

Implicit Representation Learning of Coronary Artery Vessels using Deep Generative Models

Siqi Chen

Advised by: Prof. Yang Li

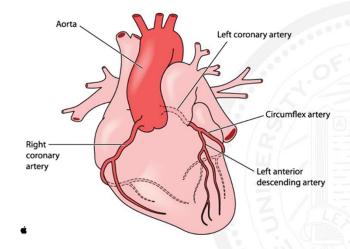
2023.11.16

- Method
- Result

Introduction

- Cardiovascular diseases have the highest mortality in the world, posing extremely high risks and societal burdens.
- Analyzing the geometry and structure of coronary artery is important for downstream tasks, such as coronary artery segmentation.
- our objective is to develop a point cloud generative model to learn the Implicit representation of coronary artery dataset.

Coronary Arteries



Introduction

- modeling coronary artery dataset is a challenging task due to the complexity of the vascular system.
- a. the complex geometric bending degree
- b. intricate branching structures
- c. significant variations among different samples

a. bending degree

b. branching structure

c. variations among samples

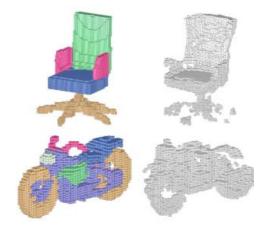
- ✓ Part-based Generative Model
- ✓ Disentangled Representation Learning
- Method
- Result

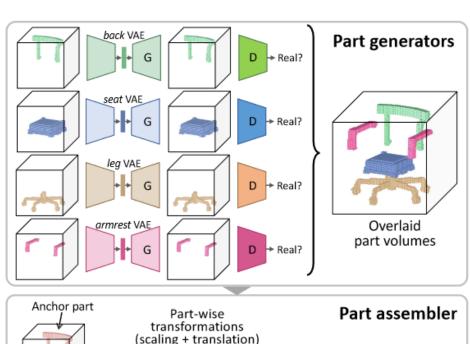
Related Work

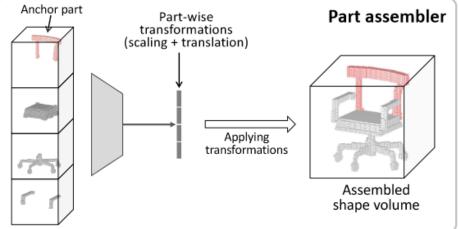
Part-based generative model

Unlike holistic model, part-based generative model generates each part separately and then assemble them together.

It can Improve the ability to model complex objects.





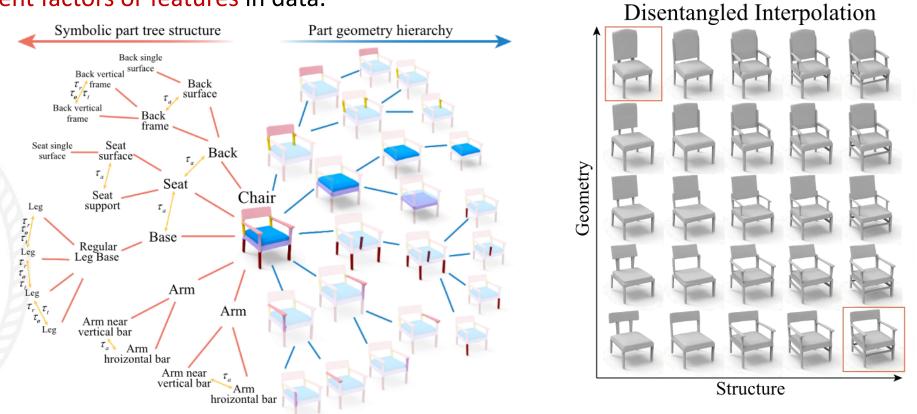


Related Work

Disentangled Representation Learning

Disentangled representation aims to learn different aspects of data independently, so as to capture

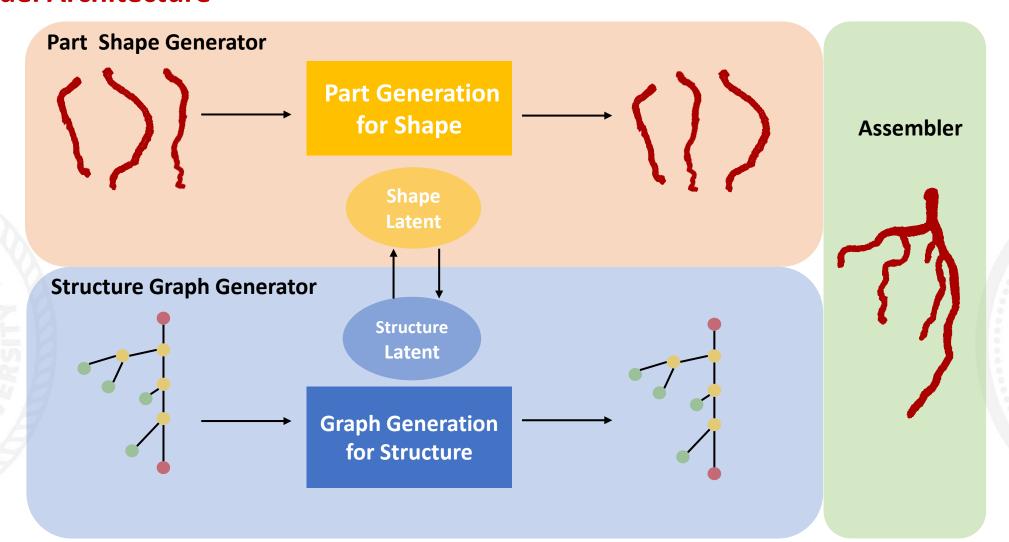
different factors or features in data.



Modeling the **geometry and structural** information of objects separately.

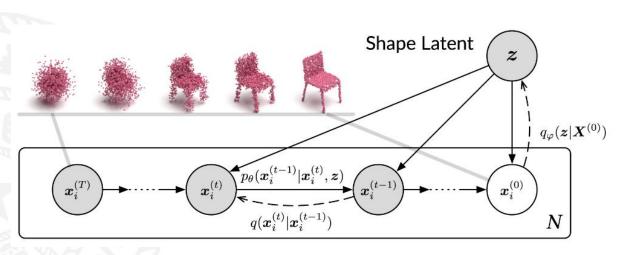
- Introduction
- Related Work
- Method
 - ✓ Part Shape Generation
 - ✓ Structure Graph Generation
- Result

➤ Model Architecture



→ Part Shape Generator

Diffusion Probabilistic Models for 3D Point Cloud Generation



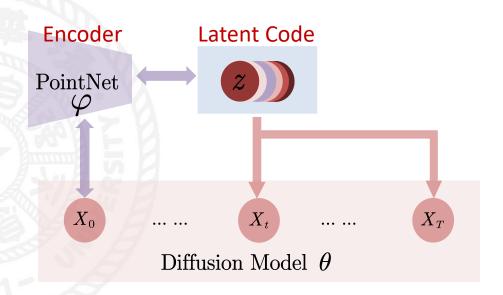
Forward diffusion process: add noise

$$q(x^{(1:T)}\,|\,x^{(0)}) = \prod_{t=1}^{T} q(x^{(t)}\,|\,x^{(t-1)})$$

Reverse diffusion process: denoise

$$p_{ heta}\left(x^{\left(0:T
ight)}\,|\,z
ight) = p\left(x^{\left(T
ight)}
ight)\prod_{t=1}^{T}p_{ heta}\left(x^{\left(t-1
ight)}\,|\,x^{\left(t
ight)},z
ight)$$

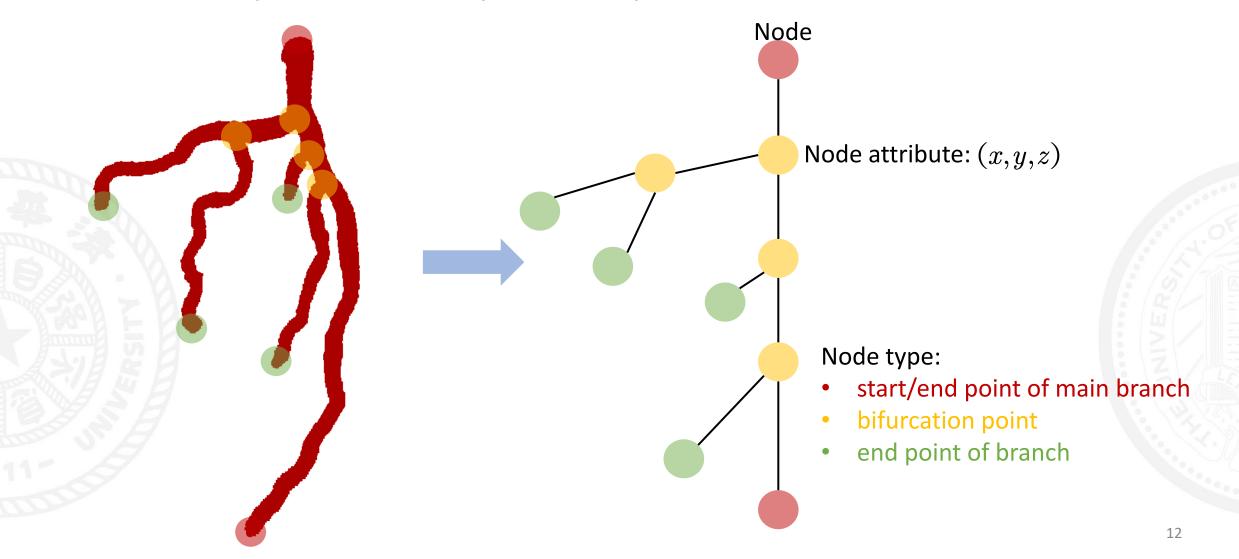
- > Part Shape Generator: Diffusion Probabilistic Models for 3D Point Cloud Generation
 - 1. We use PointNet as the encoder to model the shape latent z
 - 2. the shape latent z as a conditional variable guides the reverse process of each step.



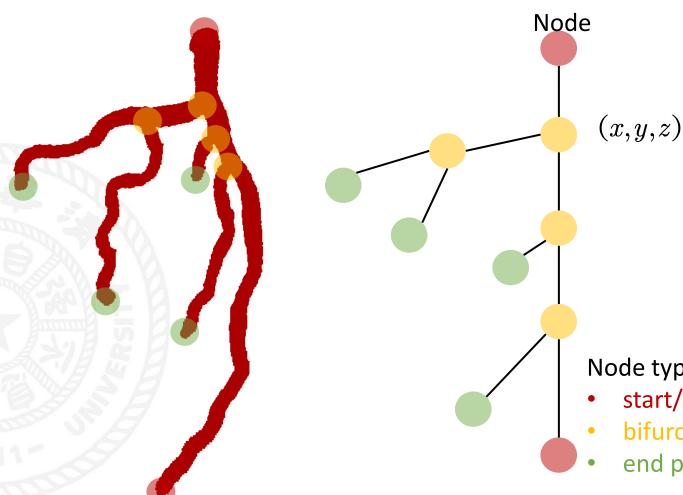
Loss Function:

$$L(heta, arphi) = \mathbb{E}_q \Bigg[\sum_{t=2}^T \sum_{i=1}^N D_{KL} ig(q(x_i^{(\mathrm{t}-1)} \,|\, x_i^{(\mathrm{t})}, x_i^{(0)}) \,\|\, p_ heta(x_i^{(t-1)} \,|\, x_i^{(\mathrm{t})}, E_arphi(X^{(0)})) ig) \\ - \sum_{i=1}^N log \, p_ heta(x_i^{(0)} \,|\, x_i^{(1)}, E_arphi(X^{(0)}) ig) \Bigg] \hspace{1cm} ext{Latent code Z}$$

> Structure Graph Generator: Key Points Graph



> Structure Graph Generator: Key Points Graph



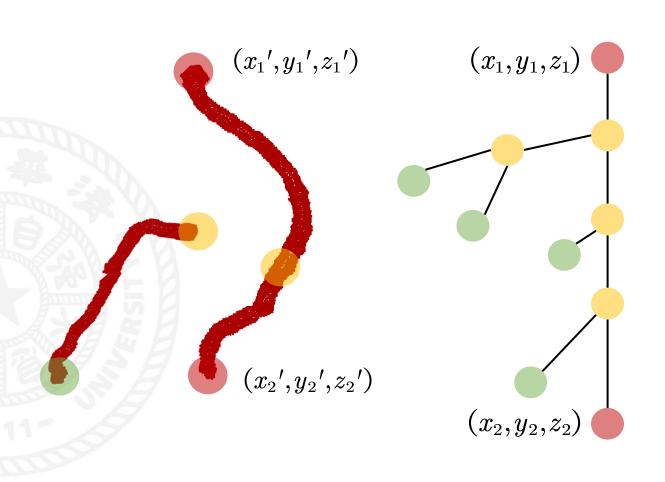
The information in the graph:

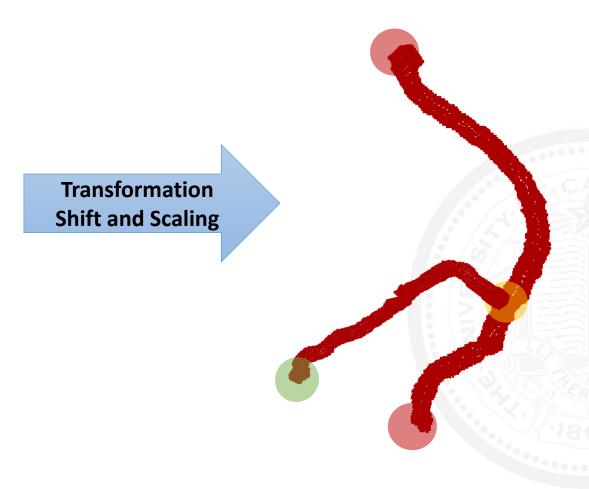
- The number of branches
- 2. The direction of each branch
- 3. The length of each branch

Node type:

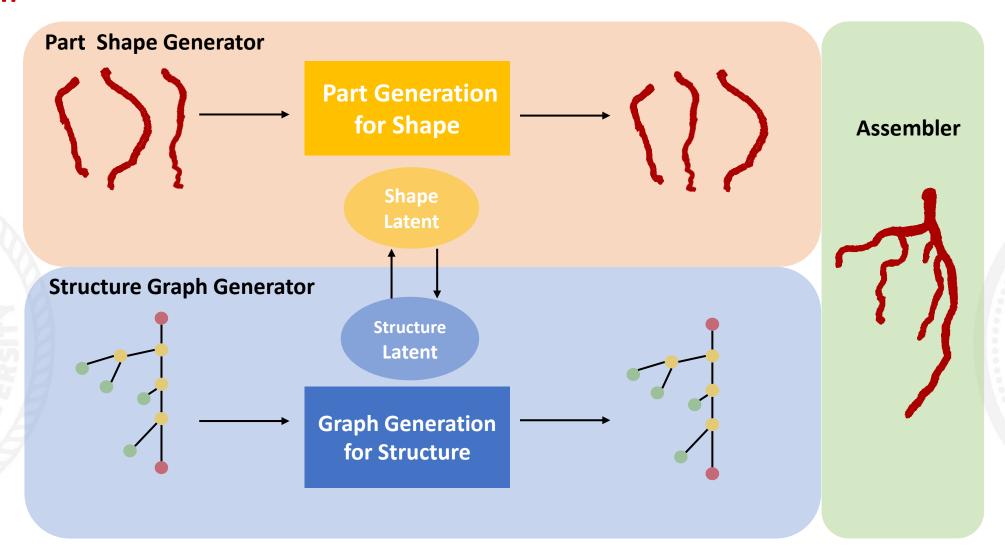
- start/end point of main branch
- bifurcation point
- end point of branch

> Assembler

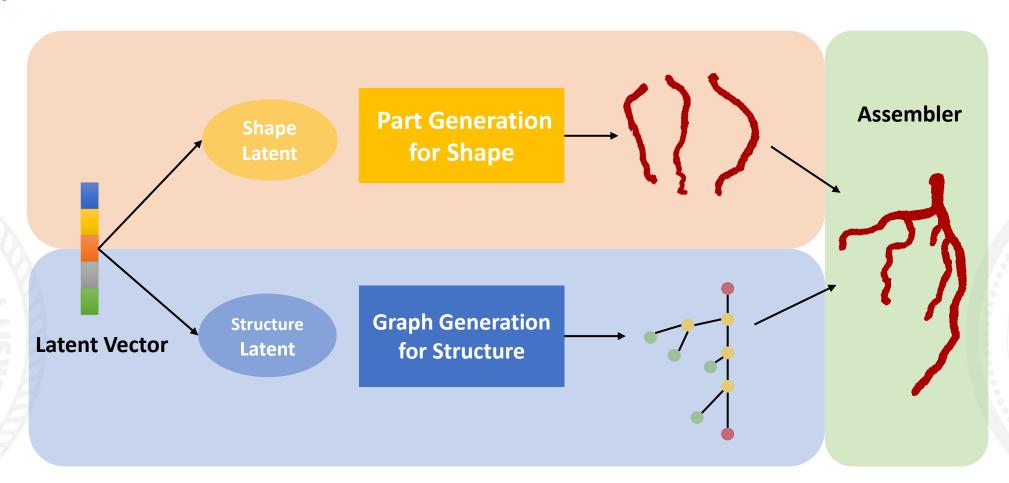




> Train



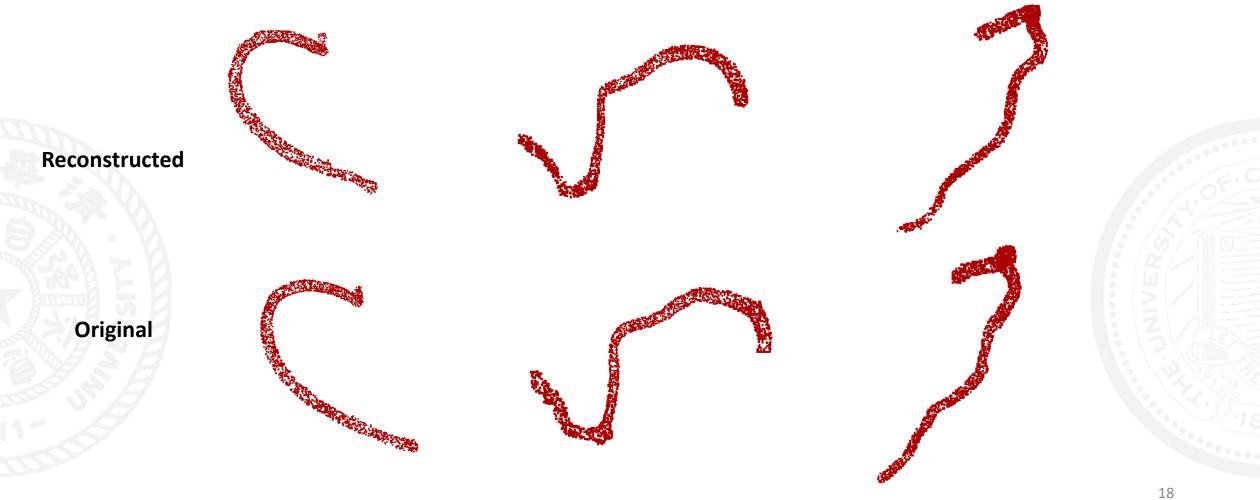
> Sample



- Introduction
- Related Work
- Method
- Result
 - ✓ Geometry Shape Generation

Result

> the result of training each branch separately using the point cloud diffusion model



Discussion

Next step:

- ➤ Modify the Part Shape Generator and turn it into label conditional generator.
- > Establish the **key point graph**
- > Implementing the Structure Graph Generator.

Discussion

THANK YOU Q & A

