T. Muvunza

Tsinghua-Berkeley Shenzhen Institute

October 18, 2023

Background and Motivations

- 2 Cauchy Graphical Models
- Methodologies

- 4 Empirical Validation
- **6** Future Works

•00000

Bayesian vs Neural Networks

- Causal Inference: How does drinking 10% more water in the morning reduce aging?
- Explainability: "Doctor, here is my neural net & its 97% accurate!"
- **3 Parsimonious**: Imagine a data set with 0 data points and a prior.

Figure 1: (a) Regression output using NN with 2 hidden layers, (b) Regression output using Gaussian process framework; *Source:* Goan and Fookes (2020).

Challenges in Bayesian Networks

Main Challenges (Opportunities?)

- Model & Computational Complexity
- 2 Application (BNN, BCNN, BGCN, etc)
- **3** Modeling Assumptions & Approximation

Gaussian Assumptions:

- ullet Symmetry: distribution is centred around the mean, μ
- Homoskedastic variance, σ^2

Note:

- Does not model heavy tails
- Does not model asymmetry
- \rightarrow BN that apply Gaussian assumptions may lead to suboptimal performance

 A common approach to BN involves learning linear regression-based Graphical Models.

However:

- Distribution of microarray intensities show a clear skew (Friedman et al., 2000, 2004; Ben-Dor et al., 2000)
- Financial data is heavy tailed (Muvunza, 2020, 2021)
- Wind Power Forecasting Error is leptokurtic (WPFE) (Hodge and Milligan, 2011);
- Image denoising, (Achim and Kuruoglu, 2005; Rabbani et al., 2006)
- Neural Network parameters (Simsekli et al, 2019)
- → We aim to model BN as Directed-Acyclic Cauchy Graphs (DAGs)

- Has closed-form solutions
 - Has heavy tails
- Is highly skewed
- Is parameterized by scale x_0 , and location γ parameters

Challenge:

- Mean & Variance are unknown.
- Moments do not exist

(a) Cauchy dist.

(b) Gaussian dist.

Figure 2: Gaussian process does not best describe heavy tailed data

7 / 40

Contributions

Our contributions are as follows:

- We propose novel Cauchy Graphical Models (CGLearn), a new class of multivariate Cauchy densities that can be represented as Directed-Acyclic Graphs (DAGs) with arbitrary network topologies.
- We conduct extensive experiments on synthetic and real world data & the results demonstrate the efficacy of our approach.
- We propose Cauchy-based GCN to overcome the lack of generalization and expressiveness inherent in popular techniques used in structural learning.

- Background and Motivations
- 2 Cauchy Graphical Models
- 3 Methodologies
- 4 Empirical Validation
- **5** Future Works

Suppose we have the following DAG network:

Figure 3: DAG representing dependencies of variables in a network

$$P(A, S, E, O, R, T) = P(A)P(S)P(E|A, S)P(O|E)P(R|E)P(T|O, R)$$

$$P_B(\mathcal{X}) = \prod_{i=1}^{|\mathcal{X}|} p(\texttt{Child}, X_i \mid \texttt{Parents}, P_a(X_i))$$

10 / 40

it has characteristic function:

The most common parameterization for stable distribution is defined by Samorodnitsky and Taggu (1994): A random variable X is $S(\alpha, \beta, \gamma, \delta)$ if

$$E(\exp^{itX}) = \begin{cases} \exp\left(-\gamma^{\alpha}|t|^{\alpha}\left[1 - i\beta(\tan\frac{\pi\alpha}{2})(\mathrm{sign}t)\right] + i\delta t\right) & \text{if } \alpha \neq 1 \\ \exp\left(-\gamma|t|\left[1 + i\beta\frac{2}{\pi}(\mathrm{sign}t)\ln|t|\right] + i\delta t\right) & \text{if } \alpha = 1 \end{cases}$$

The parameter α is the index of stability and signt=1 if t>0, 0 if t = 0 and -1 if t < 0.

 \rightarrow Cauchy density is derived when $\alpha = 1$ and $\beta = 0$:

$$\phi_X(t) = \exp(-\gamma |t|[1+0] + i\delta t)$$
$$\phi_X(t) = \exp(-\gamma |t|[1+0])$$
$$\phi_X(t) = \exp(-\gamma |t|)$$

Given $\phi_X(t)$ as the characteristic function of Cauchy, we can obtain the Fourier Transform as follows:

$$F(x) = \mathcal{F}(\phi_X(t))$$

$$F(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itX} f(t) dt$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itX} \phi_X(t) dt$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itX} e^{-\gamma|t|} dt$$

$$= \frac{1}{2\pi} \int_{-\infty}^{0} e^{-itX} e^{\gamma t} dt + \frac{1}{2\pi} \int_{0}^{\infty} e^{-itX} e^{-\gamma t}$$

$$= \frac{1}{2\pi} \int_{-\infty}^{0} e^{(\gamma - iX)t} dt + \frac{1}{2\pi} \int_{0}^{\infty} e^{-(\gamma + iX)t} dt$$

$$= \frac{1}{2\pi} \left[\left[\frac{e^{(\gamma - iX)t}}{\gamma - iX} \right]_{-\infty}^{0} - \left[\frac{e^{-(\gamma + iX)t}}{\gamma + iX} \right]_{0}^{\infty} \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{\gamma - iX} + \frac{1}{\gamma + iX} \right]$$

$$= \frac{1}{2\pi} \left[\frac{2\gamma}{\gamma^2 + x^2} \right]$$

$$\frac{1}{\pi} \left[\frac{\gamma}{\gamma^2 + x^2} \right]$$

The F(x) of $\phi_X(t)$ shown above is the density of the Cauchy distribution.

Problem Formulation

More formally:

- Given a joint distribution of a finite set of RV $\mathcal{X} = \{X_1, X_2, ..., X_M\}.$
- We define a BN $B(G,\Theta)$ consisting of the DAG, & a set of parameters $\Theta = \{\theta_i \mid X_i \in \mathcal{X}\}$, that determine the conditional probability distribution $p(X_i | P_a(X_i), \theta)$ for $X_i \in \mathcal{X}$ given the state of its parents $P_a(X_i) \subseteq \mathcal{X} \setminus \{X_i\}$ in G.
- DAG G represents the factorization of joint probability density of RV into terms representing each variable X_i and its parents $P_a(X_i)$ such that:

$$P_B(\mathcal{X}) = \prod_{i=1}^{|\mathcal{X}|} p(X_i \mid P_a(X_i), \theta)$$

Problem Formulation

Factorization of joint pdf of RV

$$P_B(\mathcal{X}) = \prod_{i=1}^{|\mathcal{X}|} p(X_i \mid P_a(X_i), \theta)$$

- The dependence of $p(X_i \mid P_a(X_i), \theta)$ on θ_i is usually specified by an appropriately chosen family of parameterized probability densities such as Gaussian.
- Our goal is to use multivariate Cauchy densities to model the RV in \mathcal{X}

- Methodologies

Bayesian Networks constructed from Cauchy densities

A Cauchy Graphical Model is a probability distribution over ${\mathcal X}$ such that:

- **2** Z_j is independent of Z_k if $Z_j \neq Z_k, \forall X_j \in \mathcal{X}$
- where P_a(X_j) ⊆ X \ {X_j} are parent nodes of X_j in the DAG G and Θ describes the distribution of the parameters.
- $w_{jk} \in \mathbb{R}, W_j = \{w_{jk} \mid X_k \in P_a(X_j)\}$
- $\theta_j = \{\alpha, \beta_j, \gamma_j, \delta_j\} \cup W_j, \Theta = \{\theta_i \mid X_i \in \mathcal{X}\}$

Given the above conditions, we note that $B(G, \Theta)$ is a Bayesian Network. The transformation matrix from X_i to Z_j is also a BN.

Structure Learning

 Goal for Structure Learning of a BN is to determine the optimal topology that best mirrors the dependencies between RV.

Methodologies

- Score-based Algorithms explore the search space of the DAG to maximize a given score. The most common method is Bayesian Information Criterion (BIC), Schwarz (1978).
- Given a data set $D = \{D_1, ..., D_N\}$, the $S_{BIC}(B|D)$ for a BN $B(G, \Theta)$ is defined as:

$$S_{BIC}(B|D) = \sum_{D_j \in D} \log[P_B(D_j)] - \sum_{X_i \in \mathcal{X}} \frac{|P_a(X_i)|}{2} \log N$$

- **1** $P_B(D_i)$ is the marginal likelihood estimator.
- 2 $\sum_{X \in \mathcal{X}} \frac{|P_a(X_i)|}{2} \log N$ is the penalty term.

Structure Learning

- Misra and Kuruoglu (1998, 2016) proposed Minimum Dispersion Criteria MDC, which is more efficient than BIC.
- MDC selects the Bayesian Network that maximises the score S_{MDC} over the space of all DAG G, and Θ parameters. Formally, the score is defined as:

$$S_{MDC}(B|D) = -\sum_{X_i \in \mathcal{X}} \left\{ N \frac{\log \gamma_i}{\alpha} + \frac{|P_a(X_i)|}{2} \log N \right\}$$

• $S_{MDC} \equiv S_{BIC}$ under specific settings for symmetric α -stable densities, (Misra and Kuruoglu, 2016).

Parameter Learning, γ

- Goal of Parameter Learning in BN is to determine each conditional distribution for a given network.
- Given a Cauchy density, γ denotes the dispersion parameter.
- Finding the conditional distribution is a non-trivial task since the moments do not exist.
- \rightarrow Why γ ?
 - **1** For Structure Learning, $S_{MDC}(B|D)$
 - 2 To characterize linear dependencies among RV.

Parameter Learning, γ

• Samorodnitsky (1996), Kuruoglu (1998, 2001) showed that If:

$$Z \sim S(\alpha, 0, \gamma, 0) \equiv \mathsf{Cauchy}(\gamma, 0)$$

then

$$\mathbb{E}(|Z|^p) = C(p,\alpha)\gamma^{p/\alpha}, -1$$

- The I_p of a Cauchy RV is related to it's p-th moment.
- Minimizing $\gamma \equiv$ minimizing *p*-th order moment.

$$\operatorname{argmin} \frac{1}{\alpha} \log \gamma_j \equiv \operatorname{argmin} \|Z_j\|_p \equiv (\sum_{\lambda=1}^N |Z_{j,\lambda}|^p)^{1/p} \forall -1$$

$$W_j^* = \operatorname{argmin} \log(\|Z_j\|_p) \equiv \operatorname{argmin} \log\left(\left(\sum_{\lambda=1}^N |Z_{j,\lambda}|^p\right)^{1/p}\right)$$

Structure Learning Algorithms

- **1** Algorithm 1: IRLS to minimize I_p norm and obtain regression coefficients.
- **2** Algorithm 2: K2Search, we use a modified version of hill-climbing method to learn the DAG consistent with an ordering, σ .
- **3** Algorithm 3: Ordering-Based Search (OBS), we use OBS to search for a local optimum in the space of all *DAGs*
- 4 Algorithm 4: CGLearn, a full algorithm for learning the structure and parameters of Cauchy Graphical Models.

- 4 Empirical Validation

OLS-based BIC baseline

- For structure learning, we choose OLS-based BIC which is used to learn Gaussian Graphical models.
- We define BIC penalized log-likelihood as $S_{OLS}(B|D)$ as:

$$S_{BIC}(B \mid D) = \sum_{D_j \in D} \log[P_B(D_j)] - \sum_{X_i \in \mathcal{X}} \frac{|P_a(X_i)|}{2} \log N$$

ALARM and CHILD Networks

- We fix the network topology of ALARM (37, 46) and CHILD (20,25) networks.
- **2** We simulate data using α -Stable process $S(\alpha = 1, \beta = 0.9, \gamma = 1, \delta = 0)$
- 3 In our results, we report True and False Positives. Mean Regression Coefficients, Variance of Regression Coefficients and $\log \gamma$.
- ALARM is a Bayesian network designed to provide an alarm message system for patient monitoring, (Beinlich et al, 1989)
- The aim of the CHILD network is to provide clinical experts with a mechanism to diagnose the type of disease that a child has, (Spiegelhalter and Cowell, 1992)

ALARM Network

• True Positives are the number of bootstrap replicates where each true positive edge was found for structure learning.

Figure 4: Overall (a) CGLearn (192), OLS (169) correct edges; (b) CGLearn (83), OLS (69) correct edges.

Varying β

- We fix CHILD network topology and vary β from [-1,1] in steps of 0.2 while fixing $\alpha=1, \&\gamma=1$.
- Varying β would allow us to determine how the algorithm performs in symmetrizing the data and learning complex problems.
- Our results determine the sensitivity of the models to changes in the skewness of the data.

True & False Positives: Varying β

Figure 5: (a)Overall, our results show that **CGLearn** (1027 edges) performs better than OLS (954 edges); (b) CGLearn (9921) performs better than OLS (10 766 edges)

28 / 40

CHILD Network

Mean Regression Coefficients

 It is the bias in mean regression-coefficient of each edge for True Positives.

(b) Box plot (node specific MRC)

Figure 6: (b) **CGLearn** has lower node specific MRC than **OLS**

T. Muvunza

29 / 40

Variance of Regression Coefficients

 It denotes the variance about mean regression coefficients for True Positives

Figure 7: OLS generally overestimates MRC compared to CGLearn

$Log \gamma$

 $\log \gamma$ measures dispersion of noise variable Z

 \rightarrow At lower values of β , our model tends to under/overestimate the dispersion in noise Z

Gene Expression data

- We perform cross-validation using Gene Expression data for 1 240 subjects and 21 800 Probes
- We apply CGLearn to the problem of analyzing differential expression (DE) of a gene between samples.
- We processed the data as follows:
 - 1 log-intensity for each probe was median-centered
 - We ranked median-centered probes in decreasing order of variance
 - 3 We selected the top 100 ranked probes for cross validation.
 - We compare cross validation results of CGLearn against OLS.

Log Fractional Lower Order Moments, LFLOM

$$LFLOM(T|B, p) = \sum_{X_i \in \mathcal{X}} \left[\frac{1}{p} \left(\log \mathbb{E}[|Z_i|^p] \right) \right]$$
$$= \sum_{X_i \in \mathcal{X}} \left[\frac{1}{p} \left(\log \mathbb{E} \left| X_i - \sum_{X_i \in P_2(X_i)} w_{ij} X_j \right|^p \right) \right]$$

Cross Validation

Gene Expression Data

Figure 8: There is a clear departure of the data from Gaussian.

Application: Cauchy GCN

Autism Brain Imaging Data Exchange (ABIDE)

- 16 heterogeneous sites consisting of 539 subjects & 573 typical controls.
- Data consists of structural and resting state f-MRI + 106 phenotypic measures.
- Processing: Configurable Pipeline for the Analysis of Connectomes, C-PAC software (Craddock et al. 2013)
- **TADPOLE** is another popular ASD challenge dataset.

ABIDE Sample composition & Regional abnormalities

- tics
- (a) Phenotypic sample characteris- (b) Regional measures of intrinsic functional architecture

Figure 9: There are noticeable differences between ASD and TC subjects

Accuracy

Background and Motivations

Chebyshev, k	1	2	3	4	5
Cauchy Unweighted	0.545	0.602	0.682	0.659	0.659
Cauchy Weighted	0.545	0.648	0.659	0.670	0.693
Sex + Site	0.670	0.659	0.682	0.682	0.659
Cosine Similarity	0.648	0.625	0.636	0.670	0.648
Complete	0.659	0.648	0.648	0.682	0.682
Age+Sex+Site	0.659	0.659	0.682	<u>0.670</u>	0.670

Table 1: Accuracy for GCN disease prediction with different graph construction techniques. Bold denotes the best result and underline denotes the second best result.

Area Under Curve

Chebyshev, k	1	2	3	4	5
Cauchy Unweighted	0.718	0.678	0.732	0.711	0.695
Cauchy Weighted	0.716	0.736	0.739	0.734	0.738
Sex + Site	0.737	0.732	0.730	0.731	0.733
Cosine Similarity	0.729	0.721	0.728	0.705	0.683
Complete	0.725	0.723	0.736	0.721	0.723
Age+Sex+Site	0.738	0.737	0.746	0.735	0.747

Table 2: Area Under Curve for GCN disease prediction with different graph construction techniques. Bold denotes the best result and underline denotes the second best result.

- 6 Future Works

Apply CGLearn to other areas to discover hierarchical

- structures in data.
- Extend CGLearn to model dependencies in NN parameters.
- Extend our model to Dynamic Cauchy Graphical Models.

Data and codes:

- Bayesian Networks (Child, Alarm) etc available at https://www.bnlearn.com/bnrepository/
- ABIDE data set is available via AWS & upon application at https://www.nitrc.org/
- Code: CGLearn is available from authors upon request
- Cauchy-based GCN is available on my github: https://github.com/TauraiUCB/CGLearn

