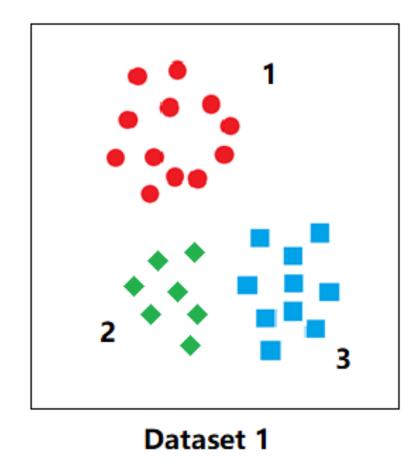
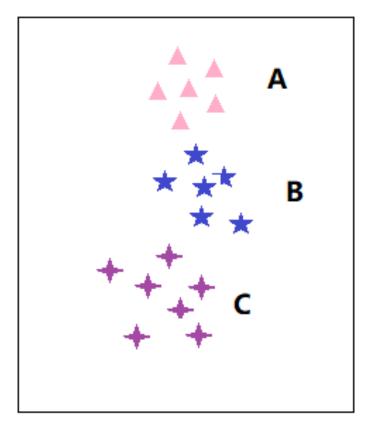
Geometric Dataset Distances via Optimal Transport

Paper Reading
Yang Tan
2020/04/17

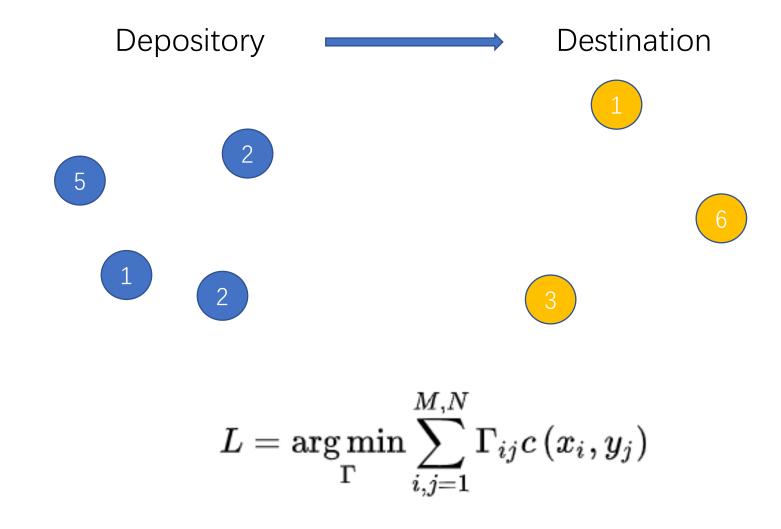
Dataset Distance





Dataset 2

Optimal Transport



Optimal Transport

Probabilistic definition

$$L = rg \min_{\pi} \int_{x} \int_{y} \pi\left(x,y
ight) c\left(x,y
ight) dx dy$$

Optimal Transport Divergence

$$OT\left(P\left\|Q
ight) = \inf_{\pi} \int_{X imes Y} \pi\left(x,y
ight) c\left(x,y
ight) dx dy$$

K-Wasserstein distance

$$W_{k}\left(P,Q
ight)=\inf_{\pi}\int_{X imes Y}\pi\left(x,y
ight)\left\Vert x-y
ight\Vert _{k}^{k}dxdy$$

In this paper

$$\begin{aligned} \operatorname{OT}(\alpha,\beta) &\triangleq \min_{\pi \in \Pi(\alpha,\beta)} \int_{\mathcal{X} \times \mathcal{X}} c(x,y) \, \mathrm{d}\pi(x,y) \\ c(x,y) &= d_{\mathcal{X}}(x,y)^p \\ \mathrm{W}_p(\alpha,\beta) &\triangleq \operatorname{OT}(\alpha,\beta)^{1/p} \end{aligned}$$

Related work

- Discrepancy: Ben-David et al., 2007; Mansour et al., 2009.
- Fisher information metric: Achille et al., 2019.
- Kolmogorov Structure Function: Achille et al., 2018.
- Optimal Transport: Delon & Desolneux, 2019; Dukler et al., 2019; Alvarez Melis et al., 2018.

Contribution

- Model agnostic
- Does not involve training
- Can compare datasets even if datasets are completely disjoint

Method

Definitions

predictors $f: \mathcal{X} \to \mathcal{Y}$ (or conditional distributions $P(y \mid x)$), we define a dataset \mathcal{D} as a set of feature-label pairs $(x,y) \in \mathcal{X} \times \mathcal{Y}$ over a certain feature space \mathcal{X} and label set \mathcal{Y} . For simplicity, we will use $z \triangleq (x,y)$ to denote these pairs, and $\mathcal{Z} \triangleq \mathcal{X} \times \mathcal{Y}$ for their underlying space.

$$\mathcal{D}_{A} = \{(x_{A}^{(i)}, y_{A}^{(i)})\}_{i=1}^{n} \sim P_{A}(x, y)$$

$$\mathcal{D}_{B} = \{(x_{B}^{(j)}, y_{B}^{(j)})\}_{j=1}^{m} \sim P_{B}(x, y)$$

$$d(\mathcal{D}_{A}, \mathcal{\tilde{D}}_{B}) ?$$

Method

Intuitively, we can define the distance as

$$d_{\mathcal{Z}}(z,z') = \left(d_{\mathcal{X}}(x,x')^p + d_{\mathcal{Y}}(y,y')^p\right)^{1/p}$$

• We can use the relationship to feature vectors to define d_{v} :

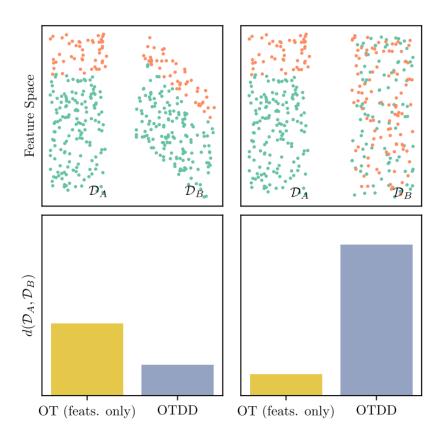
$$\mathcal{N}_{\mathcal{D}}(y) := \{ x \in \mathcal{X} \mid (x, y) \in \mathcal{D} \}$$
$$d(y, y') = d_{\mathcal{X}} \left(\frac{1}{n_y} \sum_{x \in \mathcal{N}_{\mathcal{D}}(y)} x, \frac{1}{n_{y'}} \sum_{x \in \mathcal{N}_{\mathcal{D}}(y')} x \right)$$

 Only measuring the mean is too simplistic for real dataset, thus consider:

$$y \mapsto \alpha_{y}(X) \triangleq P(X \mid Y = y)$$

$$d_{\mathcal{Z}}((x,y),(x',y')) \triangleq \left(d_{\mathcal{X}}(x,x')^{p} + \mathbf{W}_{p}^{p}(\alpha_{y},\alpha_{y'})\right)^{\frac{1}{p}}$$

$$d_{\mathrm{OT}}(\mathcal{D}_{A},\mathcal{D}_{B}) = \min_{\pi \in \Pi(\alpha,\beta)} \int_{\mathcal{Z} \times \mathcal{Z}} d_{\mathcal{Z}}(z,z')\pi(z,z')$$



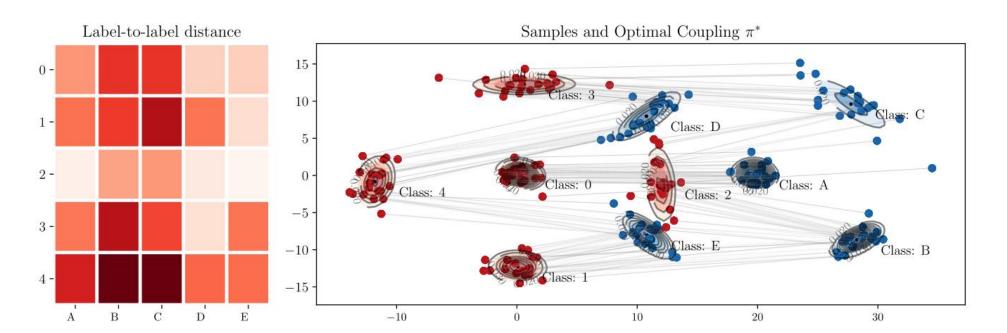
The importance of considering labels

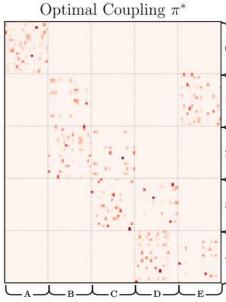
Method

• How to describe α_{ν} ? Gaussian distribution.

$$\hat{\mu}_y \triangleq \frac{1}{n_y} \sum_{x \in \mathcal{N}_{\mathcal{D}}(y)} x; \hat{\Sigma}_y \triangleq \frac{1}{n_y} \sum_{x \in \mathcal{N}_{\mathcal{D}}(y)} (x - \hat{\mu}_y)^\top (x - \hat{\mu}_y)$$

$$W_{2}^{2}(\alpha,\beta) = \|\mu_{\alpha} - \mu_{\beta}\|_{2}^{2} + tr(\Sigma_{\alpha} + \Sigma_{\beta} - 2(\Sigma_{\alpha}^{\frac{1}{2}} \Sigma_{\beta} \Sigma_{\alpha}^{\frac{1}{2}})^{\frac{1}{2}})$$





Datasets

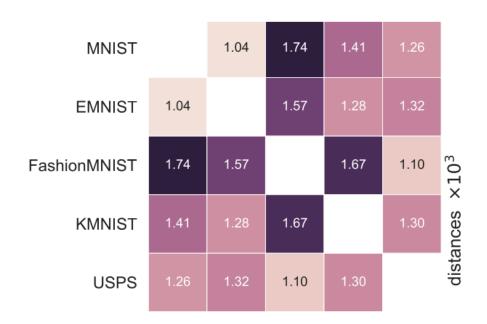
Dataset	Input Dimension	Number of Classes	Train Examples	Test Examples	Source
USPS	$16 \times 16^*$	10	7291	2007	(Hull, 1994)
MNIST	28×28	10	60 K	10 K	(LeCun et al., 2010)
EMNIST (letters)	28×28	26	145K	10 K	(Cohen et al., 2017)
KMNIST	28×28	10	60 K	10 K	(Clanuwat et al., 2018)
FASHION-MNIST	28×28	10	60K	10K	(Xiao et al., 2017)
TINY-IMAGENET	$64 \times 64^{\ddagger}$	200	100K	10K	(Deng et al., 2009)
cifar-10	32×32	10	50 K	10 K	(Krizhevsky & Hinton, 2009)
AG-NEWS	768^{\dagger}	4	120K	7.6K	(Zhang et al., 2015)
DBPEDIA	768^\dagger	14	560K	70K	(Zhang et al., 2015)
YELPREVIEW (Polarity)	768^\dagger	2	560K	38K	(Zhang et al., 2015)
YELPREVIEW (Full Scale)	768^\dagger	5	650K	50K	(Zhang et al., 2015)
AMAZONREVIEW (Polarity)	768^\dagger	2	3.6M	400K	(Zhang et al., 2015)
AMAZONREVIEW (Full Scale)	768^\dagger	5	3M	650K	(Zhang et al., 2015)
YAHOO ANSWERS	768 [†]	10	1.4M	60K	(Zhang et al., 2015)

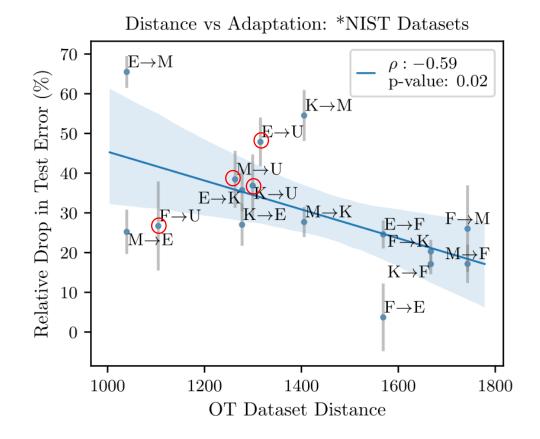
Dataset Selection for Transfer Learning



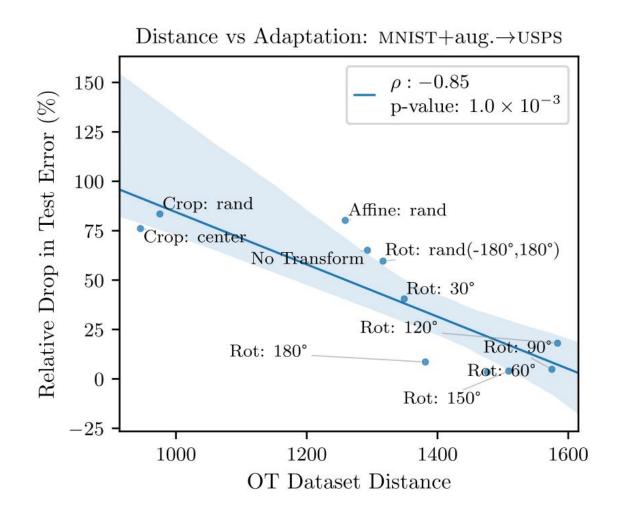
Dataset Selection for Transfer Learning

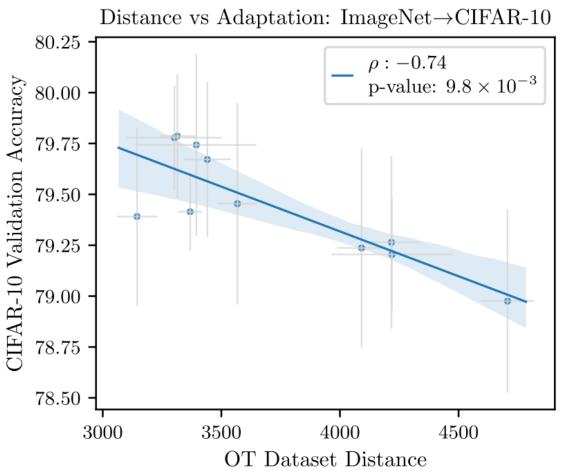
$$\mathcal{T}(\mathcal{D}_S \to \mathcal{D}_T) = 100 \times \frac{\operatorname{error}(\mathcal{D}_S \to \mathcal{D}_T) - \operatorname{error}(\mathcal{D}_T)}{\operatorname{error}(\mathcal{D}_T)}$$



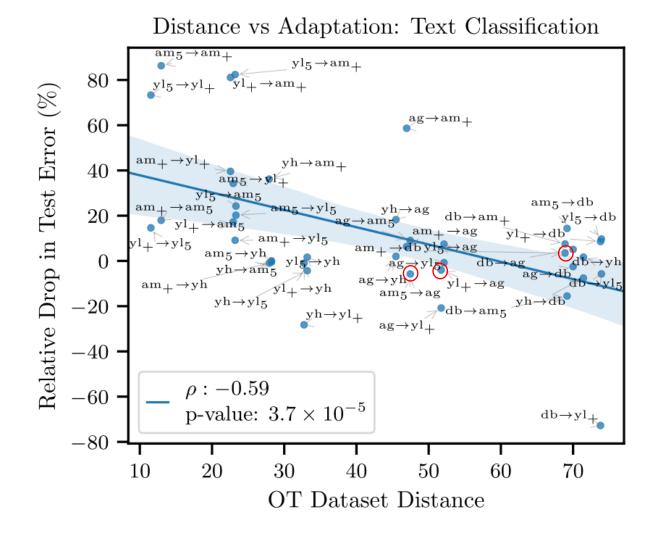


Distance-Driven Data Augmentation





Transfer Learning for Text Classification



Discussion

- This paper proposes a distance metric based on Optimal Transport to measure the distance between two datasets considering both point-to-point and label-to-label correspondences.
- They did not show the experimental comparisons with other metrics, e.g. KL divergence, and we want to know whether this metric has better consistency to reveal transferability than other methods.