

Multi-Path Continuous Domain Adaptation with Wasserstein-based Transfer Curriculum

Hanbing Liu

Advisor: Prof. Yang Li

- Introduction
- Problem definition
- Methodology
- Experiments
- Conclusion

THE UNIVERS

Introduction

> Substantial domain shift

- Machine learning based models
- Continuous domain adaptation
- > Transfer order and Cumulative errors
 - Missing metadata
 - Progressively adaptation errors

Continuous Domain Adaptation (CDA)

Multi-Path Continuous Domain Adaptation (W-MPOT)

Introduction

Related works

- Unsupervised Domain Adaptation: learning domain-invariant representations by aligning the source and target distributions
- Continuous Domain Adaptation: self-training, adversarial algorithms, Optimal transport
- Intermediate Domain Selection: domain discriminator

- Introduction
- Problem definition
- Methodology
- Experiments
- Conclusion

THEORINE

Problem definition

Known data

 $\mathcal{X} \subset \mathbb{R}^d$: feature space, $\mathcal{Y} \subset \mathbb{R}$: label space

- Source domain $D_S = \left\{ \left(\boldsymbol{x_j}, y_j \right) \right\}_{j=1}^{N_S}$
- Target domain $D_T = \left\{ oldsymbol{x_j}
 ight\}_{j=1}^{N_T}$
- Intermediate Domain set $\mathcal{D}_I = \{D_{I_1}, D_{I_2}, D_{I_3}, ..., D_{I_K}\} \ k=0,1,...,K;$ ordered sequence $\widehat{\mathcal{D}}_I$
- Intermediate domain $D_{I_k} = \left\{ oldsymbol{x_j}
 ight\}_{j=1}^{N_{I_k}}$
- $\mu_S, \mu_{I_k}, \mu_T \in \mathcal{P}(\mathcal{X})$: probability measures on \mathbb{R}^d

Objective

• $\{\widehat{y}_j\}_{j=1}^{N_T}$ in target domain

- Introduction
- Problem definition
- Methodology
- Experiments
- Conclusion

- > Wasserstein based transfer curriculum
- > Multi-path optimal transport

Wasserstein based transfer curriculum

 Wasserstein distance plays an important role in deriving the generalization bound in domain adaptation

- Two candidate intermediate domains D_{I_0} and D_{I_1}
- Assume that the optimal transfer order $D_S o D_{I_0} o D_{I_1} o D_T$,
- Another possible transfer order $D_S o D_{I_1} o D_{I_0} o D_T$

$$\epsilon_{\mu_{T}}(h,f) \leq \epsilon_{\mu_{S}}(h,f) + 2A \cdot W_{1}(\mu_{S},\mu_{I_{0}})
+ 2A \cdot W_{1}(\mu_{I_{0}},\mu_{I_{1}}) + 2A \cdot W_{1}(\mu_{I_{1}},\mu_{T}) + \epsilon,
(2)$$

$$\epsilon_{\mu_{T}}(h,f) \leq \epsilon_{\mu_{S}}(h,f) + 2A \cdot W_{1}(\mu_{S},\mu_{I_{1}})
+ 2A \cdot W_{1}(\mu_{I_{0}},\mu_{I_{1}}) + 2A \cdot W_{1}(\mu_{I_{0}},\mu_{T}) + \epsilon,
(3)$$

• better domain transfer order $D_S o D_{I_0} o D_{I_1} o D_T$ will lead to tighter generalization bound

> Wasserstein based transfer curriculum

• measure the closeness between each intermediate domain D_{I_k} and the source domain D_S

$$W_k = \min_{\gamma} \langle \gamma_k, \mathbf{M}_k \rangle_F + \lambda \cdot \Omega(\gamma_k)$$

s.t. $\gamma_k \mathbf{1} = \mu_S \quad \gamma_k^T \mathbf{1} = \mu_{I_k}, k = 1, \dots, K,$

- intermediate domain that is further from the source domain than the target domain is discarded
- ullet The remaining N domains in the intermediate domain set are then sorted in order of W_k
- Obtain a domain series $\widehat{\mathcal{D}}_I = \widehat{D}_{I_0} o \widehat{D}_{I_1} o |\widehat{D}_{I_2} o \ldots o \widehat{D}_{I_N}, \ W_0 \leq W_1 \leq W_2 \ldots \leq W_N.$
- By utilizing the w-distance to sort multiple intermediate domains, we eliminate the need for metainformation

➤ Multi-Path Optimal Transport

- Given the sorted sequence of intermediate domain series $\widehat{\mathcal{D}}_I$, the source domain is initially mapped to the first intermediate domain \widehat{D}_{I_0} using direct optimal transport
- For the following intermediate domains, the probabilistic coupling γ_n between the domain $\widehat{D}_{I_{n-1}}$ and the subsequent domain \widehat{D}_{I_n} is calculated using continuous optimal transport

$$\gamma_{n} = \underset{\gamma \in \mathbb{R}^{N_{S} \times N_{T}}}{\operatorname{argmin}} \left\langle \gamma, \mathbf{M}^{[n-1,n]} \right\rangle + \lambda \Omega(\gamma) + \eta_{t} R_{t}(\gamma)
\text{s.t. } \gamma \mathbf{1} = \mu_{SI_{n-1}} \quad \gamma^{T} \mathbf{1} = \mu_{I_{n}} \quad \gamma \geq 0,$$

$$(5) \qquad R_{t}(\gamma) = \mathcal{B}_{I_{n}}(D_{S}^{I_{n-1}}) - \mathcal{B}_{I_{n-1}}(D_{S}^{I_{n-2}})
= \left\| N_{S} \cdot \gamma \cdot \widehat{D}_{I_{n}} - N_{S} \cdot \gamma_{n-1} \cdot \widehat{D}_{I_{n-1}} \right\|_{F}^{2},$$

$$(6)$$

➤ Multi-Path Optimal Transport

• To address the challenge of accumulated errors in long transfer sequences, we further introduce a path consistency regularizer $R_p(\cdot)$ by comparing it with another transfer path

$$R_p(\gamma, \gamma_{p_2}) = \left\| N_S \cdot \gamma \cdot \widehat{D}_{I_n} - N_S \cdot \gamma_{p_2} \cdot \widehat{D}_{I_n} \right\|_F^2, \quad (7)$$

- Where γ_{p_2} is the transport plan of the second possible path which is utilized to refine the γ of path 1
- From \widehat{D}_{I_N} to the target domain D_T will be conducted using MPOT

$$\gamma_{N+1} = \underset{\gamma \in \mathbb{R}^{N_s \times N_t}}{\operatorname{argmin}} \left\langle \gamma, \mathbf{M}^{[N,N+1]} \right\rangle + \lambda \Omega(\gamma)$$

$$+ \eta_t R_t(\gamma) + \eta_p R_p(\gamma, \gamma_{p_2})$$
s.t.
$$\gamma \mathbf{1} = \mu_{SI_N} \quad \gamma^T \mathbf{1} = \mu_T \quad \gamma \ge 0,$$
(8)

Multi-Path Optimal Transport

Algorithm 1: Bidirectional Optimization algorithm in MPOT

Input: Transport matrix of Path 1 γ_{p_1} , Transport matrix of Path 2 γ_{p_2} , step size α , cost matrix of Path 1 $\mathbf{M}^{[1]}$, cost matrix of Path 2 $\mathbf{M}^{[2]}$, weight of Path 1 λ_1 and Path 2 λ_2 , iteration times c

Output: Refined transport matrix from N-th intermediate domain to target domain γ'_{N+1}

1 Initialize:
$$\gamma_0 \in (0, +\infty)^{N_S \times N_T}$$

2 for $c \leftarrow 0, 1, ...$ do
3 $M_c^{[1]} = \alpha \mathbf{M}^{[N,N+1]} + \alpha \nabla \mathcal{J}(\gamma_c, \gamma_{p_2})$
4 $M_c^{[2]} = \alpha \mathbf{M}^{[N,N+1]} + \alpha \nabla \mathcal{J}(\gamma_c, \gamma_{p_1})$
5 $M_c = \lambda_1 \mathbf{M}_c^{[1]} + \lambda_2 \mathbf{M}_c^{[2]}$
6 $\gamma_{c+1} = \mathrm{Sinkhorn}(\mathbf{M}_c, 1 + \alpha \lambda, \mu_{SI_N}, \mu_T)$
7 $\gamma'_{N+1} = \gamma_{\infty}$

- Introduction
- Problem definition
- Methodology
- Experiments
- Conclusion

Experiments

Dataset

- ADNI: The Alzheimer's Disease Neuroimaging Initiative, 2D MRI images, under different age
- Battery Charging-discharging Capacity: under different SoC
- Rotated MNIST: under different angle

Experiments

TABLE I
MSE OR ACCURACY FOR THREE DATASETS OF DIFFERENT ALGORITHMS

Method	ADNI (†)	Battery (↓)	ROT MNIST (†)
AGST [43]	57.3	0.3534	76.2
Gradual ST [11]	64.5	0.1068	87.9
CDOT [15]	82.6	0.0209	75.6
W-MPOT(p2→p1)	86.7	0.0199	88.3
W-MPOT($p1 \rightarrow p2$)	86.5	0.0197	87.2
W-MPOT(p1 + p2)	88.3	0.0185	89.1

- Introduction
- Problem definition
- Methodology
- Experiments
- Conclusion

Conclusion

> Summary

- Present a comprehensive framework W-MPOT for Continuous Domain Adaptation (CDA),
 addressing the challenge of significant domain shift and missing metadata
- The Wasserstein-based Transfer Curriculum efficiently determines the order of intermediate domains in CDA
- By enforcing consistency along multiple adaptation paths, MPOT minimizes the impact of errors and enhances the overall robustness and stability of the adapted model

> Future work

- Deriving the generalization bound of error for W-MPOT
- Try other transfer algorithm like reinforcement learning

Thanks Q&A

Hanbing Liu

Advisor: Prof. Yang Li