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Abstract

The task of localizing and categorizing objects in med-
ical images often remains formulated as a semantic seg-
mentation problem. This approach, however, only indirectly
solves the coarse localization task by predicting pixel-level
scores, requiring ad-hoc heuristics when mapping back to
object-level scores. State-of-the-art object detectors on the
other hand, allow for individual object scoring in an end-to-
end fashion, while ironically trading in the ability to exploit
the full pixel-wise supervision signal. This can be particu-
larly disadvantageous in the setting of medical image analy-
sis, where data sets are notoriously small. In this paper, we
propose Retina U-Net, a simple architecture, which natu-
rally fuses the Retina Net one-stage detector with the U-Net
architecture widely used for semantic segmentation in medi-
cal images. The proposed architecture recaptures discarded
supervision signals by complementing object detection with
an auxiliary task in the form of semantic segmentation with-
out introducing the additional complexity of previously pro-
posed two-stage detectors. We evaluate the importance of
full segmentation supervision on two medical data sets, pro-
vide an in-depth analysis on a series of toy experiments and
show how the corresponding performance gain grows in the
limit of small data sets. Retina U-Net yields strong detection
performance only reached by its more complex two-staged
counterparts. Our framework including all methods imple-
mented for operation on 2D and 3D images is available at
github.com/pfjaeger/medicaldetectiontoolkit.

1. Introduction

Semantic segmentation algorithms, such as the U-Net
architecture [22], constitute the de facto standard approach
for detection of anatomical structures in clincial context
[6, 14, 12, 26, 24]. This is owed to the circumstance that

Figure 1. Example predictions of a malignant lesion in a CT scan
of the lung (left) and a benign lesion on a Diffusion MRI of the
breast (right). Object detection in medical images is challenging
due to small objects, large images, and limited training data. We
tackle this problem by exploiting semantic segmentation supervi-
sion in a simple architecture.

annotation of medical images is commonly performed by
delineating the structures of interest resulting in pixel-
wise annotations, which are optimally exploited in the
segmentation scenario learning from per pixel supervision
signals. Furthermore, MRI and CT imaging capture 3D
spaces, inducing inherent spatial separation of objects,
therefore not requiring the discrimination of (overlapping)
instances. While in tasks like radiation therapy planning
or tumor growth monitoring pixel-wise predictions are
clinically required, in most settings coarse localization
or mere knowledge of object presence are of relevance.
This relevance is optimally reflected in study design,
when evaluating models on an object-level. In order to
bridge the discrepancy between pixel-wise predictions
from semantic segmentation and object-level evaluation,
however, ad-hoc heuristics or additional models have to
be introduced. By extracting predictions from coarser
representation levels to enable end-to-end object scoring
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one naturally converges towards the architecture which
most current object detectors are based on: The feature
pyramid network (FPN) [I15]. Two methodologies are
applied for generating object-level predictions from coarse
representations: two-stage detectors, where first objects
are discriminated from background irrespective of class,
accompanied by bounding box regression to generate
region proposals of variable sizes [10, 17, 8]. Subsequently,
proposals are resampled to a fixed-sized grid to ensure
scale-invariance for categorization. On the other hand,
one-stage detectors have been proposed, where category-
specific classification is performed immediately on the
coarse representations [21, 18, 16]. Predicting objects on
coarse levels, however, comes at the prize of coarsening
pixel-wise annotations to bounding boxes (or cubes). This
conversion entails information loss which contradicts the
need for data-efficient training on comparably small data
sets in the medical domain. We show that fully exploiting
the available semantic segmentation signal results in
significant performance gains for object detection tasks on
medical images. While previous work in the non-medical
domain has pursued this concept [23, 19, 20, 3], the extra
supervision signal is either used sub-optimally or combined
with approaches of arguably significant model complexity.
The applicability of computer aided detection systems in
clinical environments however, among other requirements,
hinges on their interpretability and robustness, which
intuitively decreases with model complexity. Furthermore,
we argue that the explicit scale variance enforced by
the resampling operation in two-stage detectors is not
helpful in the medical domain, since unlike in natural
images, scale does not depict artifacts caused by varying
distances between object and camera, but encodes semantic
information.

Towards the goal of both model simplicity and opti-
mally leveraging available supervision signals, we propose
Retina U-Net, a simple approach to recapturing full
semantic segmentation supervision based on Retina Net,
a plain one-stage detector. Inspired by the U-Net, a very
successful model for semantic segmentation of medical
images [22], we complement the top-down part of the
Feature Pyramid Network by additional high resolution
levels to learn the auxiliary task of semantic segmentation.
From a segmentation perspective, we retrofit the U-Net
with two sub-networks operating on the coarse feature
levels of the decoder part to allow for end-to-end object
scoring.

We demonstrate the effectiveness of our model on the
task of detecting and categorizing lesions on two data
sets: Lung-CT (publicly available data [2]) and Breast-
Diffusion-MRI (in-house data set described below). We

support our analysis by a series of toy experiments that help
shed light on the reasons behind the observed performance
gains. The proposed model, Retina U-Net, shows results
superior to a U-Net like segmentation model with detection
heuristics as well as the prevalent object detectors without
full semantic supervision: Mask R-CNN [10] and Retina
Net [16]. In order to provide a fair and insightful compari-
son, we enhance the two-stage baselines such that they can
be trained with a full segmentation signal and show that
Retina U-Net is able to hold up against such more complex
models. This paper makes the following contributions:

e A simple but effective method for leveraging seman-
tic segmentation training signals in object detection fo-
cused on application in medical images.

e An in-depth analysis of the prevalent object detectors
(operating in 2D as well as 3D) by means of compara-
tive studies on medical data sets.

e Weighted box clustering: An algorithm to consolidate
object detections across different predictions of the
same image in 2D and 3D.

e A comprehensive framework including e.g. modular
implementations of all explored models and an effi-
cient implementation of weighted box clustering.

2. Related Work

Since object detection in natural images is increasingly
formulated as an instance segmentation problem, several
two-stage object detectors learn to predict proposal-based
segmentations [ 10, 4, 1 7]. However, we argue that this setup
does not fully exploit semantic segmentation supervision:

e The mask loss is only evaluated on cropped proposal
regions, i.e. context gradients of surrounding regions
are not backpropagated.

e The proposal region as well as the ground truth mask
are typically resampled to a fixed-sized grid (known as
RolAlign [10]).

e Only positive matched proposals are utilized for the
mask loss, which induces a dependency on the region
proposition performance.

o Gradients of the mask loss do not flow through the en-
tire model, but merely from the corresponding pyramid
level upwards.

Auxiliary tasks for exploiting semantic segmentation
supervision have been applied in two stage detectors with
bottom-up feature extractors (i.e. encoders) [23, 19]. In the
one-stage domain, the work of Uhrig et al. is the one most
similar to ours: Semantic segmentation is performed on top
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Figure 2. The Retina U-Net architecture in 2D.

of a single-shot detection (SSD) architecture for instance
segmentation, where segmentation outputs are assigned to
box proposals in a post-processing step [25]. Zhang et al.
propose a similar architecture, but learn segmentation in
a weakly-supervised manner, using pseudo-masks created
from bounding box annotations [28].

As opposed to bottom-up backbones for feature ex-
traction, we follow the argumentation of feature pyramid
networks [15], where a top-down (i.e. decoder) pathway
is installed to allow for semantically rich representations
at different scales. This concept is adapted from state-
of-the-art segmentation architectures [22, 5] and used in
both current one- and two-stage detectors. Building on
FPN-based two-stage detectors the winning entries of
the COCO object detection challenge 2017 [20] and the
COCO instance segmentation challenge 2018 [3] report to
have used additional semantic segmentation supervision in
increasingly complex backbones like FishNet [3], without
disclosing implementation details at the time of submission
(e.g. the resolution at which segmentation is learned
remains unclear). In contrast, we propose a FPN-based
one-stage detector, which allows to naturally fuse object
detection and segmentation, resulting in the simple Retina
U-Net architecture.

3. Methods
3.1. Retina U-Net

Retina Net. Retina Net is a simple one-stage detector
based on a FPN for feature extraction [16], where two
sub-networks operate on the pyramid levels Ps-F; for
classification and bounding box regression, respectively.
Here P; denotes the feature-maps of the jth decoder level,
where j increases as the resolution decreases. To factor

in the existence of small object sizes in medical images,
we shift sub-network operations by one pyramid level
towards P»-P;. This comes at a computational price,
since a vast number of dense positions are produced in
the higher resolution P» level. We further exchange the
sigmoid non-linearity in the classification sub-network for
a softmax operation, to account for mutual exclusiveness of
classes due to non-overlapping objects in 3D images. For
the 3D implementation, the number of feature maps in the
network-heads was reduced to 64, to reduce GPU memory
consumption.

Adding Semantic Segmentation Supervision. In
Retina U-Net training signals from full semantic supervi-
sion are added to the top-down path by means of additional
pyramid levels P; and P, including the respective skip
connections with the bottom-up path. The resulting Feature
Pyramid resembles the symmetric U-Net architecture (see
Figure 2), which in the following we refer to as U-FPN for
clarity. The detection sub-networks do not operate on P;
and Py, which keeps the number of parameters at inference
time unchanged. The segmentation loss is calculated from
Py logits. In addition to a pixel-wise cross entropy loss
LcE, a soft Dice loss is applied, which has been shown to
stabilize training on highly class imbalanced segmentation
tasks e.g. in the medical domain [12]:
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where u is the softmax output of the network and v is a one
hot encoding of the ground truth segmentation map. Both u
and v have shape I x K with ¢ € I being the number of pix-
els in the training batch and k € K being the classes. Since
dice scores are determined on a per class basis, images with



zero foreground pixels in one class lead to unstable scores,
where false positive predictions are not penalized. To allevi-
ate this problem, we compute the dice scores over a pseudo-
volume consisting of all images in one batch.

3.2. Weighted Box Clustering

Medical images typically are comparatively large, due
to e.g. very high resolutions as in mammograms, or since
they are acquired as 3D volumes like in MRI. Image resolu-
tions are expected to keep rising in the future driven by ad-
vances in imaging technologies, such as the recent introduc-
tion of 7T MRI scanners. For this reason models are trained
on patch crops, resulting in a trade-off between patch size
and batch size limited by available GPU memory. If a sin-
gle image exceeds GPU memory, inference is performed
patch-wise as well, where tiling strategies are designed to
avoid potential artifacts that arise due to effects at the patch
boundaries (e.g. by allowing for sufficient overlap between
patches). The tiling strategies as well as test time augmenta-
tions and model ensembling can amount to a large number
of predictions per patch and image (particularly in medi-
cal object detection, where validation metrics for model se-
lection are often based on limited validation data, ensem-
bling over multiple selected epochs is able to reduce noise
effects in this process). The resulting predictions for differ-
ent views of the same image need to be consolidated, which
in semantic segmentation is done via simple per-pixel av-
eraging. For consolidation of predictions in object detec-
tion, we propose weighted box clustering (WBS): Similar to
the commonly used non-maximum suppression algorithm,
WBS clusters predictions to be consolidated according to
an IoU threshold, but instead of selecting the highest scor-
ing box in the cluster, weighted averages o. per coordinate
and a weighted confidence score oy per resulting box are
computed. Further, the prior knowledge about the expected
number of predictions at a position (number of views from
ensembling, test time augmentations and patch overlaps at
the position) is used to down-weight o5 for views that did
not contribute at least one box to the cluster (N,,555ing):
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where 7 is the cluster members’ index, s and ¢ the corre-

sponding confidence scores and coordinates. w = f-a-p
is the weighting factor, consisting of:
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e overlap factor f: weights according to the overlap be-
tween a box and the highest scoring box (softmax con-
fidence) in the cluster.

e area a: assigns higher weights to larger boxes based on
empirical observations indicating an increase in image
evidence from larger areas.

e patch center factor p: down-weights boxes based on
the distance to the input patch center, where most im-
age context is captured. Scores are assigned according
to the density of a normal distribution that is centered
at the patch center.

An example for application of WBC is shown in Figure 4.

4. Experiments
4.1. Backbone & Baselines

In this study, we compare Retina U-Net against a set
of one- and two-stage object detectors. We evaluate the
performance of all models processing the data in both 2D
(slice-based) and 3D (volumetric patches). For the sake of
unrestricted comparability, all methods are implemented
in one framework, using a FPN [15] based on a ResNet50
backbone [I11] as identical architecture for feature ex-
traction. The anchor sizes are divided by a factor of 4 to
account for smaller objects in the medical domain resulting
in anchors of size {42, 82,162, 322} for the corresponding
pyramid levels { P>, P3, Py, Ps}. In the 3D implementation,
the z-scale of anchor-cubes is set to {1, 2, 4, 8} factoring in
the typically lower resolutions along the z-axis.

Retina Net.  The implementation of Retina Net is
identical to the one used in Retina U-Net and described in
3.1 (see Figure 3c).

Mask R-CNN. Minor adjustments have to be made
for the 3D implementation: The number of feature maps
in the region proposal network is lowered to 64 to reduce
GPU memory consumption. The poolsize of 3D-RolAlign
is set to (7, 7, 3) for the classification head and (14, 14, 5)
for the mask head. The matching IoU for positive proposals
is lowered to 0.3 (see Figure 3a).

Faster R-CNN+. In order to single out the Mask
R-CNN’s performance gain obtained by segmentation su-
pervision from the mask head, we run ablations on the toy
data sets while disabling the mask-loss, thereby effectively
reducing the model to the Faster R-CNN architecture [9]
except for the RolAlign operation (which we denote by a
+) (see Figure 3b).

U-Faster R-CNN+. As the currently leading COCO
challenge architecture’s exact implementation details are
presently undisclosed [3], we explore the performance of
additional semantic segmentation in two-stage detectors by
deploying Faster R-CNN+ on top of U-FPN. (see Figure
3d).

DetU-Net.  Essentially formulating the problem as a
semantic segmentation task, as is common on medical
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Figure 3. The upper panel shows all baselines utilizing a regular FPN feature extractor while the lower panel depicts baselines that employ a
symmetric FPN feature extractor akin to a U-Net (U-FPN). Subfigures a) - e) show the detection sub networks (heads) that are characteristic
of each model and operate on FPN features. All models employ their respective head topology to different decoder scales which are denoted

in red. Boxes in green indicate logits that are trained on an auxiliary semantic segmentation task.

imaging, we implement a U-Net-like baseline using U-
FPN. Therefore softmax predictions are extracted from P,

Table 1. Results for lung lesion detection on CT.

via 1x1 convolution and utilized to identify connected com- Dim. Model mAPy [%] APpat,, [%]
ponents for all foregorund classes. Subsequently, bounding Retina U-Net  49.8 70.4
boxes (or cubes) are drawn around connected components Retina Net 459 68.8
and the highest softmax probability per component and 3D DetU-Net 36.6 62.8
class is assigned as object score. To reduce noise, only the U-FRCNN+ 50.5 70.7
5 (15 in 3D) largest components per image are considered Mask R-CNN  48.3 71.8
(see Figure 3e). Retina U-Net ~ 50.2 73.9
Retina Net 48.2 71.5
2Dc  DetU-Net 41.1 66.1
U-FRCNN+  49.1 71.6
4.2. Training & Inference Setup Mask R-CNN  45.4 69.1
For comparability, experiments for all methods are run Retina U-Net  40.8 68.0
with identical training and inference schemes. Since exper- Retina Net 39.5 67.7
iments are performed on 3D images, several possible ways 2D DetU-Net 29.0 59.8
of processing the volumetric data arise. In this study, we U-FRCNN+ 38.6 66.4
compare slice-wise 2D processing, slice-wise 2D process- Mask R-CNN  35.3 63.6

ing feeding the 43 neighbouring slices as additional input
channels (2Dc) [27], and 3D volume processing (i.e. us-
ing volumetric convolutions). Oversampling of foreground
regions is applied when training on patch crops. To ac-
count for the class-imbalance of object level classification
losses, we stochastically mine the hardest negative object
candidates according to softmax probability. Models are
trained in a 5-fold cross validation (splits: train 60% / val
20% / test 20%) with batch size 20 (8) in 2D (3D) using
the Adam [13] optimizer at a learning rate of 10~%. Ex-

tensive data augmentation in 2D and 3D is applied to ac-
count for overfitting. To compensate for unstable statistics
on small data sets, we report results on the aggregated inner
loop test sets and ensemble by performing test-time mirror-
ing as well as by testing on multiple models selected as the
5 highest scoring epochs according to validation metrics.
Consolidation of box predictions from ensemble-members
and overlapping tiles is done via clustering and weighted av-



Table 2. Results for breast lesion detection on Diffusion-MRI.

Dim. Model mAP [%] AP, [%]
Retina U-Net  35.8 88.0
Retina Net 31.9 86.4
3D DetU-Net 26.9 85.1
U-FRCNN+ 35.1 86.5
Mask R-CNN  34.0 84.8
Retina U-Net 334 86.9
Retina Net 332 84.4
2Dc  DetU-Net 25.8 81.6
U-FRCNN+ 33.2 84.7
Mask R-CNN  32.3 86.4
Retina U-Net  31.8 85.2
Retina Net 32.3 86.1
2D DetU-Net 22.3 80.1
U-FRCNN+ 33.1 83.7
Mask R-CNN  33.6 86.8

eraging of scores and coordinates, as detailed in Section 3.2.
Since evaluation is performed entirely in 3D, a adaption of
non-maximum suppression (NMS) is applied to consolidate
box predictions from 2D networks to 3D cube predictions:
Boxes of all slices are projected into one plane while retain-
ing the slice-origin information. When applying NMS, only
boxes with direct or indirect connection to the slice of the
highest scoring box are considered as matches. The mini-
mal and maximal slice numbers of all matches are assigned
as z-coordinates to the resulting prediction cube.

4.3. Evaluation

Experiments are evaluated using mean average precision
(mAP). We determine mAP at a relatively low matching in-
tersection over union (IoU) threshold of IoU = 0.1. This
choice respects the clinical need for coarse localization and
also exploits the non-overlapping nature of objects in 3D.
Note, that evaluation and matching is performed in 3D for
all models and processing setups. Patient-level scoring is
often used in the clinical context for staging and treatment
and is therefore sometimes used for model selection. In our
setting the patient-level metric is to be taken with a grain
of salt: By disregarding whether box predictions match the
ground truth, it is blind to the issue of ‘being right for the
wrong reasons’ and can further over-estimate performance
due to class-imbalance on the patient-level. For the purpose
of comparability, we however also report patient-scores in
Table 2 which are determined as the maximum of predicted
scores per class and patient and compute the AP thereof.

Figure 4. Example application of the weighted box clustering
(WBC) algorithm. (a) lung CT scan containing a benign lesion
marked in green. (b) box predictions of Retina U-Net trained in
2D with context slices: 4 mirror settings from 5 tested epochs lead
yield 100 box predictions in the two foreground classes. (c) Re-
maining predictions after application of WBC: The true lesion is
predicted correctly as benign (class 1) with 93% confidence, sur-
rounded by one false positive prediction for class 2 (malignant).
(d) Remaining predictions after applying Non-maximum suppres-
sion instead of WBC: The benign lesion is predicted correctly, but
multiple false positives remain in the image with confidence scores
as high as 83%.



4.4. Lung nodule detection and categorization

We consider the task of detecting lesions and assigning
them to one of two categories, benign or malignant. This
is both a difficult and very frequent problem setting in ra-
diology and therefore constitutes a highly-relevant domain
of application with its own characteristics that our approach
factors in and addresses. Furthermore, fine-grained cate-
gorization is expected to gain relevance in the context of
growing data sets and image resolutions.

4.4.1 Utilized data set

The lung nodule detection and categorization task is per-
formed on the publicly available LIDC-IDRI data set [2, [,

], consisting of 1035 lung CT scans with manual lesion
segmentations and malignancy likelihood scores (1-5) from
four experts. We aggregate labels across raters per lesion
by applying a pixel-wise majority voting on the segmen-
tations and taking the mean of malignancy scores. Scores
are then re-labelled into benign (1-2, n=1319) and malig-
nant (3-5, n=494). CT scans are resampled to a resolution
of 0.7 x 0.7 x 1.25 mm, which roughly corresponds to the
mean resolution of the data set. For training, patches of size
288 x 288 (for 3D training: 128 x 128 x 64) are sampled.

4.4.2 Results

Results for the lung lesion detection task are shown in Table
1. Retina U-Net performs best on the 2D setups (0.41 mAP
and 50.2 mAP with context slices) and only slightly worse
(0.50 mAP) than its two-stage counterpart (0.51 mAP), the
U-FRCNN+ in 3D. Comparing the two to the remaining
baselines shows a clear performance margin, hinting upon
the importance of full segmentation supervision. The DetU-
Net performs worse with a notable margin (0.41 mAP in 2D
with context slices and 0.37 mAP in 3D), seemingly suffer-
ing from high confidence false positive predictions caused
by the ad-hoc score aggregation. Generally, 3D context
shows to be important for this task, yet operating entirely
in 3D seems to yield no benefits with respect to feeding the
=+ 3 neighbouring slices to a 2D network.

4.5. Breast lesion detection and categorization

4.5.1 Utilized data set

The breast lesion detection and categorization task is per-
formed on an in-house Diffusion MRI data set of 331 Pa-
tients with suspicious findings in previous mammography.
Lesion annotations are provided by experts. Categoriza-
tion labels are given by subsequent pathology results (be-
nign: n=141, malignant: n=190). Images are resampled
to a resolution of 1.25 x 1.25 x 3mm. For training, im-
ages are cropped to a size of 160 x 160 (for 3D training:
160 x 160 x 56).

4.5.2 Results

Results for the breast lesion detection task are shown in
Table 2. Retina U-Net performs best in 2D with context
slices (0.33 mAP) and in 3D (0.36 mAP). Mask R-CNN
yields best results on plain 2D (0.34 mAP). The overall
best results are achieved by Retina U-Net and U-FRCNN+,
again indicating that leveraging the full segmentation infor-
mation is crucial in medical object detection. As opposed
to the lung CT data set, 3D context information seems to
be less important here, which is expected, when operating
on highly anisotropic data, i.e. data with low z-resolution.
Notably, the patient-level scores are only poorly correlated
to the actual model performance due to high ambiguities in
score aggregation and should not be used for model selec-
tion in clinical context.

4.6. Toy Experiments

We create a series of toy experiments to get a handle on
the sub-tasks commonly involved in object-categorization
on medical images, such as distinguishing scales, shapes
and intensities. More specifically, the aim is to investigate
the importance of full segmentation supervision in the con-
text of limited training data. Therefore we consider three
tasks for each of which we gradually decrease the amount
of training data:

1. Distinguishing object shapes: Two classes of objects
are to be detected and distinguished, where class 1
consists of filled circles with 20 pixels diameter and
class 2 consists of filled circles with 20 pixels diame-
ter and a centered whole of 4 pixels diameter, resem-
bling the shape of donuts (see Figure 6a). For this
task, the corresponding segmentation mask’s shape ex-
plicitly contains the discriminative feature, since the
centered whole is cut out from the foreground mask.
Hence, full semantic supervision is expected to yield
significant performance gains on this task, particularly
in the small data regime.

2. Learning discriminative object patterns: This task
is identical to the previous one, except the central hole
is not cut out from the segmentation masks of the
donuts (class 2). This requires the model to pick up
the discriminative pattern (the hole) without explicitly
pointing it out by means of the mask’s shape (see Fig-
ure 6a). This setup could be considered more realistic
in the context of medical images.

3. Distinguishing object scales: Two classes of objects
are to be detected and distinguished, where class 1 con-
sists of circles with 19 pixels diameter and class 2 con-
sists of circles with 20 pixels diameter (see Figure 6b).
Here, class information is entirely encoded in object
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Figure 5. Results of the of toy experiment series. The three tasks are displayed as (a) distinguishing objects of different shapes, (b) learning
discriminative image patterns unrelated to an object’s shape, and (c) distinguishing objects of different scales. Explored models are divided
into two groups: One-stage methods have blue/green color, while two-stage methods are drawn in red. n denotes the number of utilized

training images.

scales and hence in target box coordinates. No signifi-
cant gain from semantic supervision is expected.

4.6.1 Utilized data set

Both data sets consist of artificially generated 2D images of
size 320 x 320, where 1000 images were created for train-
ing, 500 for validation, and another 1000 as held-out test
set. Images are zero-initialized and foreground objects im-
printed by increasing intensity values by 0.2. Subsequently,
uniform noise is added to all pixels.

4.6.2 Results

Results are shown in Figure 5. In the first task, where ex-
plicit class information is contained in segmentation anno-
tations, models which explicitly leverage those, i.e. Retina
U-Net and U-FRCNN, perform best. The resulting margin
increases with decreasing amount of available training data.
The second task, where class information is effectively re-
moved from segmentation annotations, similar margins of
Retina U-Net and U-FRCNN+ towards the other models are
observed. This indicates the importance of full segmenta-
tion supervision even in implicit setups and shows a partic-
ularly strong edge in the small data set regime, where mod-
els that discard this supervision essentially collapse. In the
third task, where class information is entirely contained in
the target boxes, no gain from segmentation supervision is
observed, at least for small training data sets. Interestingly,
two-shot detectors perform better at this task, which seems
counter-intuitive given the scale-invariance enforced by the
RolAlign operation. We hypothesize, that this bottleneck
regularizes the architecture in a sense that scale informa-
tion is enforced to be encoded broadly over spatial dimen-
sions of FPN features. Comparing Mask R-CNN to Faster

Figure 6. Image samples of the toy experiments. (a) the first two
tasks require to detect and distinguish filled circles (left) from
donuts (right) over noisy background. (b) For the third task, filled
circles of different scales have to be distinguished: 19 pixels di-
ameter (left) versus 20 pixels diameter (right).

R-CNN+, the sub-optimal mask-supervision seems to yield
no gains in detection performance when working with lim-
ited training data.

5. Conclusion

In this work, we propose Retina U-Net, a simple but ef-
fective one-stage detection model which leverages seman-
tic segmentation inspired by the current state-of-the-art ar-
chitecture in medical segmentation. We show the impor-
tance of exploiting these training signals on multiple data



sets, input dimensions and meticulously compare against
the prevalent object detection models, with a particular em-
phasis on the context of limited training data. Therefore,
we consider the task of localizing and classifying lesions,
which constitutes a difficult and very frequent problem set-
ting in radiology and therefore a highly-relevant domain
of application. On the publicly available LIDC-IDRI lung
CT dataset as well as on our in-house breast lesion MRI
dataset Retina U-Net yields detection performance superior
to models without full segmentation supervision and only
reached by its more complex two-stage counterpart. By
means of a set of toy experiments we shed light on a im-
portant set of scenarios that can profit from the additional
full supervision: Any such problem where there is discrim-
inative power in features beyond mere scale can expect to
pocket an edge in detection performance. Among other dis-
tinguishing characteristics, the domain of medical image
analysis holds one prominent feature: scarcity of labelled
data. Retina U-Net is designed to make the most of the
given supervision signal which is a key advantage on small
datasets as high-lighted by our experiments. Our architec-
ture stands out with another feature: its embarrassingly sim-
ple model formulation that takes aim at the clinical require-
ment of interpretability and robustness.
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