

BiNeTClus: Bipartite Network Community Detection Based on Transactional Clustering

MOHAMED BOUGUESSA and KHALED NOURI

Presenter: Wanda Li 18 March, 2021

Content

- 1 Background
- 2 Method
- 3 Experiments
- **4 Conclusion**

Part 1 Background

1.1 Problem

- Community detection in bipartite networks
 - What is a community?
 - a group of nodes densely connected to each other and loosely linked with the nodes of the other groups
 - projecting a bipartite graph to homogeneous graphs, or simply ignore node attributes
 - a set of nodes of the same type that share a lot of connections to nodes of the second type

1.2 Related Work

- > Transform a bipartite graph to a simple graph, then apply a standard community detection algorithm
 - \triangleright a link between two V_1 nodes is created if they connect to the same node of the other type
- ➤ No transform but find communities of both types of nodes
 - ➤ BRIM(Bipartite Recursively Induced Modules) and its derivatives: Adaptive BRIM, LP-BRIM = LPA(Label Propagation Algorithm) + BRIM, LPAb, LPAb+ = LPAb + MSG(Multi-Step Greedy agglomerative)
- Maximize a probability function by moving nodes between communities
 - ➤ BiSBM, BiLouvain

1.3 Limitations of Existing Work (1.3 TBSI 清华-伯克利深圳学院 Tsinghua-Berkeley Shenzhen Institute

- **1. Loss of relevant topological information** due to the transformation of the bipartite network to standard plain graphs.
- 2. **Difficulty** in **detecting communities** in the presence of many non-discriminating nodes with atypical connections that hide the community structures.
- 3. Manually specifying several **input parameters**, including the number of communities to be identified.

1.4 Method Comparison

Table 1. BiNeTClus vs. Mainstream Bipartite Community Detection Approaches

Approach	Handel non-discriminating nodes	Projection-based?	Parameter-laden?
	with atypical connections?		
BiNeTClus	Yes	No	No
Alzahrani and Horadam [5]	No	Yes	No
Melamed [6]	No	Yes	Yes
Barber [10]	No	No	No
Liu and Murata [11]	No	No	No
Liu and Murata [12]	No	No	No
Pesantez and Kalyanaraman [14]	No	No	Yes
Barber and Clark [15]	No	No	No
Larremore et al. [16]	No	No	Yes

Part 2 Method

2 Flowchart

BiNeTClus

Phase 1: Initial partitioning based on transactional clustering

Input: A bipartite network

 $G = (V_1 \cup V_2, E) \implies$

Transactional data representation

- Build a transactional data B_I that represents neighbors of V_I nodes.
- Build a transactional data B₂ that represents neighbors of V₂ nodes.

Transactional clustering

- Cluster the set B₁ to identify a partition C of V₁ nodes.
- Cluster the set B₂ to identify a partition D of V₂ nodes.

Phase 2: Clustering refinement for bipartite communities' discovery

Final bipartite community structures

- Refine the clustering in C and D through an iterative merging process that optimize the bipartite modularity.
- ullet Return the final clustering in C and \mathcal{D} .

Output:

 $C = (C_1, C_2, ..., C_{k_1})$ communities in V_1 $D = (D_1, D_2, ..., D_{k_2})$ communities in V_2

Bipartite network: $\mathcal{G} = (V_1 \cup V_2, E)$

$$V_1 = \{u_1, \dots, u_p\} \ V_2 = \{v_1, \dots, v_q\}$$

A partition of V_1 into k_1 communities $C = \{C_1, C_2, \dots, C_{k_1}\}$

$$\mathcal{D} = \{D_1, D_2, \dots, D_{k_2}\}$$

(1) Transactional Data Representation

- ➤ Main idea: A bipartite network can be represented as a type of transactional data without loss of information.
- \triangleright Divide the resulting transactional dataset to B_1 and B_2
- Define each transaction T_{u_x} in $S_{V_1} = \{T_{u_1}, T_{u_2}, \ldots, T_{u_p}\}$ by the set $I_{V_2} = \{v_1, v_2, \ldots, v_q\}$ reflecting u_x 's neighbors in V_2 ; and the same for nodes in V_2 .
- Cluster transactions in B_1 and B_2 separately to make sure identified clusters contain nodes of same type.

The transactional data set B₁

Transactions	Items
T _A	{1, 3, 4, 7}
T _B	{3, 4, 7}
T _C	{1, 2, 3, 4, 5, 6, 7, 8}
T _D	{5, 6, 7}
TE	{5, 6, 7}
T _F	{5, 7, 8}
T _G	{7}

Transactions in B₁ represent neighbors of V₁ nodes.

The transactional data set B2

Transactions	Items			
T ₁	{A, C}			
T ₂	{C}			
T ₃	{A, B, C}			
T ₄	{A, B, C}			
T ₅	{C, D, E, F}			
T ₆	{C, D, E}			
T ₇	{A, B, C, D, E, F, G}			
T ₈	{C, F}			

Transactions in B2 represent neighbors of V2 nodes.

The transactional data set B₁

Transactions	Items
T _A	{1, 3, 4, 7}
T _B	{3, 4, 7}
T _C	{1, 2, 3, 4, 5, 6, 7, 8}
T _D	{5, 6, 7}
TE	{5, 6, 7}
T _F	{5, 7, 8}
T _G	{7}

Transactions in B₁ represent neighbors of V₁ nodes.

Item C and 7: very high freq == less important

Item G and 2: very low freq == less important

The transactional data set B2

Transactions	Items
T ₁	{A, C}
T ₂	{C}
T ₃	{A, B, C}
T ₄	{A, B, C}
T ₅	{C, D, E, F}
T ₆	{C, D, E}
T ₇	{A, B, C, D, E, F, G}
T ₈	{C, F}

Transactions in B2 represent neighbors of V2 nodes.

(2) Transactional Clustering

- Main objective: divide transaction B_{\bullet} based on distribution of items into clusters C_T .
- **Objective function**: $O(C_T) = \sum_{i=1}^{\kappa} \left| \frac{r_j}{r} . \mathcal{F}(C_{T_j}) \right|$
 - \triangleright r: # transactions in the transactional data.

 - r_j : # transactions in C_{T_j} . $\mathcal{F}(C_{T_j}) = \frac{1}{r_j} \sum_{\eta \in C_{T_i}} \mathcal{N}(\eta, C_{T_j}) \times \mathcal{W}(\eta, C_{T_j}) \times \mathcal{W}(\eta, B_{\bullet})$: quality of cluster C_{T_j}
 - $\triangleright \eta$: an item
 - $\triangleright \mathcal{N}(\eta, C_{T_j})$: # η in C_{T_j}

(2) Transactional Clustering

Local importance: tradeoff between compactness and separation.

$$\mathcal{W}(\eta, C_{T_j}) = \mathcal{P}(\eta | C_{T_j}) \times (1 - \Lambda(\eta, C_{T_j}))$$

$$\mathcal{P}(\eta | C_{T_j}) = \frac{number\ of\ transactions\ in\ C_{T_j}\ that\ contain\ the\ item\ \eta}{size\ of\ C_{T_j}}$$

$$\Lambda(\eta, C_{T_j}) = \frac{number\ of\ transactions\ located\ outside\ C_{T_j}\ that\ contain\ the\ item\ \eta}{the\ total\ number\ of\ transaction\ in\ B_{\bullet}\ that\ contain\ the\ item\ \eta}$$

 \triangleright Global importance: Measure whether η is rare or omnipresent.

$$\mathcal{W}(\eta, B_{\bullet}) = \mathcal{N}(\eta, B_{\bullet}) \times \Phi(\eta, B_{\bullet})$$

$$\Phi(\eta, B_{\bullet}) = \log[\mathcal{N}(\eta, B_{\bullet}) \times (1 - \mathcal{P}(\eta | B_{\bullet})) + 1]$$

$$\mathcal{P}(\eta | B_{\bullet}) = \frac{number\ of\ transactions\ in\ B_{\bullet}\ that\ contain\ the\ item\ \eta}{size\ of\ B_{\bullet}}$$

2.1 Algorithm 1

ALGORITHM 1: Transactional clustering

7 end

```
Data: A transactional dataset B_{\bullet}

Result: C_T = \{C_{T_1}, C_{T_2}, \dots, C_{T_k}\}: a partitioning of B_{\bullet} into k clusters

begin

2 | Assign each transaction T_s (s = 1, \dots, r) in B_{\bullet} to an existing or new cluster that maximizes O(C_T);

3 | repeat

4 | Reassign each T_s to an existing or new cluster to maximize O(C_T);

5 | until no transaction is reassigned;

6 | return C_T = \{C_{T_1}, C_{T_2}, \dots, C_{T_k}\};
```

* Applied independently onto the two transactional sets

2.2 Clustering Refinement

Clustering Refinement for Bipartite Communities' Discovery

- ➤ Main objective: optimize the bipartite modularity (Murata+) on the partition.
- Modularity Murata+:

$$Q_M^+ = \sum_C (e_{lm} - a_l a_m) + \sum_D (e_{ml} - a_l a_m)$$

Find corresponding community from the other side by:

$$C_l = \arg \max_m (e_{ml} - a_l a_m)$$
 $D_m = \arg \max_l (e_{lm} - a_l a_m)$

- \triangleright e_{lm} : the fraction of all links that connect nodes in C_l to nodes in D_m
- \triangleright a_l , a_m : the fraction of links within C_l and D_m
- ➤ Advantage: reduce #input nodes; take structural properties into consideration. → higher quality of community detection

2.2 Algorithm 2

 $Q_M^{+first} \leftarrow Q_M^+;$

Clustering Refinement for Bipartite Communities' Discovery

```
ALGORITHM 2: BiNeTClus
   Data: \mathcal{G} = (V_1 \cup V_2, E): a bipartite network
   Result: C = \{C_1, C_2, \dots, C_{k_1}\}: communities in V_1
           \mathcal{D} = \{D_1, D_2, \dots, D_{k2}\}: communities in V_2
 1 begin
       // Phase 1: Initial partitioning based on transactional clustering
       Represent G = (V_1 \cup V_2, E) as type of two transactional data: B_1 and B_2; // Each transaction in B_1
           consists of all neighboring nodes of type V_2 of each node in V_1. Similarly, each transaction
           in B_2 consists of all neighboring nodes of type V_1 of each node in V_2
       // Next, using the transactional clustering process described by Algorithm 1, cluster,
           separately, B_1 and B_2 to identify an initial partitioning of \mathcal{G}
       Apply Algorithm 1 to cluster the set B_1;
       Store the identified clusters of type V_1 in C;
       Apply Algorithm 1 to cluster the set B_2;
       Store the identified clusters of type V_2 in \mathcal{D};
       // Phase 2: Clustering refinement for bipartite communities' discovery
       Define N as a list of size |V_1 + V_2| containing the initial partitioning of Algorithm 1 where each
       element in this list indicates the membership of a node to a cluster;
       Define C_N as a list containing the index of each cluster in N;
```

Based on the initial clustering, compute Q_M^+ for \mathcal{G} using (9); $Q_M^+ = \sum_{\alpha} (e_{lm} - a_l a_m) + \sum_{\alpha} (e_{ml} - a_l a_m)$

2.2 Algorithm 2

Clustering Refinement for Bipartite Communities' Discovery

```
repeat
11
            for each cluster R in C_N do
12
                 Identify the list of candidate clusters that can potentially be merged with the cluster R;
13
                 Store the identified clusters in candidate cluster;
14
                 for each candidate cluster C<sub>R</sub> in candidate_cluster do
15
                      Compute Q_M^{+new} using (9) by considering R and C_R in the same cluster;
                      // Evaluate Modularity gain
                      if Q_M^{+new} > Q_M^{+first} then
                          Q_M^{+first} \leftarrow Q_M^{+new};
                           cluster_fus \leftarrow C_R; // cluster_fus here is the selected candidate cluster that
                               maximizes the modularity
                      end
20
                 end
21
                 if Q_M^{+first} > Q_M^+ then Q_M^+ \leftarrow Q_M^{+first}
                      Merge R and cluster_fus;
                      Update C_N according to the merged clusters;
                      Update C or \mathcal{D} according to the type of nodes within the merged clusters;
                 end
             end
        until it is no longer possible to increase the modularity Q_M^+;
29
        Return C, \mathcal{D};
31 end
```

2.3 Complexity Analysis

- ➤ For phase 1: time complexity depends on #iterations
- Experimental results: #iterations does not grow more than linearly with:
 - \triangleright k_1 : #clusters in B_1 (clusters of type V_1),
 - \triangleright p: size of the transactional data B_1 (#nodes of type V_1)
 - \triangleright q: #items in B_1 (#nodes of type V_2 corresponding to neighbors of V_1 nodes).
- So clustering nodes of type V_1 cost $O(k_1pq)$; overall cost is $O((k_1+k_2)pq)$

2.3 Complexity Analysis

- ➤ For phase 2: time complexity depends on #communities
- For (k_1+k_2) communities, there are $k_1(k_1-1)+k_2(k_2-1)$ possible combinations
- ➤ In practice:
 - #merges significantly decreases
 - $> k_1, k_2 << p, q$
- ... claim the effective of the heuristic

Part 3 Experiments

3.1 Compared Algorithms

- ➤ LPAb+
- > LP-BRIM
- Adaptive BRIM

Uncover communities contain both types of nodes

→ divide detected communities

Non-deterministic

 \rightarrow run 3 times

- > BiSBM
 - #communities should be set
- BiLouvain

Require manual parameters

→ Set parameters following original paper

3.2 Evaluation Criteria

- > Internal
 - ➤ Normalized Mutual Information(NMI)

$$NMI(P_1, P_2) = \frac{-2\sum_{i=1}^{k_{P_1}} \sum_{j=1}^{k_{P_2}} N_{ij} \log(\frac{N_{ij}n}{N_i N_j})}{\sum_{i=1}^{k_{P_1}} N_i \log(\frac{N_i}{n}) + \sum_{j=1}^{k_{P_2}} N_j \log(\frac{N_j}{n})}$$

- \triangleright N: confusion matrix with N_{ij} indicating #nodes in the *ith* cluster of the partition P_1 and the *jth* cluster of the partition P_2 .
- $\triangleright N_i$: #nodes in the *ith* cluster of the partition P_1
- $\triangleright k_{P_1}$: #communities in P_1
- ➤ n: #nodes

3.2 Evaluation Criteria

- > External
 - Coverage

$$Coverage(\mathcal{G}) = \frac{\sum_{i=1}^{k} e_{G_i}}{E}$$

- \triangleright measures the internal density within the subgraph G_i .
- $\triangleright G_i$: subgraph enclosing community C_l and its co-cluster mate D_m
- $\triangleright e_{G_i}$: #links in G_i
- \triangleright E: #all links
- Bipartite Modularity Density (BMD)

$$BMD(G) = \sum_{i=1}^{k} BMD(G_i)$$
$$BMD(G_i) = D_{in}(G_i) - D_{out}(G_i)$$

considers within- and between-subgraph density.

3.3 Synthetic Network Results

- > mpx: average proportion of links between a node (of one type) and nodes (of the second type) located outside its co-cluster.
- \triangleright nd_{nd} : percentage of non-discriminating (i.e., sparsely connected) nodes.

3.3 Synthetic Network Results

Table 2. Results on Networks with mxp = 0 and Different Percentages of Sparsely Connected Node (n_{nd})

Algorithms	$n_{nd} = 0\%$	$n_{nd}=10\%$	$n_{nd}=20\%$	$n_{nd}=30\%$	$n_{nd} = 40\%$
BiNeTClus	1	1	1	1	1
BiLouvain	1	1	1	1	0.98
Adaptive BRIM	1	1	0.98	0.96	0.96
LP-BRIM	1	1	0.98	0.98	0.96
BiSBM	1	0.79	0.72	0.66	0.61
LPAb+	1	1	0.98	1	0.95

Table 3. Results on Networks with mxp = 0.2 and Different Percentages of Sparsely Connected Node (n_{nd})

Algorithms	$n_{nd} = 0\%$	$n_{nd} = 10\%$	$n_{nd} = 20\%$	$n_{nd} = 30\%$	$n_{nd} = 40\%$
BiNeTClus	1	1	1	1	1
Bilouvain	1	1	1	1	1
Adaptive BRIM	0.97	0.92	0.87	0.85	0.71
LP-BRIM	1	0.98	0.97	0.94	0.79
BiSBM	1	0.79	0.71	0.66	0.54
LPAb+	1	1	1	1	0.8

3.3 Synthetic Network Results

Table 4. Results on Networks with mxp = 0.4 and Different Percentages of Sparsely Connected Node (n_{nd})

Algorithms	$n_{nd} = 0\%$	$n_{nd}=10\%$	$n_{nd}=20\%$	$n_{nd} = 30\%$	$n_{nd} = 40\%$
BiNeTClus	0.98	0.97	0.97	0.81	0.64
BiLouvain	0.98	0.97	0.85	0.63	0.56
Adaptive BRIM	0.81	0.86	0.74	0.71	0.58
LP-BRIM	0.77	0.96	0.92	0.78	0.59
BiSBM	1	0.76	0.70	0.63	0.58
LPAb+	0.91	0.97	0.96	0.65	0.60

3.4 Real Network Results

- Five real-world bipartite networks:
 - ➤ Corporate Leadership: people V.S. companies
 - American Revolution: people V.S. organizations
 - Crime: people V.S. crimes
 - Malaria: genes V.S. gene substrings
 - arXiv: authors V.S. articles

No ground truth

→only considered external criteria

Bipartite network	V ₁	$\mid V_2 \mid$	$\mid E \mid$
Corporate Leadership	20	24	99
Americain Revolution	136	5	160
Crime	829	551	1,476
Malaria	297	806	2,965
arXiv	16,726	22,015	58,595

3.4 Real Network Results

Table 6. Performance Results Evaluated with the Coverage

Algorithms	Corporate Leadership	Americain Revolution	Crime	Malaria	arXiv
BiNeTClus	0.77	0.85	0.90	0.68	0.84
BiLouvain	0.64	0.85	0.80	0.64	0.81
Adaptive BRIM	0.62	0.85	0.80	0.66	_
LP-BRIM	0.63	0.85	0.82	0.66	_
LPAb+	0.62	0.85	0.96	0.75	_

Table 7. Performance Results Evaluated with the Bipartite Modularity Density

Algorithms	Corporate Leadership	Americain Revolution	Crime	Malaria	arXiv
BiNeTClus	1.5	0.62	0.75	0.074	0.78
BiLouvain	-0.13	0.62	0.44	-0.20	0.66
Adaptive BRIM	-0.27	0.62	0.43	-0.01	_
LP-BRIM	-0.20	0.62	0.49	0.022	_
LPAb+	-0.27	0.62	0.95	0.69	_

Part 4 Conclusion

4.1 The Algorithm

- > Parameter-free
- Capable of handling network with many atypical (i.e., sparsely or massively) connections

4.2 Take-away

- ➤ Improve one metric at a step
- ➤ Adopt joint strategy
- > Writing style: friendly, logical and well-organized

THANK YOU

