX f (t)dt

=
1
2π

∫ ∞

−∞
e−itXϕX (t)dt

=
1
2π

∫ ∞

−∞
e−itX e−γ|t|dt

=
1
2π

∫ 0

−∞
e−itX eγtdt +

1
2π

∫ ∞

0
e−itX e−γt

=
1
2π

∫ 0

−∞
e(γ−iX )tdt +

1
2π

∫ ∞

0
e−(γ+iX )tdt
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Cauchy Density

=
1
2π

[e(γ−iX )t

γ − iX

]0

−∞

−

[
e−(γ+iX )t

γ + iX

]∞

0


=

1
2π

[
1

γ − iX
+

1
γ + iX

]
=

1
2π

[
2γ

γ2 + x2

]
1
π

[
γ

γ2 + x2

]
The F (x) of ϕX (t) shown above is the density of the Cauchy
distribution.
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Problem Formulation

More formally:
• Given a joint distribution of a finite set of RV
X = {X1,X2, ...,XN},

• We define a BN B(G ,Θ) consisting of the DAG, & a set of
parameters Θ = {θi | Xi ∈ X}, that determine the conditional
probability distribution p(Xi | Pa(Xi ), θ) for Xi ∈ X given the
state of its parents Pa(Xi ) ⊆ X \ {Xi} in G .

• DAG G represents the factorization of joint probability
density of RV into terms representing each variable Xi and its
parents Pa(Xi ) such that:

PB(X ) =

|X |∏
i=1

p(Xi | Pa(Xi ), θ)
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Problem Formulation

Factorization of joint pdf of RV

PB(X ) =

|X |∏
i=1

p(Xi | Pa(Xi ), θ)

• The dependence of p(Xi | Pa(Xi ), θ) on θi is usually specified
by an appropriately chosen family of parameterized probability
densities such as Gaussian.

• Our goal is to use multivariate Cauchy densities to model the
RV in X .
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Cauchy Graphical Models

Bayesian Networks constructed from Cauchy densities

A Cauchy Graphical Model is a probability distribution over X such
that:

1 Zj = Xj −
∑

Xk∈Pa(Xj )
wjkXk ∼ Cauchy(γ, δ) ≡ S(1, 0, γ, δ)

2 Zj is independent of Zk if Zj ̸= Zk , ∀Xj ∈ X
• where Pa(Xj) ⊆ X \ {Xj} are parent nodes of Xj in the DAG

G and Θ describes the distribution of the parameters.
• wjk ∈ R,Wj = {wjk | Xk ∈ Pa(Xj)}
• θj = {α, βj , γj , δj} ∪Wj ,Θ = {θi | Xi ∈ X}

Given the above conditions, we note that B(G ,Θ) is a Bayesian
Network. The transformation matrix from Xi to Zj is also a BN.
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Learning Cauchy Graphical Models

Structure Learning

• Goal for Structure Learning of a BN is to determine the optimal topology
that best mirrors the dependencies between RV.

• Score-based Algorithms explore the search space of the DAG to maximize
a given score. The most common method is Bayesian Information
Criterion (BIC), Schwarz (1978).

• Given a data set D = {D1, ...,DN}, the SBIC (B|D) for a BN B(G ,Θ) is
defined as:

SBIC (B|D) =
∑
Dj∈D

log[PB(Dj)]−
∑
Xi∈X

|Pa(Xi )|
2

logN

1 PB(Dj) is the marginal likelihood estimator.
2

∑
Xi∈X

|Pa(Xi )|
2 logN is the penalty term.
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Learning Cauchy Graphical Models

Structure Learning

• Misra and Kuruoglu (1998, 2016) proposed Minimum
Dispersion Criteria MDC , which is more efficient than BIC .

• MDC selects the Bayesian Network that maximises the score
SMDC over the space of all DAG G , and Θ parameters.
Formally, the score is defined as:

SMDC (B|D) = −
∑
Xi∈X

{
N

logγi
α

+
|Pa(Xi )|

2
logN

}
• SMDC ≡ SBIC under specific settings for symmetric α-stable

densities, (Misra and Kuruoglu, 2016).
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Learning Cauchy Graphical Models

Parameter Learning, γ

• Goal of Parameter Learning in BN is to determine each
conditional distribution for a given network.

• Given a Cauchy density, γ denotes the dispersion parameter.
• Finding the conditional distribution is a non-trivial task since

the moments do not exist.
→ Why γ?

1 For Structure Learning, SMDC (B|D)

2 To characterize linear dependencies among RV.
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Learning Cauchy Graphical Models

Parameter Learning, γ

• Samorodnitsky (1996), Kuruoglu (1998, 2001) showed that If:

Z ∼ S(α, 0, γ, 0) ≡ Cauchy(γ, 0)

then
E(|Z |p) = C(p, α)γp/α,−1 < p < α

• The lp of a Cauchy RV is related to it’s p-th moment.
• Minimizing γ ≡ minimizing p-th order moment.

argmin
1
α
log γj ≡ argmin∥Zj∥p ≡ (

N∑
λ=1

|Zj,λ|p)1/p∀ − 1 < p < α

W ∗
j = argmin log

(
∥Zj∥p

)
≡ argmin log

(( N∑
λ=1

|Zj,λ|p
)1/p

)
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Learning Cauchy Graphical Models

Structure Learning Algorithms

1 Algorithm 1: IRLS to minimize lp norm and obtain regression
coefficients.

2 Algorithm 2: K2Search, we use a modified version of
hill-climbing method to learn the DAG consistent with an
ordering, σ.

3 Algorithm 3: Ordering-Based Search (OBS), we use OBS to
search for a local optimum in the space of all DAGs

4 Algorithm 4: CGLearn, a full algorithm for learning the
structure and parameters of Cauchy Graphical Models.
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Baseline

OLS-based BIC baseline

• For structure learning, we choose OLS-based BIC which is
used to learn Gaussian Graphical models.

• We define BIC penalized log-likelihood as SOLS(B|D) as:

SBIC (B | D) =
∑
Dj∈D

log[PB(Dj)]−
∑
Xi∈X

|Pa(Xi )|
2

logN
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Synthetic data

ALARM and CHILD Networks

1 We fix the network topology of ALARM (37, 46) and CHILD
(20,25) networks.

2 We simulate data using α-Stable process
S(α = 1, β = 0.9, γ = 1, δ = 0)

3 In our results, we report True and False Positives, Mean
Regression Coefficients, Variance of Regression Coefficients
and log γ.

• ALARM is a Bayesian network designed to provide an alarm
message system for patient monitoring, (Beinlich et al, 1989)

• The aim of the CHILD network is to provide clinical experts
with a mechanism to diagnose the type of disease that a child
has, (Spiegelhalter and Cowell, 1992)
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ALARM Network

• True Positives are the number of bootstrap replicates where
each true positive edge was found for structure learning.

(a) ALARM network (b) CHILD network

Figure 4: Overall (a) CGLearn (192), OLS (169) correct edges; (b)
CGLearn (83), OLS (69) correct edges.
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CHILD Network

Varying β

• We fix CHILD network topology and vary β from [-1,1] in
steps of 0.2 while fixing α = 1,&γ = 1.

• Varying β would allow us to determine how the algorithm
performs in symmetrizing the data and learning complex
problems.

• Our results determine the sensitivity of the models to changes
in the skewness of the data.
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CHILD Network

True & False Positives: Varying β

(a) TP Bar plot (b) FP Bar plot

Figure 5: (a)Overall, our results show that CGLearn (1027 edges)
performs better than OLS (954 edges); (b) CGLearn (9921) performs
better than OLS (10 766 edges)
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CHILD Network

Mean Regression Coefficients

• It is the bias in mean regression-coefficient of each edge for
True Positives.

(a) Varying β (b) Box plot (node specific MRC)

Figure 6: (b) CGLearn has lower node specific MRC than OLS
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CHILD Network

Variance of Regression Coefficients

• It denotes the variance about mean regression coefficients for
True Positives

(a) Varying β (b) Box plot

Figure 7: OLS generally overestimates MRC compared to CGLearn
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CHILD Network

Log γ

• log γ measures dispersion of noise variable Z

(a) log γ (b) Bias

→ At lower values of β, our model tends to under/overestimate the
dispersion in noise Z
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Cross Validation

Gene Expression data

• We perform cross-validation using Gene Expression data for 1
240 subjects and 21 800 Probes

• We apply CGLearn to the problem of analyzing differential
expression (DE) of a gene between samples.

• We processed the data as follows:
1 log-intensity for each probe was median-centered
2 We ranked median-centered probes in decreasing order of

variance
3 We selected the top 100 ranked probes for cross validation.
4 We compare cross validation results of CGLearn against OLS.
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Cross Validation

Log Fractional Lower Order Moments, LFLOM

LFLOM(T |B, p) =
∑
Xi∈X

[
1
p

(
logE[|Zi |p]

)]

=
∑
Xi∈X

1
p

logE

∣∣∣∣∣∣Xi −
∑

Xj∈Pa(Xi )

wijXj

∣∣∣∣∣∣
p
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Cross Validation

Gene Expression Data

Figure 8: There is a clear departure of the data from Gaussian.
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Application: Cauchy GCN

Autism Brain Imaging Data Exchange (ABIDE)

• 16 heterogeneous sites consisting of 539 subjects & 573 typical
controls.

• Data consists of structural and resting state f-MRI + 106
phenotypic measures.

• Processing: Configurable Pipeline for the Analysis of
Connectomes, C-PAC software (Craddock et al. 2013)

• TADPOLE is another popular ASD challenge dataset.
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Cauchy GCN

ABIDE Sample composition & Regional abnormalities

(a) Phenotypic sample characteris-
tics

(b) Regional measures of intrinsic
functional architecture

Figure 9: There are noticeable differences between ASD and TC subjects
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Cauchy GCN

Accuracy

Chebyshev, k 1 2 3 4 5
Cauchy Unweighted 0.545 0.602 0.682 0.659 0.659
Cauchy Weighted 0.545 0.648 0.659 0.670 0.693
Sex + Site 0.670 0.659 0.682 0.682 0.659
Cosine Similarity 0.648 0.625 0.636 0.670 0.648
Complete 0.659 0.648 0.648 0.682 0.682
Age+Sex+Site 0.659 0.659 0.682 0.670 0.670

Table 1: Accuracy for GCN disease prediction with different graph
construction techniques. Bold denotes the best result and underline
denotes the second best result.
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Cauchy GCN

Area Under Curve

Chebyshev, k 1 2 3 4 5
Cauchy Unweighted 0.718 0.678 0.732 0.711 0.695
Cauchy Weighted 0.716 0.736 0.739 0.734 0.738
Sex + Site 0.737 0.732 0.730 0.731 0.733
Cosine Similarity 0.729 0.721 0.728 0.705 0.683
Complete 0.725 0.723 0.736 0.721 0.723
Age+Sex+Site 0.738 0.737 0.746 0.735 0.747

Table 2: Area Under Curve for GCN disease prediction with different
graph construction techniques. Bold denotes the best result and
underline denotes the second best result.
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Future Works

• Apply CGLearn to other areas to discover hierarchical
structures in data.

• Extend CGLearn to model dependencies in NN parameters.
• Extend our model to Dynamic Cauchy Graphical Models.

Data and codes:
• Bayesian Networks (Child, Alarm) etc available at
https://www.bnlearn.com/bnrepository/

• ABIDE data set is available via AWS & upon application at
https://www.nitrc.org/

• Code: CGLearn is available from authors upon request
• Cauchy-based GCN is available on my github:
https://github.com/TauraiUCB/CGLearn
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