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Bayesian vs Neural Networks

@ Causal Inference: How does drinking 10% more water in the
morning reduce aging?

® Explainability: "Doctor, here is my neural net & its 97% accurate!"

© Parsimonious: Imagine a data set with 0 data points and a prior.

(2) (b)

Figure 1. (a) Regression output using NN with 2 hidden layers, (b)
Regression output using Gaussian process framework; Source: Goan
and Fookes (2020).
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Challenges in Bayesian Networks

Main Challenges (Opportunities?)
® Model & Computational Complexity
® Application (BNN, BCNN, BGCN, etc)
® Modeling Assumptions & Approximation
Gaussian Assumptions:
e Symmetry: distribution is centred around the mean, p
e Homoskedastic variance, o2
Note:
® Does not model heavy tails
® Does not model asymmetry

— BN that apply Gaussian assumptions may lead to suboptimal
performance
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Research Goal

® A common approach to BN involves learning linear regression-based
Graphical Models.

However:

e Distribution of microarray intensities show a clear skew (Friedman
et al., 2000, 2004; Ben-Dor et al., 2000)

Financial data is heavy tailed (Muvunza, 2020, 2021)

Wind Power Forecasting Error is leptokurtic (WPFE) (Hodge and
Milligan, 2011);

® Image denoising, (Achim and Kuruoglu, 2005; Rabbani et al., 2006)

® Neural Network parameters (Simsekli et al, 2019)
— We aim to model BN as Directed-Acyclic Cauchy Graphs (DAGs)
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Why Cauchy?

® Has closed-form solutions

® Has heavy tails

® |s highly skewed

® |s parameterized by scale xg, and location 7 parameters
Challenge:

® Mean & Variance are unknown

® Moments do not exist

(a) Cauchy dist. (b) Gaussian dist.
Figure 2: Gaussian process does not best describe heavy tailed data
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Contributions

Our contributions are as follows:

@ We propose novel Cauchy Graphical Models (CGLearn), a
new class of multivariate Cauchy densities that can be
represented as Directed-Acyclic Graphs (DAGs) with arbitrary
network topologies.

® We conduct extensive experiments on synthetic and real world
data & the results demonstrate the efficacy of our approach.

® We propose Cauchy-based GCN to overcome the lack of
generalization and expressiveness inherent in popular
techniques used in structural learning.
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Bayesian Network Models

Suppose we have the following DAG network:

Occupation (0) Residence (R)

Figure 3: DAG representing dependencies of variables in a network

P(A,S,E,O0,R, T) = P(A)P(S)P(E|A, S)P(O|E)P(R|E)P(T|O, R)
x|
Pg(X) =[] p(Child, X; | Parents, P,(X;))
i=1

T. Muvunza Tsinghua-Berkeley Shenzhen Institute

Cauchy Graphical Models 10 / 40



Cauchy Graphical Models
[e]e] lelelele]

Cauchy density

The most common parameterization for stable distribution is defined by
Samorodnitsky and Taqqu (1994): A random variable X is S(«, 8,7, 9) if
it has characteristic function:

_ exp| —y*|t]* [1 — if(tan ¥ (signt)] —|—i6t> if v #1
E(exp™) =
exp| —v|t| [1 + iB2(signt) In t@ +i5t> ifa=1

The parameter « is the index of stability and signt =1if t >0, 0 if

t=0and —1if t <O.
—Cauchy density is derived when o« =1 and 5 = 0:

ox(t) = exp(—7[t|[L + O] + idt)
ox(t) = exp(—[t][1 4 0])
ox(t) = exp(—7It])
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Cauchy Density

Given ¢x(t) as the characteristic function of Cauchy, we can obtain
the Fourier Transform as follows:

F(x) = F(ox(1))
F(x) = ;ﬂ/_oo e X f(t)dt

1 [ _ix
=— e " ox(t)dt
2 J_
1 ~ :
= — e X et gy
21 J_
— i efitXe’ytdt + i /OO efitXef'yt
21 J_ 27 Jo
1 /0 , 1 [~ ,
B L T / e (Xt gy
27 —50 2 0
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Cauchy Density

OO_

1 | [etr—-t]° o—(rHiX)t
T on [’y—iX ) YHIX |,

1[ 1 1

T or [y—iX—i_'y-I—iX_

1 27y ]

T on [v“rxz_

1 v ]

m [v2+x2_

The F(x) of ¢x(t) shown above is the density of the Cauchy
distribution. [
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Problem Formulation

More formally:

e Given a joint distribution of a finite set of RV
X ={X1, X, ..., Xy},
® We define a BN B(G, ©) consisting of the DAG, & a set of
parameters © = {0; | X; € X'}, that determine the conditional
probability distribution p(X; | P2(X;), 8) for X;j € X given the
state of its parents P,(X;) C X\ {X;} in G.
® DAG G represents the factorization of joint probability
density of RV into terms representing each variable X; and its
parents P,(X;) such that:
|X|
Pe(X) =[] p(Xi | Pa(X:),0)
i=1
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Problem Formulation

Factorization of joint pdf of RV

i

Pe(X) =[] p(X; | Pa(Xi).0)
i=1

® The dependence of p(X; | P,(Xi),0) on 0; is usually specified
by an appropriately chosen family of parameterized probability
densities such as Gaussian.

® Our goal is to use multivariate Cauchy densities to model the
RV in X.
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Cauchy Graphical Models

Bayesian Networks constructed from Cauchy densities

A Cauchy Graphical Model is a probability distribution over X' such
that:

07 =X— ZxkePa(Xj) wjx X ~ Cauchy(v,d) = 5(1,0,7,0)
@® Z; is independent of Z, if Z; # Z, ,VX; € X
® where P,(X;) C X\ {X;} are parent nodes of X; in the DAG
G and © describes the distribution of the parameters.
* wik € R, Wi = {wj [ Xic € Pa(X)}
° 0j ={a,Bj,7,0 UW;,0 ={0; | X; € X}
Given the above conditions, we note that B(G, ©) is a Bayesian
Network. The transformation matrix from X; to Z; is also a BN.
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Learning Cauchy Graphical Models

Structure Learning

® Goal for Structure Learning of a BN is to determine the optimal topology
that best mirrors the dependencies between RV.

® Score-based Algorithms explore the search space of the DAG to maximize
a given score. The most common method is Bayesian Information
Criterion (BIC), Schwarz (1978).

® Given a data set D = {Dx, ..., Dy}, the Sgic(B|D) for a BN B(G,©) is
defined as:

Soc(BID) = 3 toglPa(D)] — 30 [P0

D;jeD Xiex

@ Pg(D;) is the marginal likelihood estimator.
B> xcx |P [Pa(X)| logN is the penalty term.
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Learning Cauchy Graphical Models

Structure Learning

¢ Misra and Kuruoglu (1998, 2016) proposed Minimum
Dispersion Criteria MDC, which is more efficient than BIC.

e MDC selects the Bayesian Network that maximises the score
Smpc over the space of all DAG G, and © parameters.
Formally, the score is defined as:

Swoc(BID) = - 3 {wiET ¢ 2P ogy |

le' 2
X;ex

® Syipc = Sgic under specific settings for symmetric a-stable
densities, (Misra and Kuruoglu, 2016).
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Learning Cauchy Graphical Models

Parameter Learning, v

® Goal of Parameter Learning in BN is to determine each
conditional distribution for a given network.

® Given a Cauchy density, v denotes the dispersion parameter.

® Finding the conditional distribution is a non-trivial task since
the moments do not exist.

— Why ~7?
@ For Structure Learning, Spypc(B|D)

® To characterize linear dependencies among RV.
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Learning Cauchy Graphical Models

Parameter Learning, ~y

® Samorodnitsky (1996), Kuruoglu (1998, 2001) showed that If:
Z ~ 5(a,0,7v,0) = Cauchy(y,0)

then
E(|ZP) = C(p,a)y”*, -1 < p<a
® The I, of a Cauchy RV is related to it's p-th moment.
® Minimizing v = minimizing p-th order moment.

N

.1 .
argmin — log~y; = argmin||Zj||, = (Z 1ZAP)PY—1<p<a
A=1
N Y
W;" = argminlog(||Z;||,)= argmin Iog((z 1ZiA1P) P)
A=1
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Learning Cauchy Graphical Models

Structure Learning Algorithms

® Algorithm 1: IRLS to minimize /, norm and obtain regression
coefficients.

@® Algorithm 2: K2Search, we use a modified version of
hill-climbing method to learn the DAG consistent with an
ordering, o.

©® Algorithm 3: Ordering-Based Search (OBS), we use OBS to
search for a local optimum in the space of all DAGs

O Algorithm 4: CGLearn, a full algorithm for learning the
structure and parameters of Cauchy Graphical Models.
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Baseline

OLS-based BIC baseline

® For structure learning, we choose OLS-based BIC which is
used to learn Gaussian Graphical models.

e We define BIC penalized log-likelihood as Spors(B|D) as:
|Pa(Xi)|
Seic(B| D)= log[Ps(D))] — " logh

D;eD XieX
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Synthetic data

ALARM and CHILD Networks

® We fix the network topology of ALARM (37, 46) and CHILD
(20,25) networks.

® We simulate data using a-Stable process
S(a=1,=0.9,7v=1,=0)

® In our results, we report True and False Positives, Mean
Regression Coefficients, Variance of Regression Coefficients
and log~.

e ALARM is a Bayesian network designed to provide an alarm
message system for patient monitoring, (Beinlich et al, 1989)

® The aim of the CHILD network is to provide clinical experts
with a mechanism to diagnose the type of disease that a child
has, (Spiegelhalter and Cowell, 1992)
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ALARM Network

® True Positives are the number of bootstrap replicates where
each true positive edge was found for structure learning.

[y == Cauchy 251 ¢ —e- Cauchy
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(a) ALARM network (b) CHILD network

Figure 4: Overall (a) CGLearn (192), OLS (169) correct edges; (b)
CGLearn (83), OLS (69) correct edges.
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CHILD Network

Varying 3

e We fix CHILD network topology and vary 8 from [-1,1] in
steps of 0.2 while fixing o = 1, &~y = 1.
® Varying 8 would allow us to determine how the algorithm

performs in symmetrizing the data and learning complex
problems.

® Our results determine the sensitivity of the models to changes
in the skewness of the data.
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CHILD Network

True & False Positives: Varying

(a) TP Bar plot (b) FP Bar plot

Figure 5: (a)Overall, our results show that CGLearn (1027 edges)
performs better than OLS (954 edges); (b) CGLearn (9921) performs
better than OLS (10 766 edges)
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CHILD Network

Mean Regression Coefficients

e |t is the bias in mean regression-coefficient of each edge for
True Positives.
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Figure 6: (b) CGLearn has lower node specific MRC than OLS
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CHILD Network

Variance of Regression Coefficients

e |t denotes the variance about mean regression coefficients for
True Positives
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Figure 7: OLS generally overestimates MRC compared to CGLearn
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CHILD Network

Log ~y

® |og~y measures dispersion of noise variable Z

N A0

08 06 -04 -02 0 02 04 06 08 1

1 08 06 04 02 0 02 04 06 08 1 1

(a) log~ (b) Bias

— At lower values of 3, our model tends to under/overestimate the

dispersion in noise Z
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Cross Validation

Gene Expression data

® \We perform cross-validation using Gene Expression data for 1
240 subjects and 21 800 Probes

® We apply CGLearn to the problem of analyzing differential
expression (DE) of a gene between samples.
e \We processed the data as follows:

@ log-intensity for each probe was median-centered

® We ranked median-centered probes in decreasing order of
variance

© We selected the top 100 ranked probes for cross validation.

@ We compare cross validation results of CGLearn against OLS
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Cross Validation

Log Fractional Lower Order Moments, LFLOM

LFLOM(T|B,p) = [;(IogE[!Zi!”])}
Xiex

p

=> 11) logE | Xi — > w;X

Xiex X;€Pa(X;)
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Cross Validation

Gene Expression Data
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Figure 8: There is a clear departure of the data from Gaussian.
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Application: Cauchy GCN

Autism Brain Imaging Data Exchange (ABIDE)

® 16 heterogeneous sites consisting of 539 subjects & 573 typical
controls.

e Data consists of structural and resting state f-MRI + 106
phenotypic measures.

® Processing: Configurable Pipeline for the Analysis of
Connectomes, C-PAC software (Craddock et al. 2013)

e TADPOLE is another popular ASD challenge dataset.

T. Muvunza Tsinghua-Berkeley Shenzhen Institute

Cauchy Graphical Models 35 / 40



Empirical Validation
0000000000000 e00

Cauchy GCN

ABIDE Sample composition & Regional abnormalities

Molecular Psychiatry Molecular Psychiatry

(a) Phenotypic sample characteris- (b) Regional measures of intrinsic
tics functional architecture

Figure 9: There are noticeable differences between ASD and TC subjects
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Cauchy GCN

Accuracy

Chebyshev, k 1 2 3 4 5
Cauchy Unweighted 0.545 0.602 0.682 0.659 0.659
Cauchy Weighted 0.545 0.648 0.659 0.670 0.693

Sex + Site 0.670 0.659 0.682 0.682 0.659
Cosine Similarity 0.648 0.625 0.636 0.670 0.648
Complete 0.659 0.648 0.648 0.682 0.682
Age+Sex+Site 0.659 0.659 0.682 0.670 0.670

Table 1: Accuracy for GCN disease prediction with different graph
construction techniques. Bold denotes the best result and underline
denotes the second best result.
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Chebyshev, k 1 2 3 4 5

Cauchy Unweighted 0.718 0.678 0.732 0.711 0.695
Cauchy Weighted 0.716 0.736 0.739 0.734 0.738
Sex + Site 0.737 0.732 0.730 0.731 0.733
Cosine Similarity 0.729 0.721 0.728 0.705 0.683
Complete 0.725 0.723 0.736 0.721 0.723
Age+Sex+Site 0.738 0.737 0.746 0.735 0.747

Table 2: Area Under Curve for GCN disease prediction with different
graph construction techniques. Bold denotes the best result and
underline denotes the second best result.
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Future Works

e Apply CGLearn to other areas to discover hierarchical
structures in data.

e Extend CGLearn to model dependencies in NN parameters.
e Extend our model to Dynamic Cauchy Graphical Models.
Data and codes:

¢ Bayesian Networks (Child, Alarm) etc available at
https://www.bnlearn.com/bnrepository/

e ABIDE data set is available via AWS & upon application at
https://www.nitrc.org/

e Code: CGLearn is available from authors upon request

® Cauchy-based GCN is available on my github:
https://github.com/TauraiUCB/CGLearn
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