## Universal Domain Adaptation

Kaichao You, Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I. Jordan

Paper Reading
Jingge Wang
2020/3/27

## Preliminary

#### GAN

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\mathsf{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

- Fix generator G: maximize the probability of assigning the correct label to both training examples and samples generated.
- Fix discriminator D: minimize the probability of D making correct decision.



#### **Related Work**

Commonness between two domain label space  $\mathcal{C}_s$  and  $\mathcal{C}_t$   $\xi = \frac{|\mathcal{C}_s \cap \mathcal{C}_t|}{|\mathcal{C}_s||\mathcal{C}_s|}$ 

$$\xi = \frac{|\mathcal{C}_s \cap \mathcal{C}_t|}{|\mathcal{C}_s \cup \mathcal{C}_t|}$$

- closed set domain adaptation  $C_t = C_s$
- lacksquare partial domain adaptation  $\mathcal{C}_t \subset \mathcal{C}_s$





open set domain adaptation

Open Set DA (Busto et al. 2017) Open Set DA (Saito et al. 2018)





#### Related Work: closed set DA $C_t = C_s$

- DANN (Domain-Adversarial Training of Neural Networks)
  - Label Classifier G\_y: minimize classification loss on source domain
  - Feature extractor G\_f:
    - Discriminativeness: minimize classification loss on source domain
    - Domain invariance: maximize source / target domain classification loss
  - Domain classifier G\_d: minimize source / target domain classification loss

$$E(\theta_f, \theta_y, \theta_d) = \frac{1}{n} \sum_{i=1}^n \mathcal{L}_y^i(\theta_f, \theta_y) - \lambda \left( \frac{1}{n} \sum_{i=1}^n \mathcal{L}_d^i(\theta_f, \theta_d) + \frac{1}{n'} \sum_{i=n+1}^N \mathcal{L}_d^i(\theta_f, \theta_d) \right)$$

$$\mathcal{L}_d(G_d(G_f(\mathbf{x}_i)), d_i) = d_i \log \frac{1}{G_d(G_f(\mathbf{x}_i))} + (1 - d_i) \log \frac{1}{1 - G_d(G_f(\mathbf{x}_i))}$$

$$(\hat{\theta}_f, \hat{\theta}_y) = \underset{\theta_f, \theta_y}{\operatorname{argmin}} E(\theta_f, \theta_y, \hat{\theta}_d),$$

$$\hat{\theta}_d = \underset{\theta_d}{\operatorname{argmax}} E(\hat{\theta}_f, \hat{\theta}_y, \hat{\theta}_d).$$



## Related Work: partial DA $C_t \subset C_s$

- **SAN**(Selective Adversarial Networks )
  - lacksquare Negative transfer  $\downarrow$  : Decrease influence of  $\mathcal{C}_s ackslash \mathcal{C}_t$
  - lacktrians Positive transfer  $\uparrow$  : Reduce distribution discrepancy between  $p_{\mathcal{C}_t} 
    eq q$
  - Original DANN: Single discriminator

$$C_0\left(\theta_f, \theta_y, \theta_d\right) = \frac{1}{n_s} \sum_{\mathbf{x}_i \in \mathcal{D}_s} L_y\left(G_y\left(G_f\left(\mathbf{x}_i\right)\right), y_i\right) - \frac{\lambda}{n_s + n_t} \sum_{\mathbf{x}_i \in \mathcal{D}_s \cup \mathcal{D}_t} L_d\left(G_d\left(G_f\left(\mathbf{x}_i\right)\right), d_i\right)$$

- 1 Instance-level weighting
  - Multi-discriminator

$$L'_{d} = \frac{1}{n_{s} + n_{t}} \sum_{k=1}^{|\mathcal{C}_{s}|} \sum_{\mathbf{x}_{i} \in \mathcal{D}_{s} \cup \mathcal{D}_{t}} \hat{y}_{i}^{k} L_{d}^{k} \left( G_{d}^{k} \left( G_{f} \left( \mathbf{x}_{i} \right) \right), d_{i} \right)$$

## Related Work: partial DA $C_t \subset C_s$

- SAN(Selective Adversarial Networks )
  - ② Class-level weighting

$$L_{d} = \frac{1}{n_{s} + n_{t}} \sum_{k=1}^{|\mathcal{C}_{s}|} \left[ \left( \frac{1}{n_{t}} \sum_{\mathbf{x}_{i} \in \mathcal{D}_{t}} \hat{y}_{i}^{k} \right) \times \left( \sum_{\mathbf{x}_{i} \in (\mathcal{D}_{s} \cup \mathcal{D}_{t})} \hat{y}_{i}^{k} L_{d}^{k} \left( G_{d}^{k} \left( G_{f} \left( \mathbf{x}_{i} \right) \right), d_{i} \right) \right) \right]$$

• ③ entropy minimization

$$E = \frac{1}{n_t} \sum_{\mathbf{x}_i \in \mathcal{D}_t} H\left(G_y\left(G_f\left(\mathbf{x}_i\right)\right)\right) \qquad H\left(G_y\left(G_f\left(\mathbf{x}_i\right)\right)\right) = -\sum_{k=1}^{|\mathcal{C}_s|} \hat{y}_i^k \log \hat{y}_i^k$$

Integrating all

$$C\left(\theta_{f}, \theta_{y}, \theta_{d}^{k}|_{k=1}^{|\mathcal{C}_{s}|}\right) = \frac{1}{n_{s}} \sum_{\mathbf{x}_{i} \in \mathcal{D}_{s}} L_{y}\left(G_{y}\left(G_{f}\left(\mathbf{x}_{i}\right)\right), y_{i}\right) + \frac{1}{n_{t}} \sum_{\mathbf{x}_{i} \in \mathcal{D}_{t}} H\left(G_{y}\left(G_{f}\left(\mathbf{x}_{i}\right)\right)\right)$$
$$-\frac{\lambda}{n_{s} + n_{t}} \sum_{k=1}^{|\mathcal{C}_{s}|} \left(\frac{1}{n_{t}} \sum_{\mathbf{x}_{i} \in \mathcal{D}_{t}} \hat{y}_{i}^{k}\right) \sum_{\mathbf{x}_{i} \in \mathcal{D}_{s} \cup \mathcal{D}_{t}} \hat{y}_{i}^{k} L_{d}^{k}\left(G_{d}^{k}\left(G_{f}\left(\mathbf{x}_{i}\right)\right), d_{i}\right)$$

## Related Work: open set DA

- Assign-and-Transform-Iteratively (ATI)
- OSBP



#### Introduction

- Settings:

$$\mathcal{C} = \mathcal{C}_s \cap \mathcal{C}_t$$
  $\overline{\mathcal{C}}_s = \mathcal{C}_s \setminus \mathcal{C} \text{ and } \overline{\mathcal{C}}_t = \mathcal{C}_t \setminus \mathcal{C}$ 

- No information about the target label set
- Negative transfer: Should not match whole source set with target set
- How to mark target samples from  $\overline{\mathcal{C}}_t$  as "unknown"
- Learn model  $\min \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim q_{\mathcal{C}}} [f(\mathbf{x}) \neq \mathbf{y}]$

# Universal DA Source Domain Label Set : Target Domain Label Set



#### Training phase

## Method: Universal Adaptation Network (UAN)

- feature extractor F
- label classifier G
  - Probability  $\hat{\mathbf{y}} = G(\mathbf{z})$  of x over  $\mathcal{C}_s$   $E_G = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim p} L(\mathbf{y}, G(F(\mathbf{x}))) \tag{1}$
- non-adversarial domain discriminator D'
  - $\hat{d}' = D'(\mathbf{z})$  similarity of x to the source domain
  - $\mathbb{E}_{\mathbf{x} \sim p_{\overline{C}_s}} \hat{d}' > \mathbb{E}_{\mathbf{x} \sim p_{C}} \hat{d}' > \mathbb{E}_{\mathbf{x} \sim q_{C}} \hat{d}' > \mathbb{E}_{\mathbf{x} \sim q_{\overline{C}_t}} \hat{d}'$

 $E_{D'} = -\mathbb{E}_{\mathbf{x} \sim p} \log D' (F(\mathbf{x})) - \mathbb{E}_{\mathbf{x} \sim q} \log (1 - D' (F(\mathbf{x})))$ (2)



## Method: Universal Adaptation Network (UAN)

- Adversarial domain discriminator D
  - D distinguishes the source and target data in  $\mathcal{C} = \mathcal{C}_s \cap \mathcal{C}_t$

$$E_{D} = -\mathbb{E}_{\mathbf{x} \sim p} w^{s}(\mathbf{x}) \log D \left( F(\mathbf{x}) \right)$$

$$-\mathbb{E}_{\mathbf{x} \sim q} w^{t}(\mathbf{x}) \log \left( 1 - D \left( F(\mathbf{x}) \right) \right)$$
(3)

 sample-level transferability criterion for source data points and target data points

$$\mathbb{E}_{\mathbf{x} \sim p_{\mathcal{C}}} w^{s}(\mathbf{x}) > \mathbb{E}_{\mathbf{x} \sim p_{\overline{C}_{s}}} w^{s}(\mathbf{x})$$

$$\mathbb{E}_{\mathbf{x} \sim q_{\mathcal{C}}} w^{t}(\mathbf{x}) > \mathbb{E}_{\mathbf{x} \sim q_{\overline{C}_{t}}} w^{t}(\mathbf{x})$$
(6)



#### Training phase

## Method: Universal Adaptation Network (UAN)

#### Adversarial domain discriminator D

$$\mathbb{E}_{\mathbf{x} \sim p_{\mathcal{C}}} w^{s}(\mathbf{x}) > \mathbb{E}_{\mathbf{x} \sim p_{\overline{C}_{s}}} w^{s}(\mathbf{x})$$

$$\mathbb{E}_{\mathbf{x} \sim q_{\mathcal{C}}} w^{t}(\mathbf{x}) > \mathbb{E}_{\mathbf{x} \sim q_{\overline{C}_{t}}} w^{t}(\mathbf{x})$$
(6)

$$\mathbb{E}_{\mathbf{x} \sim p_{\overline{C}_s}} \hat{d}' > \mathbb{E}_{\mathbf{x} \sim p_{\mathcal{C}}} \hat{d}' > \mathbb{E}_{\mathbf{x} \sim q_{\mathcal{C}}} \hat{d}' > \mathbb{E}_{\mathbf{x} \sim q_{\overline{C}_t}} \hat{d}'$$

$$\mathbb{E}_{\mathbf{x} \sim q_{\overline{\mathcal{C}}_t}} H(\hat{\mathbf{y}}) > \mathbb{E}_{\mathbf{x} \sim q_{\mathcal{C}}} H(\hat{\mathbf{y}}) > \mathbb{E}_{\mathbf{x} \sim p_{\mathcal{C}}} H(\hat{\mathbf{y}}) > \mathbb{E}_{\mathbf{x} \sim p_{\overline{\mathcal{C}}_s}} H(\hat{\mathbf{y}})$$

$$w^{s}(\mathbf{x}) = \frac{H(\hat{\mathbf{y}})}{\log |\mathcal{C}_{s}|} - \hat{d}'(\mathbf{x})$$
 (7)

$$w^{t}(\mathbf{x}) = \hat{d}'(\mathbf{x}) - \frac{H(\hat{\mathbf{y}})}{\log |\mathcal{C}_{s}|}$$
(8)



### Method: Universal Adaptation Network (UAN)



Figure 2. The training and testing phases of the Universal Adaptation Network (UAN) designed for Universal Domain Adaptation (UDA).

$$\max_{D} \min_{F,G} E_G - \lambda E_D 
\min_{D'} E_{D'}$$
(4) 
$$y(\mathbf{x}) = \begin{cases} \operatorname{unknown} & w^t < w_0 \\ \operatorname{argmax}(\hat{\mathbf{y}}) & w^t \ge w_0 \end{cases}$$
(5)

## **Experiments**

Datasets

$$\xi = 0.32$$

• VisDA2017(game engines, real-world)





• Office-Home(Ar, Cl, Pr,Rw)



• ImageNet-Caltech(ImageNet-1K, Caltech-256)



#### **Classification Results**

#### Results

Table 1. Average class accuracy (%) of universal domain adaptation tasks on **Office-Home** ( $\xi = 0.15$ ) dataset (ResNet)

| Method      | Office-Home         |                     |                     |                     |                     |                     |                     |                     |                     |             |             |                     |       |
|-------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-------------|-------------|---------------------|-------|
|             | $Ar \rightarrow Cl$ | $Ar \rightarrow Pr$ | $Ar \rightarrow Rw$ | $Cl \rightarrow Ar$ | $Cl \rightarrow Pr$ | $Cl \rightarrow Rw$ | $Pr \rightarrow Ar$ | $Pr \rightarrow Cl$ | $Pr \rightarrow Rw$ | $Rw \to Ar$ | $Rw \to Cl$ | $Rw \rightarrow Pr$ | · Avg |
| ResNet [13] | 59.37               | 76.58               | 87.48               | 69.86               | 71.11               | 81.66               | 73.72               | 56.30               | 86.07               | 78.68       | 59.22       | 78.59               | 73.22 |
| ∫ DANN [6]  | 56.17               | 81.72               | 86.87               | 68.67               | 73.38               | 83.76               | 69.92               | 56.84               | 85.80               | 79.41       | 57.26       | 78.26               | 73.17 |
| RTN [23]    | 50.46               | 77.80               | 86.90               | 65.12               | 73.40               | 85.07               | 67.86               | 45.23               | 85.50               | 79.20       | 55.55       | 78.79               | 70.91 |
| ∫ IWAN [45] | 52.55               | 81.40               | 86.51               | 70.58               | 70.99               | 85.29               | 74.88               | 57.33               | 85.07               | 77.48       | 59.65       | 78.91               | 73.39 |
| PADA [45]   | 39.58               | 69.37               | 76.26               | 62.57               | 67.39               | 77.47               | 48.39               | 35.79               | 79.60               | 75.94       | 44.50       | 78.10               | 62.91 |
| ✓ ATI [28]  | 52.90               | 80.37               | 85.91               | 71.08               | 72.41               | 84.39               | 74.28               | 57.84               | 85.61               | 76.06       | 60.17       | 78.42               | 73.29 |
| OSBP [35]   | 47.75               | 60.90               | 76.78               | 59.23               | 61.58               | 74.33               | 61.67               | 44.50               | 79.31               | 70.59       | 54.95       | 75.18               | 63.90 |
| UAN         | 63.00               | 82.83               | 87.85               | 76.88               | 78.70               | 85.36               | 78.22               | 58.59               | 86.80               | 83.37       | 63.17       | 79.43               | 77.02 |

#### **Classification Results**

#### Results

Table 2. Average class accuracy (%) on Office-31 ( $\xi = 0.32$ ), ImageNet-Caltech ( $\xi = 0.07$ ) and VisDA2017 ( $\xi = 0.50$ ) (ResNet)

| Method          |                   |                             | ImageNe   | VisDA             |                                    |           |       |                   |                   |       |
|-----------------|-------------------|-----------------------------|-----------|-------------------|------------------------------------|-----------|-------|-------------------|-------------------|-------|
| Wethou          | $A \rightarrow W$ | $\mathrm{D} \to \mathrm{W}$ | $W \to D$ | $A \rightarrow D$ | $\mathrm{D}  ightarrow \mathrm{A}$ | $W \to A$ | Avg   | $I \rightarrow C$ | $C \rightarrow I$ | 10211 |
| ResNet [13]     | 75.94             | 89.60                       | 90.91     | 80.45             | 78.83                              | 81.42     | 82.86 | 70.28             | 65.14             | 52.80 |
| <b>DANN</b> [6] | 80.65             | 80.94                       | 88.07     | 82.67             | 74.82                              | 83.54     | 81.78 | 71.37             | 66.54             | 52.94 |
| RTN [23]        | 85.70             | 87.80                       | 88.91     | 82.69             | 74.64                              | 83.26     | 84.18 | 71.94             | 66.15             | 53.92 |
| IWAN [45]       | 85.25             | 90.09                       | 90.00     | 84.27             | 84.22                              | 86.25     | 86.68 | 72.19             | 66.48             | 58.72 |
| PADA [45]       | 85.37             | 79.26                       | 90.91     | 81.68             | 55.32                              | 82.61     | 79.19 | 65.47             | 58.73             | 44.98 |
| ATI [28]        | 79.38             | 92.60                       | 90.08     | 84.40             | 78.85                              | 81.57     | 84.48 | 71.59             | 67.36             | 54.81 |
| OSBP [35]       | 66.13             | 73.57                       | 85.62     | 72.92             | 47.35                              | 60.48     | 67.68 | 62.08             | 55.48             | 30.26 |
| UAN             | 85.62             | 94.77                       | 97.99     | 86.50             | 85.45                              | 85.12     | 89.24 | 75.28             | 70.17             | 60.83 |

#### **Classification Results**

Results



Figure 4. (a) The negative transfer influence in UDA (task  $Ar \rightarrow Cl$ )

## Analysis on Different UDA Settings

■ Varying Size of  $|\overline{C}_t|$ 



(a) Accuracy w.r.t.  $|\overline{C}_t|$ 

(a) Accuracy w.r.t.  $|\overline{C}_t|$  in task  $\mathbf{A} \to \mathbf{D}$ ,  $\xi = 0.32$ .



## Analysis on Different UDA Settings

Varying Size of Common Label Set C



(b) Accuracy w.r.t. |C| in task  $A \to D$ .

$$|\mathcal{C}_t| = |\mathcal{C}_s| + 1$$
  
 $|\mathcal{C}| + |\overline{\mathcal{C}}_t| + |\overline{\mathcal{C}}_s| = 31$ 





## Analysis of Universal Adaptation Network

Ablation Study

$$w^{s}(\mathbf{x}) = \frac{H(\hat{\mathbf{y}})}{\log |\mathcal{C}_{s}|} - \hat{d}'(\mathbf{x})$$
 (7)

$$w^{t}(\mathbf{x}) = \hat{d}'(\mathbf{x}) - \frac{H(\hat{\mathbf{y}})}{\log |\mathcal{C}_{s}|}$$
 (8)

Table 1. Average class accuracy (%) of universal domain adaptation tasks on **Office-Home** ( $\xi = 0.15$ ) dataset (ResNet)

| Method    | Office-Home         |                     |                     |                     |                                   |                     |                     |                     |                     |                     |                     |                     |       |
|-----------|---------------------|---------------------|---------------------|---------------------|-----------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-------|
|           | $Ar \rightarrow Cl$ | $Ar \rightarrow Pr$ | $Ar \rightarrow Rw$ | $Cl \rightarrow Ar$ | $\text{Cl} \rightarrow \text{Pr}$ | $Cl \rightarrow Rw$ | $Pr \rightarrow Ar$ | $Pr \rightarrow Cl$ | $Pr \rightarrow Rw$ | $Rw \rightarrow Ar$ | $Rw \rightarrow Cl$ | $Rw \rightarrow Pr$ | r Avg |
| UAN w/o d | 61.60               | 81.86               | 87.67               | 74.52               | 73.59                             | 84.88               | 73.65               | 57.37               | 86.61               | 81.58               | 62.15               | 79.14               | 75.39 |
| UAN w/o y | 56.63               | 77.51               | 87.61               | 71.96               | 69.08                             | 83.18               | 71.40               | 56.10               | 84.24               | 79.27               | 60.59               | 78.35               | 72.91 |
| UAN       | 63.00               | 82.83               | 87.85               | 76.88               | <b>78.70</b>                      | 85.36               | 78.22               | 58.59               | 86.80               | 83.37               | 63.17               | 79.43               | 77.02 |

## Analysis of Universal Adaptation Network

Hypotheses Justification



$$\mathbb{E}_{\mathbf{x} \sim p_{\mathcal{C}}} w^{s}(\mathbf{x}) > \mathbb{E}_{\mathbf{x} \sim p_{\overline{C}_{s}}} w^{s}(\mathbf{x})$$

$$\mathbb{E}_{\mathbf{x} \sim q_{\mathcal{C}}} w^{t}(\mathbf{x}) > \mathbb{E}_{\mathbf{x} \sim q_{\overline{C}_{t}}} w^{t}(\mathbf{x})$$
(6)

(b) Hypotheses Quality (blue for *common* and black for *private*)

## Analysis of Universal Adaptation Network

■ Threshold Sensitivity



(c) Sensitivity to  $w_0$ 

#### Discussion

- UDA for not having access to target labels in unsupervised domain adaptation
- end-to-end solution
- exploits both the domain similarity and the prediction uncertainty of each sample to develop a weighting mechanism for discovering label sets shared by both domains and promote common-class adaptation
- serve as a pilot study when we encounter a new domain adaptation scenario.