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Preliminary

• Domain
• Including Data and the Distribution that generating data.
• Source domain      and target domain

• Transfer Learning
• A labeled source domain and an unlabeled target domain.
• Distributions are different.
• How to learn the knowledge in target domain with the help of source domain ?

• Domain Adaptation
• Same feature space, i.e. 
• Same conditional distribution, i.e.
• Different marginal distribution, i.e. 
• Same class space, i.e. 
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Related work (based on MMD)

• 𝜇1 = 1, 𝜇2 = 0 Transfer Component Analysis (TCA). [Pan et al., 2011]
• 𝜇1 = 1, 𝜇2 = 1 Joint Distribution Adaption (JDA). [Long et al., 2013]
• 𝜇1 = 1 − 𝜇2 Balanced Distribution Adaption (BDA). [Wang et al., 2017]
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Introduction

• Compute the discrepancy between two domains by considering the joint 
probability distribution discrepancy directly.

• Simultaneously maximize the between-domain transferability and the between-
class discriminability
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Method

Transferability Discriminability
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Method

• Matrix representation
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• Matrix representation

Kernelization：
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• Optimizing



Method
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• Algorithm



Experiments
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• Datasets: Office (webcam, DSLR, Amazon), Caltech, COIL20, Multi-PIE, USPS, MNIST



Experiments
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• Results
Different poses

C : Caltech
W:  Webcam
A :  amazon
D :  DSLR



Experiments
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• Visualization



Experiments
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• Convergence
• Less than 5 iterations

• Time Complexity

• Parameters Sensitivity
• Robust to µ in [0.001, 0.2] 

and λ in [0.01, 10]



Experiments
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• Ablation study



• Simple yet effective DJP-MMD for traditional Domain Adaptation

• Extensive experiments and superior performances
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Discussion


