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BERT: a pre-trained language
model for Transformer

Bert: Pre-training of deep bidirectional transformers for language understanding

Presenter: Qigi Chen
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1.1 Architecture of Transformer
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Figure 1: The Transformer - modelarchitecture. T
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Eg. Translator
1. Input: Attention is all you need

2. Encoder outputs the hidden layer, then
as the input to the decoder;

3. Input <start> token into the decoder

4. Output the first word “VE” ;
5. Input “JF¥” into the decoder;

€ =z. 9

6. Output the second word “ =

7. Repeat 5-6 until the decoder outputs
<end> token.

Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. arXiv preprint arXiv:1706.03762, 2017.
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1.2.1 Positional encoding ) TBSI .50 s v

PE(pos, 2i) = sin( e —)
10000 “moder
PE(pos, % + 1) = cos(—— )
10000 %moder

Dimension:

[max sequence length, embedding dimension]

pos: the position index of the word
[0, max sequence length)

i: the dimension index of the word embeddings

[0, embedding dimension)

0 sequence length

PEPET
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1.2.2 Self attention mechanism ) TRBS] i - s o o b

Input:
Xe Rbatch sizexseq. len.

Xembedding = Embedding Lookup(X) + Positional Encoding

Koo & R batch sizexseq. len.vembed. dim. (eq.2)
em ing .
Score each vector

Step 1: assign 3 weights Wy, Wy, Wy, for Linear mapping

Each word has three different vectors:

To stabilize the gradient,
Transformer uses normalization,

i.e., dividing by Vdy

Q= Linear(xembedding) = Xembedding WQ
K = Llnear(Xembedding) = Xembedding Wk

V= Linear(xembedding) o Xembedding WV

Query vector (Q), Key vector (K), and Val

QK
Step 2: Attention(Q, K, V') = softmax( 2,\ |

Vdj,

[sequence length, embedding dimention]
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1.2.3 Multi head Attention
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hyper-parameter:

- . DR i
Attention(Q, K, V) = softmax( 2,,\ )\
V dy. # of heads

[batch size, sequence length, embedding dimension/h]
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1.2.4 Add&Norm and Feed forward

B |batch size, sequence length, embedding dimension| . .
_ X uidden Residual connection(Add)
—>(_Add & Norm J X empeddine + Attention(Q, K, V)
Feed 4 '

Forward —

N | o

transformer N 3 Layer normalization:
X . . . .
ploc ACC S Nam = - Normalized to the standard normal distribution

Multi-Head ..
Abtertion 3 - Accelerate the training speed and convergence

- ké}

B \ / Feed forward Neural Network :
| Positional D 1 . . o . .
Encoding - Two linear mapping layers + activation function like ReLU
Input [batch size,
Embedding X embedding sequence length,
I embedding dimension] g R sy : _
Xh:ddcn = Ac tnate(Lme(u ( Linear (Xurft'n(irm))_)
Inputs
X [batch size, sequence length]
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1.3 Transformer decoder

Output J‘
Probabilties  Similar to encoder

* Padding mask

Linear
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Feed
Forward
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Filling —inf (because softmax(-inf)=0) after short sequence

* Sequence mask

I

Add & Norm

it At time t, decoding output can only be output before time t
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2 BERT

BERT (Ours)

BERTpasr : L =12, H = 768, A = 12, Total Parameters = 110M

BERTpsrce : L =24, H = 1024, A = 16, Total Parameters = 340M

L is the number of layers in Transformer

H is the output dimensions

B, i Mele word A is the number of mutil-head attention

Ty is the final calculated hidden layer

The operation of the attention matrix and the attention weighting:
Each word in the sequence contains information before and information after the word



2.1 The pre-training process of BERT ) TBSI &5 mxn e

Task 1: Masked Language Model -- like 5¢fZ3H %5 in Chinese : )

e Step 1: Randomly mask 15% of the words in each sentence,
1) 80%: replaced by [mask]
My dog is hairy -> My dog is [mask]
2) 10 %: replaced by any other token
my dog is hairy -> my dog is apple
3) 10 %: no change.
my dog is hairy -> my dog is hairy

e Step 2: Predict the content of the masked part

The weight of the mapping layer W,cap

XhiddenWvocab = [batch_size, seq_len, embedding_dim] - [embedding dim, vocab_size]
= [[batch_size, seq_len, vocab_size]

Through softmax normalization, the sum of each word corresponding to VOCAB_SIZE is 1
The prediction results of the model are obtained by the word with the highest probability in VOCAB_SIZE



2.1 The pre-training process of BERT ) TBSI 5o pmom s

Task 2: Next Sentence Prediction (input is sentence pair)

Input [CLS] my dog is (cute | [SEP] he ‘ likes ” play ’ ##ing ’ [SEP]
Step 1: token embedding
Tok
Step 2: E;Senddings Ecis || Emy || Edog = Ecute | | Erser) Ene || Eiikes | | Epiay Eveing E ser)
[cls]My dog is cute [sep] bird can fly [sep] + + o+ o+ * + + o+ + + -
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB EB
Step 3: segment embedding + + + + o+ + + + o+ + +
1 1 Position
[cls]My dog is cute [sep] bird can fly [sep] Eetings E, || E || E || Es || E || Bs || B || E, || Eq E, E.,

o 0o 0o 00 12 1 1 11

Step 4: Attention mechanism
Xhidgden = [batch_size, seq_len, embedding dim]

All information in this sentence is expected to be summarized N
into a vector corresponding to the [CLS]token =
cls_vector = Xhigdenl:, 0, :] ([batch_size, embedding_dim]) t

y = sigmoid(Linear(cls_ vector))
Y€E(0, 1)

HSEP#




2.2 The application results of BERT TBSI ik f s b

The author fine-tuning the 11 NLP tasks, and achieved the performance of state-of-the-art

 NER * The Standford Question Answering Dataset (SQUAD)
System Dev Test
System Dev F1 Test F1 EM FI EM FI
. Leaderboard (Oct 8th, 2018)
ELMo+B1LSTM+CRF 95.7 92.2 Human - - 823912
. #1 Ensemble - nlnet - - 86.0 91.7
CVT+Multi (Clark et al., 2018) - 92.6 #2 Ensemble - QANet - 84.5 90.5
#1 Single - nlnet - 83.5 90.1
# Single - QAN - 82.5 89.3
BERTEASE 96.4 924 e —
ublisne
BERT | ARGE 96.6 92.8 BiDAF+ELMo (Single) - 88 - -
R.M. Reader (Single) 78.9 86.3 79.5 86.6
R.M. Reader (Ensemble) 81.2 87.9 82.3 88.5
Table 3: CoNLL-2003 Named Entity Recognition re- Ours
. BERTBASE (Slngle) 80.8 88.5 - -
sults. The hyperparameters were selected using the BERTarck (Single) 841 909 - -
_ BERT (Ensemble) 85.8 91.8 - -
Dev set, and the reported Dev apd Test scores are aver BERTtiEEE (SelTriviaQA) 842 911 851 918
aged over 5 random restarts using those hyperparame- BERTLarce (Ens+TriviaQA) 86.2 92.2 87.4 93.2
ters.

Table 2: SQuAD results. The BERT ensemble is 7x
systems which use different pre-training checkpoints
and fine-tuning seeds.
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A deep bi-directional Transformer language model is adopted

* The training depth bi-directional pre-training model was achieved by
Mask LM

e Compared with the unidirectional language model, the training results
are more accurate and semantic understanding is more accurate

 Performance is not good when multiple words are masked and there is
a relationship between the words




XLNet VS BERT

e Autoencoder LM(BERT)
MASK problem but bidirection
e Autoregressive LM(ELMO)
Unidirection but no need MASK
* XLNet
By arranging and combining words in sentences

Put some of the words after Ti in the place before Ti
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Question: how does it related to other recent language models, e.g. GPT-37?

e Architecture:

blGPI'(F-?; is built using transformer decoder blocks and BERT uses transformer encode
ocks

BERT uses Self Attention and GPT3 uses Masked Self Attention.

* Parameters: BERT largest model has 340 Million parameters and GPT 3 is 175 billion
Training

* Learning approach: BERT has pre-trained models for different downstream. NLP
tasks which are further fine-tuned on custom data

GPT3 has a single model for all downstream tasks and does not require fine-tuning
GPT 3 Learns from examples through zero shot, one shot or few shot approach



