

# Implicit Representation Learning of Coronary Artery Vessels using Deep Generative Models

Siqi Chen

Advised by: Prof. Yang Li

2023.11.16





- Method
- Result



## Introduction

- Cardiovascular diseases have the highest mortality in the world, posing extremely high risks and societal burdens.
- Analyzing the geometry and structure of coronary artery is important for downstream tasks, such as coronary artery segmentation.
- our objective is to develop a point cloud generative model to learn the Implicit representation of coronary artery dataset.

#### **Coronary Arteries**



## Introduction

- modeling coronary artery dataset is a challenging task due to the complexity of the vascular system.
- a. the complex geometric bending degree
- b. intricate branching structures
- c. significant variations among different samples



a. bending degree



b. branching structure



c. variations among samples





- ✓ Part-based Generative Model
- ✓ Disentangled Representation Learning
- Method
- Result

### Related Work

Part-based generative model

Unlike holistic model, part-based generative model generates each part separately and then assemble them together.

It can Improve the ability to model complex objects.







## Related Work

Disentangled Representation Learning

Disentangled representation aims to learn different aspects of data independently, so as to capture

different factors or features in data.



Modeling the **geometry and structural** information of objects separately.

- Introduction
- Related Work
- Method
  - ✓ Part Shape Generation
  - ✓ Structure Graph Generation
- Result



#### **➤ Model Architecture**



#### **→** Part Shape Generator

Diffusion Probabilistic Models for 3D Point Cloud Generation



#### Forward diffusion process: add noise

$$q(x^{(1:T)}\,|\,x^{(0)}) = \prod_{t=1}^{T} q(x^{(t)}\,|\,x^{(t-1)})$$

#### Reverse diffusion process: denoise

$$p_{ heta}\left(x^{\left(0:T
ight)}\,|\,z
ight) = p\left(x^{\left(T
ight)}
ight)\prod_{t=1}^{T}p_{ heta}\left(x^{\left(t-1
ight)}\,|\,x^{\left(t
ight)},z
ight)$$

- > Part Shape Generator: Diffusion Probabilistic Models for 3D Point Cloud Generation
  - 1. We use PointNet as the encoder to model the shape latent z
  - 2. the shape latent z as a conditional variable guides the reverse process of each step.



#### **Loss Function:**

$$L( heta, arphi) = \mathbb{E}_q \Bigg[ \sum_{t=2}^T \sum_{i=1}^N D_{KL} ig( q(x_i^{(\mathrm{t}-1)} \,|\, x_i^{(\mathrm{t})}, x_i^{(0)}) \,\|\, p_ heta(x_i^{(t-1)} \,|\, x_i^{(\mathrm{t})}, E_arphi(X^{(0)})) ig) \\ - \sum_{i=1}^N log \, p_ heta(x_i^{(0)} \,|\, x_i^{(1)}, E_arphi(X^{(0)}) ig) \Bigg] \hspace{1cm} ext{Latent code Z}$$

> Structure Graph Generator: Key Points Graph



> Structure Graph Generator: Key Points Graph



The information in the graph:

- The number of branches
- 2. The direction of each branch
- 3. The length of each branch

#### Node type:

- start/end point of main branch
- bifurcation point
- end point of branch

#### > Assembler





#### > Train



#### > Sample



- Introduction
- Related Work
- Method
- Result
  - ✓ Geometry Shape Generation



## Result

> the result of training each branch separately using the point cloud diffusion model



## Discussion

#### Next step:

- ➤ Modify the Part Shape Generator and turn it into label conditional generator.
- > Establish the **key point graph**
- > Implementing the Structure Graph Generator.

# Discussion



# THANK YOU Q & A

