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1.1 Architecture of Transformer

1. Input: Attention is all you need
2. Encoder outputs the hidden layer, then

as the input to the decoder;
3. Input <start> token into the decoder
4. Output the first word “注”;
5. Input“注” into the decoder;
6. Output the second word“意”
7. Repeat 5-6 until the decoder outputs
<end> token.

Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. arXiv preprint arXiv:1706.03762, 2017.
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1.2 Transformer encoder

Encoder:
The process by which natural 
language sequences are 
computed into a hidden layer

Batch size:
# of sequences(sentences)



1.2.1 Positional encoding

Dimension:
[max sequence length, embedding dimension]

pos: the position index of the word
[0, max sequence length)

i: the dimension index of the word embeddings
[0, embedding dimension)

PEPET



1.2 Transformer encoder

Encoder:
The process by which natural 
language sequences are 
computed into a hidden layer

Batch size:
# of sequences(sentences)



1.2.2 Self attention mechanism

Step 1: assign 3 weights WQ, WK, WV for Linear mapping
Each word has three different vectors:

Query vector (Q), Key vector (K), and Value vector (V)

Step 2:

Input:

[sequence length, embedding dimention]

To stabilize the gradient, 
Transformer uses normalization, 
i.e., dividing by √dk

Score each vector



1.2.3 Multi head Attention

[batch size, sequence length, embedding dimension/h]

hyper-parameter:
# of heads



1.2.4 Add&Norm and Feed forward

Feed forward Neural Network :

Two linear mapping layers + activation function like ReLU

Residual connection(Add)

Layer normalization:
- Normalized to the standard normal distribution
- Accelerate the training speed and convergence



1.3 Transformer decoder

• Similar to encoder
• Padding mask

Filling –inf (because softmax(-inf)≈0) after short sequence

• Sequence mask
At time t, decoding output can only be output before time t 

Hiding the information after t.



2 BERT

L is the number of layers in Transformer

H is the output dimensions

A is the number of mutil-head attentionEN is a single word
TN is the final calculated hidden layer

The operation of the attention matrix and the attention weighting:
Each word in the sequence contains information before and information after the word



2.1 The pre-training process of BERT

Task 1: Masked Language Model -- like完形填空 in Chinese：)

• Step 1: Randomly mask 15% of the words in each sentence,
1) 80%: replaced by [mask]

My dog is hairy -> My dog is [mask]
2) 10 %: replaced by any other token

my dog is hairy -> my dog is apple
3) 10 %: no change.

my dog is hairy -> my dog is hairy

• Step 2: Predict the content of the masked part
The weight of the mapping layer Wvocab

XhiddenWvocab = [batch_size, seq_len, embedding_dim] · [embedding_dim, vocab_size]
= [[batch_size, seq_len, vocab_size]

Through softmax normalization, the sum of each word corresponding to VOCAB_SIZE is 1
The prediction results of the model are obtained by the word with the highest probability in VOCAB_SIZE



2.1 The pre-training process of BERT

Task 2: Next Sentence Prediction (input is sentence pair)

Step 1: token embedding
Step 2:
[cls]My dog is cute [sep] bird can fly [sep]

Step 3: segment embedding
[cls]My dog is cute [sep] bird can fly [sep]
0 0 0 0 0 1 1 1 1 1

Step 4: Attention mechanism
Xhidden = [batch_size, seq_len, embedding_dim]

All information in this sentence is expected to be summarized 
into a vector corresponding to the [CLS]token
cls_vector = Xhidden[:, 0, :] ([batch_size, embedding_dim])

y = sigmoid(Linear(cls_ vector))
y∈(0, 1)



2.2 The application results of BERT

• NER • The Standford Question Answering Dataset (SQuAD) 

The author fine-tuning the 11 NLP tasks, and achieved the performance of state-of-the-art



3 Conclusion

• A deep bi-directional Transformer language model is adopted
• The training depth bi-directional pre-training model was achieved by 

Mask LM
• Compared with the unidirectional language model, the training results 

are more accurate and semantic understanding is more accurate

• Performance is not good when multiple words are masked and there is 
a relationship between the words



• Autoencoder LM(BERT)
MASK problem but bidirection

• Autoregressive LM(ELMO)
Unidirection but no need MASK

• XLNet
By arranging and combining words in sentences
Put some of the words after Ti in the place before Ti

XLNet VS BERT
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• Architecture:
GPT-3 is built using transformer decoder blocks and BERT uses transformer encode 

blocks
BERT uses Self Attention and GPT3 uses Masked Self Attention.
• Parameters: BERT largest model has 340 Million parameters and GPT 3 is 175 billion 

Training 
• Learning approach: BERT has pre-trained models for different downstream. NLP

tasks which are further fine-tuned on custom data
GPT3 has a single model for all downstream tasks and does not require fine-tuning
GPT 3 Learns from examples through zero shot, one shot or few shot approach

Question: how does it related to other recent language models, e.g. GPT-3?


