

BERT: a pre-trained language model for Transformer

Bert: Pre-training of deep bidirectional transformers for language understanding

Presenter: Qiqi Chen

Content

- 1.1 Architecture of Transformer
- 1.2 Transformer encoder
 - 1.2.1 Positional encoding
 - 1.2.2 Self attention mechanism
 - 1.2.3 Multi-head Attention
 - 1.2.4 Add&Norm and Feed forward
- 1.3 Transformer decoder

2 BERT

- 2.1 The pre-training process of BERT
- 2.2 The application results of BERT
- 3 Conclusion

1.1 Architecture of Transformer

- Eg. Translator
- 1. Input: Attention is all you need
- 2. Encoder outputs the hidden layer, then as the input to the decoder;
- 3. Input <start> token into the decoder
- 4. Output the first word "注";
- 5. Input "注" into the decoder;
- 6. Output the second word"意"
- 7. Repeat 5-6 until the decoder outputs <end> token.

3. <Start> 5. Input: 注

Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. arXiv preprint arXiv:1706.03762, 2017.

1.2 Transformer encoder

Encoder:

The process by which natural language sequences are computed into a hidden layer

Batch size:

of sequences(sentences)

1.2.1 Positional encoding

$$PE(pos, 2i) = sin(rac{pos}{10000^{rac{2i}{d_{model}}}})$$

$$PE(pos, 2i + 1) = cos(\frac{pos}{10000 \frac{2i}{d_{model}}})$$

Dimension:

[max sequence length, embedding dimension]

pos: the position index of the word [0, max sequence length)

i: the dimension index of the word embeddings [0, embedding dimension)

1.2 Transformer encoder

Encoder:

The process by which natural language sequences are computed into a hidden layer

Batch size:

of sequences(sentences)

1.2.2 Self attention mechanism

Score each vector

Input:

$$X \in \mathbb{R}^{batch \ size*seq. \ len.}$$
 $X_{embedding} = EmbeddingLookup(X) + PositionalEncoding$
 $X_{embedding} \in \mathbb{R}^{batch \ size*seq. \ len.*embed. \ dim.}$ (eq.2)

(eq.2)

Step 1: assign 3 weights W_0 , W_K , W_V for Linear mapping Each word has three different vectors:

$$Q = Linear(X_{embedding}) = X_{embedding}W_Q$$

 $K = Linear(X_{embedding}) = X_{embedding}W_K$
 $V = Linear(X_{embedding}) = X_{embedding}W_V$

To stabilize the gradient, Transformer uses normalization, i.e., dividing by $\sqrt{d_k}$

Query vector (Q), Key vector (K), and Value vector (V)

Step 2: Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

[sequence length, embedding dimention]

1.2.3 Multi head Attention

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

hyper-parameter: # of heads

[batch size, sequence length, embedding dimension/h]

1.2.4 Add&Norm and Feed forward

Residual connection(Add)

$$X_{embedding} + Attention(Q, K, V)$$

Layer normalization:

- Normalized to the standard normal distribution
- Accelerate the training speed and convergence

Feed forward Neural Network:

Two linear mapping layers + activation function like ReLU

$$X_{hidden} = Activate(Linear(Linear(X_{attention})))$$

1.3 Transformer decoder

- Similar to encoder
- Padding mask
 Filling –inf (because softmax(-inf)≈0) after short sequence
- Sequence mask
 At time t, decoding output can only be output before time t
 Hiding the information after t.

 E_N is a single word T_N is the final calculated hidden layer

 $BERT_{BASE}: L = 12, H = 768, A = 12, Total Parameters = 110M$

 $BERT_{LARGE}: L=24, H=1024, A=16, Total Parameters=340M$

L is the number of layers in Transformer

H is the output dimensions

A is the number of mutil-head attention

The operation of the attention matrix and the attention weighting: Each word in the sequence contains information before and information after the word

2.1 The pre-training process of BERT

Task 1: Masked Language Model -- like 完形填空 in Chinese:)

- Step 1: Randomly mask 15% of the words in each sentence,
- 80%: replaced by [mask]
 My dog is hairy -> My dog is [mask]
- 2) 10 %: replaced by any other token my dog is hairy -> my dog is apple
- 3) 10 %: no change.

 my dog is hairy -> my dog is hairy
- Step 2: Predict the content of the masked part
 The weight of the mapping layer W_{vocab}
 X_{hidden}W_{vocab} = [batch_size, seq_len, embedding_dim] · [embedding_dim, vocab_size]
 = [[batch_size, seq_len, vocab_size]

Through softmax normalization, the sum of each word corresponding to VOCAB_SIZE is 1
The prediction results of the model are obtained by the word with the highest probability in VOCAB_SIZE

2.1 The pre-training process of BERT

Task 2: Next Sentence Prediction (input is sentence pair)

Step 1: token embedding

Step 2:

[cls]My dog is cute [sep] bird can fly [sep]

Step 3: segment embedding [cls]My dog is cute [sep] bird can fly [sep] 0 0 0 0 0 1 1 1 1 1

Step 4: Attention mechanism

X_{hidden} = [batch_size, seq_len, embedding_dim]

All information in this sentence is expected to be summarized into a vector corresponding to the [CLS]token $cls_vector = X_{hidden}[:, 0, :]$ ([batch_size, embedding_dim])

 $y = sigmoid(Linear(cls_vector))$ $y \in (0, 1)$

2.2 The application results of BERT

The author fine-tuning the 11 NLP tasks, and achieved the performance of state-of-the-art

NER

System	Dev F1	Test F1
ELMo+BiLSTM+CRF CVT+Multi (Clark et al., 2018)	95.7	92.2 92.6
BERT _{BASE}	96.4	92.6
BERT _{LARGE}	96.6	92.8

Table 3: CoNLL-2003 Named Entity Recognition results. The hyperparameters were selected using the Dev set, and the reported Dev and Test scores are averaged over 5 random restarts using those hyperparameters.

The Standford Question Answering Dataset (SQuAD)

System	Dev		Test	
•	EM	F1	EM	F1
Leaderboard (Oct	8th, 2	(018)		
Human	-	-	82.3	91.2
#1 Ensemble - nlnet	-	-	86.0	91.7
#2 Ensemble - QANet	-	-	84.5	90.5
#1 Single - nlnet	-	-	83.5	90.1
#2 Single - QANet	-	-	82.5	89.3
Publishe	ed			
BiDAF+ELMo (Single)	-	85.8	-	-
R.M. Reader (Single)	78.9	86.3	79.5	86.6
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5
Ours				
BERT _{BASE} (Single)	80.8	88.5	-	-
BERT _{LARGE} (Single)	84.1	90.9	-	-
BERT _{LARGE} (Ensemble)	85.8	91.8	-	-
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	93.2

Table 2: SQuAD results. The BERT ensemble is 7x systems which use different pre-training checkpoints and fine-tuning seeds.

3 Conclusion

- A deep bi-directional Transformer language model is adopted
- The training depth bi-directional pre-training model was achieved by Mask LM
- Compared with the unidirectional language model, the training results are more accurate and semantic understanding is more accurate
- Performance is not good when multiple words are masked and there is a relationship between the words

XLNet VS BERT

- Autoencoder LM(BERT)
 MASK problem but bidirection
- Autoregressive LM(ELMO)
 Unidirection but no need MASK
- XLNet

By arranging and combining words in sentences

Put some of the words after Ti in the place before Ti

Reference

Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. arXiv preprint arXiv:1706.03762, 2017.

Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv:1810.04805, 2018.

Question: how does it related to other recent language models, e.g. GPT-3?

• Architecture:

GPT-3 is built using transformer decoder blocks and BERT uses transformer encode blocks

BERT uses Self Attention and GPT3 uses Masked Self Attention.

- Parameters: BERT largest model has 340 Million parameters and GPT 3 is 175 billion Training
- Learning approach: BERT has pre-trained models for different downstream. NLP tasks which are further fine-tuned on custom data
 - GPT3 has a single model for all downstream tasks and does not require fine-tuning GPT 3 Learns from examples through zero shot, one shot or few shot approach