
BERT: a pre-trained language
model for Transformer

Presenter: Qiqi Chen

Bert: Pre-training of deep bidirectional transformers for language understanding

Content

1 Transformer
1.1 Architecture of Transformer
1.2 Transformer encoder

1.2.1 Positional encoding
1.2.2 Self attention mechanism
1.2.3 Multi-head Attention
1.2.4 Add&Norm and Feed forward

1.3 Transformer decoder
2 BERT

2.1 The pre-training process of BERT
2.2 The application results of BERT

3 Conclusion

1.1 Architecture of Transformer

1. Input: Attention is all you need
2. Encoder outputs the hidden layer, then

as the input to the decoder;
3. Input <start> token into the decoder
4. Output the first word “注”;
5. Input“注” into the decoder;
6. Output the second word“意”
7. Repeat 5-6 until the decoder outputs
<end> token.

Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. arXiv preprint arXiv:1706.03762, 2017.

Hidden
layer

Eg. Translator

3. <Start>

4. Output:注 6. Output:意

5. Input:注

Transformer
block

1.2 Transformer encoder

Encoder:
The process by which natural
language sequences are
computed into a hidden layer

Batch size:
of sequences(sentences)

1.2.1 Positional encoding

Dimension:
[max sequence length, embedding dimension]

pos: the position index of the word
[0, max sequence length)

i: the dimension index of the word embeddings
[0, embedding dimension)

PEPET

1.2 Transformer encoder

Encoder:
The process by which natural
language sequences are
computed into a hidden layer

Batch size:
of sequences(sentences)

1.2.2 Self attention mechanism

Step 1: assign 3 weights WQ, WK, WV for Linear mapping
Each word has three different vectors:

Query vector (Q), Key vector (K), and Value vector (V)

Step 2:

Input:

[sequence length, embedding dimention]

To stabilize the gradient,
Transformer uses normalization,
i.e., dividing by √dk

Score each vector

1.2.3 Multi head Attention

[batch size, sequence length, embedding dimension/h]

hyper-parameter:
of heads

1.2.4 Add&Norm and Feed forward

Feed forward Neural Network :

Two linear mapping layers + activation function like ReLU

Residual connection(Add)

Layer normalization:
- Normalized to the standard normal distribution
- Accelerate the training speed and convergence

1.3 Transformer decoder

• Similar to encoder
• Padding mask

Filling –inf (because softmax(-inf)≈0) after short sequence

• Sequence mask
At time t, decoding output can only be output before time t

Hiding the information after t.

2 BERT

L is the number of layers in Transformer

H is the output dimensions

A is the number of mutil-head attentionEN is a single word
TN is the final calculated hidden layer

The operation of the attention matrix and the attention weighting:
Each word in the sequence contains information before and information after the word

2.1 The pre-training process of BERT

Task 1: Masked Language Model -- like完形填空 in Chinese：)

• Step 1: Randomly mask 15% of the words in each sentence,
1) 80%: replaced by [mask]

My dog is hairy -> My dog is [mask]
2) 10 %: replaced by any other token

my dog is hairy -> my dog is apple
3) 10 %: no change.

my dog is hairy -> my dog is hairy

• Step 2: Predict the content of the masked part
The weight of the mapping layer Wvocab

XhiddenWvocab = [batch_size, seq_len, embedding_dim] · [embedding_dim, vocab_size]
= [[batch_size, seq_len, vocab_size]

Through softmax normalization, the sum of each word corresponding to VOCAB_SIZE is 1
The prediction results of the model are obtained by the word with the highest probability in VOCAB_SIZE

2.1 The pre-training process of BERT

Task 2: Next Sentence Prediction (input is sentence pair)

Step 1: token embedding
Step 2:
[cls]My dog is cute [sep] bird can fly [sep]

Step 3: segment embedding
[cls]My dog is cute [sep] bird can fly [sep]
0 0 0 0 0 1 1 1 1 1

Step 4: Attention mechanism
Xhidden = [batch_size, seq_len, embedding_dim]

All information in this sentence is expected to be summarized
into a vector corresponding to the [CLS]token
cls_vector = Xhidden[:, 0, :] ([batch_size, embedding_dim])

y = sigmoid(Linear(cls_ vector))
y∈(0, 1)

2.2 The application results of BERT

• NER • The Standford Question Answering Dataset (SQuAD)

The author fine-tuning the 11 NLP tasks, and achieved the performance of state-of-the-art

3 Conclusion

• A deep bi-directional Transformer language model is adopted
• The training depth bi-directional pre-training model was achieved by

Mask LM
• Compared with the unidirectional language model, the training results

are more accurate and semantic understanding is more accurate

• Performance is not good when multiple words are masked and there is
a relationship between the words

• Autoencoder LM(BERT)
MASK problem but bidirection

• Autoregressive LM(ELMO)
Unidirection but no need MASK

• XLNet
By arranging and combining words in sentences
Put some of the words after Ti in the place before Ti

XLNet VS BERT

Reference

Vaswani A, Shazeer N, Parmar N, et al. Attention is all you
need[J]. arXiv preprint arXiv:1706.03762, 2017.

Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of deep
bidirectional transformers for language understanding[J]. arXiv
preprint arXiv:1810.04805, 2018.

• Architecture:
GPT-3 is built using transformer decoder blocks and BERT uses transformer encode

blocks
BERT uses Self Attention and GPT3 uses Masked Self Attention.
• Parameters: BERT largest model has 340 Million parameters and GPT 3 is 175 billion

Training
• Learning approach: BERT has pre-trained models for different downstream. NLP

tasks which are further fine-tuned on custom data
GPT3 has a single model for all downstream tasks and does not require fine-tuning
GPT 3 Learns from examples through zero shot, one shot or few shot approach

Question: how does it related to other recent language models, e.g. GPT-3?

