Discriminative Joint Probability Maximum Mean Discrepancy (DJP-MMD) for Domain Adaptation

Wen Zhang and Dongrui Wu

Paper Reading
Yang Tan
Feb 21 2020

Preliminary

- Domain ${\mathcal D}$
 - Including Data and the Distribution that generating data.
 - Source domain \mathcal{D}_s and target domain \mathcal{D}_t
- Transfer Learning
 - A labeled source domain and an unlabeled target domain.
 - Distributions are different.
 - How to learn the knowledge in target domain with the help of source domain?
- Domain Adaptation
 - Same feature space, i.e. $\mathcal{X}_s = \mathcal{X}_t$
 - Same conditional distribution, i.e. $Q_s(y_s|\mathbf{x}_s) = Q_t(y_t|\mathbf{x}_t)$
 - Different marginal distribution, i.e. $P_s(\mathbf{x}_s) \neq P_t(\mathbf{x}_t)$
 - Same class space, i.e. $\mathcal{Y}_s = \mathcal{Y}_t$

Related work (based on MMD)

$$\min_{h} d_{S,T} + \lambda \mathcal{R}(h),$$

$$d(\mathcal{D}_{s}, \mathcal{D}_{t}) = d(P(Y_{s}|X_{s})P(X_{s}), P(Y_{t}|X_{t})P(X_{t}))$$

$$\approx \mu_{1}d(P(X_{s}), P(X_{t}))$$

$$+ \mu_{2}d(P(X_{s}|Y_{s}), P(X_{t}|Y_{t})),$$

$$d(\mathcal{D}_{s}, \mathcal{D}_{t}) \approx \mu_{1} \left\| \frac{1}{n_{s}} \sum_{i=1}^{n_{s}} A^{\top} \mathbf{x}_{s,i} - \frac{1}{n_{t}} \sum_{j=1}^{n_{t}} A^{\top} \mathbf{x}_{t,j} \right\|_{2}^{2}$$

$$+ \mu_{2} \sum_{c=1}^{C} \left\| \frac{1}{n_{s}^{c}} \sum_{i=1}^{n_{s}^{c}} A^{\top} \mathbf{x}_{s,i}^{c} - \frac{1}{n_{t}^{c}} \sum_{j=1}^{n_{t}^{c}} A^{\top} \mathbf{x}_{t,j}^{c} \right\|_{2}^{2},$$

- $\mu_1 = 1$, $\mu_2 = 0$ Transfer Component Analysis (TCA). [Pan et al., 2011]
- $\mu_1 = 1$, $\mu_2 = 1$ Joint Distribution Adaption (JDA). [Long et al., 2013]
- $\mu_1 = 1 \mu_2$ Balanced Distribution Adaption (BDA). [Wang et al., 2017]

Introduction

- Compute the discrepancy between two domains by considering the joint probability distribution discrepancy directly.
- Simultaneously maximize the between-domain transferability and the betweenclass discriminability

Introduction

$$d(\mathcal{D}_{s}, \mathcal{D}_{t}) = d\left(P(X_{s}|Y_{s})P(Y_{s}), P(X_{t}|Y_{t})P(Y_{t})\right)$$

$$= \sum_{c=\hat{c}}^{C} \sum_{\hat{c}=1}^{C} d\left(P(X_{s}|Y_{s}^{c})P(Y_{s}^{c}), P(X_{t}|Y_{t}^{\hat{c}})P(Y_{t}^{\hat{c}})\right)$$

$$+ \sum_{c\neq\hat{c}} \sum_{\hat{c}=1}^{C} d\left(P(X_{s}|Y_{s}^{c})P(Y_{s}^{c}), P(X_{t}|Y_{t}^{\hat{c}})P(Y_{t}^{\hat{c}})\right)$$

$$= \sum_{c=1}^{C} d\left(P(X_{s}|Y_{s}^{c})P(Y_{s}^{c}), P(X_{t}|Y_{t}^{c})P(Y_{t}^{c})\right)$$

$$+ 2\sum_{c<\hat{c}} \sum_{\hat{c}=2}^{C} d\left(P(X_{s}|Y_{s}^{c})P(Y_{s}^{c}), P(X_{t}|Y_{t}^{\hat{c}})P(Y_{t}^{\hat{c}})\right)$$

$$\equiv \mathcal{M}_{t} + 2\mathcal{M}_{d} \tag{7}$$

$$\mathcal{M}_{t} = \sum_{c=1}^{C} d\left(P(X_{s}|Y_{s}^{c})P(Y_{s}^{c}), P(X_{t}|Y_{t}^{c})P(Y_{t}^{c})\right)$$

$$= \sum_{c=1}^{C} \|\mathbb{E}[f(\mathbf{x}_{s})|y_{s}^{c}]P(y_{s}^{c}) - \mathbb{E}[f(\mathbf{x}_{t})|y_{t}^{c})]P(y_{t}^{c})\|^{2},$$
(9)

where empirically

$$\mathbb{E}[f(\mathbf{x}_s)|y_s^c] = \frac{1}{n_s^c} \sum_{i=1}^{n_s^c} A^{\top} \mathbf{x}_{s,i}^c, \tag{10}$$

$$P(y_s^c) = \frac{n_s^c}{n_s}. (11)$$

Then,

$$\mathbb{E}[f(\mathbf{x}_s)|y_s^c]P(y_s^c) = \frac{1}{n_s} \sum_{i=1}^{n_s^c} A^{\top} \mathbf{x}_{s,i}^c.$$
 (12)

Similarly, we have

$$\mathbb{E}[f(\mathbf{x}_t)|y_t^c]P(y_t^c) = \frac{1}{n_t} \sum_{i=1}^{n_t^c} A^\top \mathbf{x}_{t,i}^c, \tag{13}$$

where y_t is target-domain pseudo-label estimated from a classifier trained in the source domain.

Substituting (12) and (13) into (9), we have

$$\mathcal{M}_{t} = \sum_{c=1}^{C} \left\| \frac{1}{n_{s}} \sum_{i=1}^{n_{s}^{c}} A^{\top} \mathbf{x}_{s,i}^{c} - \frac{1}{n_{t}} \sum_{j=1}^{n_{t}^{c}} A^{\top} \mathbf{x}_{t,j}^{c} \right\|_{2}^{2}.$$
 (14)

$$\mathcal{M}_{d} = \sum_{c < \hat{c}} \sum_{\hat{c}=2}^{C} d(P(X_{s}|Y_{s}^{c})P(Y_{s}^{c}), P(X_{t}|Y_{t}^{\hat{c}})P(Y_{t}^{\hat{c}}))$$

$$= \sum_{c < \hat{c}} \sum_{\hat{c}=2}^{C} \left\| \mathbb{E}[f(\mathbf{x}_{s})|y_{s}^{c}]P(y_{s}^{c}) - \mathbb{E}[f(\mathbf{x}_{t})|y_{t}^{\hat{c}}]P(y_{t}^{\hat{c}}) \right\|^{2}.$$
(15)

Using the same derivation as before, it follows that

$$\mathcal{M}_{d} = \sum_{c < \hat{c}} \sum_{\hat{c}=2}^{C} \left\| \frac{1}{n_{s}} \sum_{i=1}^{n_{s}^{c}} A^{\top} \mathbf{x}_{s,i}^{c} - \frac{1}{n_{t}} \sum_{j=1}^{n_{t}^{\hat{c}}} A^{\top} \mathbf{x}_{t,j}^{\hat{c}} \right\|_{2}^{2}.$$
(16)

Matrix representation

$$\mathcal{M}_t = \left\| A^\top X_s N_s - A^\top X_t N_t \right\|_F^2, \tag{17}$$

where N_s and N_t are defined as

$$N_s = \frac{Y_s}{n_s}, \ N_t = \frac{\hat{Y}_t}{n_t}. \tag{18}$$

$$\mathcal{M}_d = \left\| A^\top X_s M_s - A^\top X_t M_t \right\|_F^2, \tag{20}$$

where

$$M_s = \frac{F_s}{n_s}, \ M_t = \frac{\hat{F}_t}{n_t}. \tag{21}$$

$$F_s = [Y_s(:,1) * (C-1), Y_s(:,2) * (C-2), ..., Y_s(:,C-1)],$$

$$\hat{F}_t = [\hat{Y}_t(:, 2:C), \hat{Y}_t(:, 3:C), ..., \hat{Y}_t(:, C)], \tag{19}$$

Matrix representation

$$\min_{A} \|A^{\top} X_{s} N_{s} - A^{\top} X_{t} N_{t}\|_{F}^{2}
- \mu \|A^{\top} X_{s} M_{s} - A^{\top} X_{t} M_{t}\|_{F}^{2} + \lambda \|A\|_{F}^{2}
s.t. A^{\top} X H X^{\top} A = I,$$
(23)

Kernelization:

$$\min_{A} \|A^{\top} K_{s} N_{s} - A^{\top} K_{t} N_{t}\|_{F}^{2}
- \mu \|A^{\top} K_{s} M_{s} - A^{\top} K_{t} M_{t}\|_{F}^{2} + \lambda \|A\|_{F}^{2}
s.t. A^{\top} K H K^{\top} A = I,$$
(28)

Optimizing

D. Optimize the JPDA

Define $X = [X_s, X_t]$. We can write the Lagrange function [25] of (23) as

$$\mathcal{J} = \operatorname{tr} \left(A^{\top} \left(X (R_{\min} - \mu R_{\max}) X^{\top} + \lambda I \right) A \right) + \operatorname{tr} \left(\eta (I - A^{\top} X H X^{\top} A) \right),$$
(24)

where

$$R_{\min} = \begin{bmatrix} N_s N_s^{\top} & -N_s N_t^{\top} \\ -N_t N_s^{\top} & N_t N_t^{\top} \end{bmatrix}, \tag{25}$$

$$R_{\text{max}} = \begin{bmatrix} M_s M_s^{\top} & -M_s M_t^{\top} \\ -M_t M_s^{\top} & M_t M_t^{\top} \end{bmatrix}. \tag{26}$$

 R_{max} has dimensionality $n \times n$, which does not change with the number of classes.

By setting the derivative $\nabla_A \mathcal{J} = \mathbf{0}$, (24) becomes a generalized eigen-decomposition problem:

$$(X(R_{\min} - \mu R_{\max})X^{\top} + \lambda I)A = \eta X H X^{\top} A. \tag{27}$$

Algorithm

Algorithm 1: Joint Probability Distribution Adaptation (JPDA)

Input: X_s and X_t , source and target domain feature matrices;

 Y_s , source domain one-hot coding label matrix;

p, subspace dimensionality;

 μ , trade-off parameter;

 λ , regularization parameter;

T, number of iterations.

Output: \hat{Y}_t , estimated target domain labels.

for n = 1, ..., T do

Construct the joint probability matrix R_{\min} and R_{\max} by (25) and (26);

Solve the generalized eigen-decomposition problem in (27) and select the p trailing eigenvectors to construct the projection matrix A;

Train a classifier f on $(A^{\top}X_s, Y_s)$ and apply it to $A^{\top}X_t$ to obtain \hat{Y}_t .

end

• Datasets: Office (webcam, DSLR, Amazon), Caltech, COIL20, Multi-PIE, USPS, MNIST

TABLE I
CLASSIFICATION ACCURACY (%) OF THE FOUR ALGORITHMS.

Results

Visualization

Fig. 3. t-SNE visualization of the first three classes' data distributions before and after different DA approaches, when transferring Caltech (source) to Amazon (target).

- Convergence
 - Less than 5 iterations
- Time Complexity
- Parameters Sensitivity
 - Robust to μ in [0.001, 0.2] and λ in [0.01, 10]

TABLE II
COMPUTATIONAL COST (SECONDS) OF DIFFERENT APPROACHES.

	TCA	JDA	BDA	JPDA
$C05\rightarrow C07$ $C\rightarrow A$ MNIST \rightarrow USPS	2.58	94.46	107.47	45.34
	2.93	31.61	34.73	30.71
	0.75	9.04	13.58	8.26

Ablation study

Discussion

- Simple yet effective DJP-MMD for traditional Domain Adaptation
- Extensive experiments and superior performances