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Abstract
The notion of task similarity is at the core of vari-
ous machine learning paradigms, such as domain
adaptation and meta-learning. Current methods
to quantify it are often heuristic, make strong
assumptions on the label sets across the tasks,
and many are architecture-dependent, relying on
task-specific optimal parameters (e. g., require
training a model on each dataset). In this work
we propose an alternative notion of distance be-
tween datasets that (i) is model-agnostic, (ii) does
not involve training, (iii) can compare datasets
even if their label sets are completely disjoint
and (iv) has solid theoretical footing. This dis-
tance relies on optimal transport, which provides
it with rich geometry awareness, interpretable
correspondences and well-understood properties.
Our results show that this novel distance provides
meaningful comparison of datasets, and corre-
lates well with transfer learning hardness across
various experimental settings and datasets.

1. Introduction
A key hallmark of machine learning practice is that la-
beled data from the application of interest is usually scarce.
For this reason, there is vast interest in methods that can
combine, adapt and transfer knowledge across datasets
and domains. Entire research areas are devoted to these
goals, such as domain adaptation, transfer-learning and
meta-learning. A fundamental concept underlying all these
paradigms is the notion of distance (or more generally, sim-
ilarity) between datasets. For instance, transferring knowl-
edge across similar domains should intuitively be easier
than across distant ones. Likewise, given a choice of vari-
ous datasets to pretrain a model on, it would seem natural to
choose the one that is closest to the task of interest.

Despite its evident usefulness and apparent simpleness, the
notion of distance between datasets is an elusive one, and
quantifying it efficiently and in a principled manner re-
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mains largely an open problem. Doing so requires solv-
ing various challenges that commonly arise precisely in the
settings for which this notion would be most useful, such
as the ones mentioned above. For example, in supervised
machine learning settings the datasets consist of both fea-
tures and labels, and while defining a distance between the
former is often —though not always— trivial, doing so for
the labels is far from it, particularly if the label-sets across
the two tasks are not identical (as is often the case for off-
the-shelf pretrained models).

Current approaches to transfer learning that seek to quan-
tify dataset similarity circumvent these challenges in var-
ious ingenious, albeit often heuristic, ways. A common
approach is to compare the dataset via proxies, such as the
learning curves of a pre-specified model (Leite & Brazdil,
2005) or its optimal parameters (Achille et al., 2019; Kho-
dak et al., 2019) on a given task, or by making strong
assumptions on the similarity or co-occurrence of labels
across the two datasets (Tran et al., 2019). Most of these
approaches lack guarantees, are highly dependent on the
probe model used, and require training a model to comple-
tion (e. g., to find optimal parameters) on each dataset being
compared. On the opposite side of the spectrum are princi-
pled notions of discrepancy between domains (Ben-David
et al., 2007; Mansour et al., 2009), which nevertheless are
often not computable in practice, or do not scale to the type
of datasets used in machine learning practice.

In this work, we seek to address some of these limita-
tions by proposing an alternative notion of distance be-
tween datasets. At the heart of this approach is the use of
optimal transport (OT) distances (Villani, 2008) to compare
distributions over feature-label pairs in a geometrically-
meaningful and principled way. In particular, we propose
a hybrid Euclidean-Wasserstein distance between feature-
label pairs across domains, where labels themselves are
modeled as distributions over features vectors. As a con-
sequence of this technique, our framework allows for com-
parison of datasets even if their label sets are completely
unrelated or disjoint, as long as a distance between their
features can be defined. This notion of distance between la-
bels, a by-product of our approach, has itself various poten-
tial uses, e. g., to optimally sub-sample classes from large
datasets for more efficient pretraining.
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In summary, we make the following contributions:
• We introduce a notion of distance between datasets that

is principled, flexible and computable in practice
• We propose various algorithmic shortcuts to scale up

computation of this distance to very large datasets
• We provide extensive empirical evidence that this dis-

tance is highly predictive of transfer learning success
across various domains, tasks and data modalities

2. Related Work
Discrepancy Distance Various notions of (dis)similarity
between data distributions have been proposed in the con-
text of domain adaptation, such as the dA (Ben-David et al.,
2007) and discrepancy distances1 (Mansour et al., 2009).
These discrepancies depend on a loss function and hy-
pothesis (i. e., predictor) class, and quantify dissimilarity
through a supremum over this function class. The lat-
ter discrepancy in particular has proven remarkably useful
for proving generalization bounds for adaptation (Cortes &
Mohri, 2011), and while it can be estimated from samples,
bounding the approximation quality relies on quantities like
the VC-dimension of the hypothesis class, which might not
be always known or easy to compute.

Dataset Distance via Parameter Sensitivity The Fisher
information metric is a classic notion from information ge-
ometry (Amari, 1985; Amari & Nagaoka, 2000) that char-
acterizes a parametrized probability distribution locally
through the sensitivity of its density to changes in the pa-
rameters. In machine learning, it has been used to analyze
and improve optimization approaches (Amari, 1998) and
to measure the capacity of neural networks (Liang et al.,
2019). In recent work, Achille et al. (2019) use this no-
tion to construct vector representations of tasks, which they
then use to define a notion of similarity between these.
They show that this notion recovers taxonomic similarities
and is useful in meta-learning to predict whether a certain
feature extractor will perform well in a new task. While
this notion shares with ours its agnosticism of the num-
ber of classes and their semantics, it differs in the fact that
it relies on a probe network trained on a specific dataset,
so its geometry is heavily influenced by the characteristics
of this network. Besides the Fisher information, a related
information-theoretic notion of complexity that can be used
to characterize tasks is the Kolmogorov Structure Function
(Li, 2006), which Achille et al. (2018) use to define a no-
tion of reachability between tasks.

Optimal Transport-based distributional distances The
general idea of representing complex objects via distribu-
tions, which are then compared through optimal transport
distances, is an active area of research. Also driven by the

1Despite its name, this discrepancy is not a distance in general.

appeal of their closed-form Wasserstein distance, Muzel-
lec & Cuturi (2018) propose to embed objects as elliptical
distributions, which requires differentiating through these
distances, and discuss various approximations to scale up
these computations. Frogner et al. (2019) extend this idea
but represent the embeddings as discrete measures (i. e.,
point clouds) rather than Gaussian/Elliptical distributions.
Both of these works focus on embedding and consider
only within-dataset comparisons. Also within this line of
work, Delon & Desolneux (2019) introduce a Wasserstein-
type distance between Gaussian mixture models. Their
approach restricts the admissible transportation couplings
themselves to be Gaussian mixture models, and does not
directly model label-to-label similarity. More generally,
the Gromov-Wasserstein distance (Mémoli, 2011) has been
proposed to compare collections across different domains
(Mémoli, 2017; Alvarez-Melis & Jaakkola, 2018), albeit
leveraging only features, not labels.

Hierarchical OT distances The distance we propose can
be understood as a hierarchical OT distance, i. e., one where
the ground metric itself is defined through an OT problem.
This principle has been explored in other contexts before.
For example, Yurochkin et al. (2019) use a hierarchical OT
distance for document similarity, defining a inner-level dis-
tance between topics and a outer-level distance between
documents using OT. (Dukler et al., 2019) on the other
hand use a nested Wasserstein distance as a loss for gen-
erative model training, motivated by the observation that
the Wasserstein distance is better suited to comparing im-
ages than the usual pixel-wise L2 metric used as ground
metric. Both the goal, and the actual metric, used by these
approaches differs from ours.

Optimal Transport for Domain Adaptation Using la-
bel information to guide the optimal transport problem to-
wards class-coherent matches has been explored before,
e. g., by enforcing group-norm penalties (Courty et al.,
2017) or through submodular cost functions (Alvarez-
Melis et al., 2018). These works are focused on the unsu-
pervised domain adaptation setting, so their proposed mod-
ifications to the OT objective use only label information
from one of the two domains, and even then, do so without
explicitly defining a metric between these. Furthermore,
they do not lead to proper distances, and these works deal
with a single static pair of tasks, so they lack analysis of the
distance across multiple source and target datasets.

3. Background on Optimal Transport
Optimal transport (OT) is a powerful and principled ap-
proach to compare probability distributions, with deep
roots in statistics, computer science and applied mathemat-
ics (Villani, 2003; 2008). Among many desirable proper-
ties, these distances leverage the geometry of the underly-
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ing space, making them ideal for comparing distributions,
shapes and point clouds (Peyré & Cuturi, 2019).

The OT problem considers a complete and separable met-
ric space X , along with probability measures α ∈ P(X )
and β ∈ P(X ). These can be continuous or discrete
measures, the latter often used in practice as empiri-
cal approximations of the former whenever working in
the finite-sample regime. The Kantorovich formulation
(Kantorovitch, 1942) of the transportation problem reads:

OT(α, β) , min
π∈Π(α,β)

∫
X×X

c(x, y) dπ(x, y), (1)

where c(·, ·) : X × X → R+ is a cost function (the
“ground” cost), and the set of couplings Π(α, β) consists of
joint probability distributions over the product spaceX×X
with marginals α and β, that is,

Π(α, β) , {π ∈ P(X×X ) | P1#π = α, P2#π = β}. (2)

Whenever X is equipped with a metric dX , it is natural to
use it as ground cost, e. g., c(x, y) = dX (x, y)p for some
p ≥ 1. In such case, Wp(α, β) , OT(α, β)1/p is called the
p-Wasserstein distance. The case p = 1 is also known as
the Earth Mover’s Distance (Rubner et al., 2000).

The measures α and β are rarely known in practice.
Instead, one has access to finite samples {x(i)} ∈
X , {y(j)} ∈ X . In that case, one can construct discrete
measures α =

∑n
i=1 aiδx(i) and β =

∑m
i=1 biδy(j) , where

a, b are vectors in the probability simplex, and the pair-
wise costs can be compactly represented as an n ×m ma-
trix C, i. e., Cij = c(x(i),y(j)). In this case, Equation
(1) becomes a linear program. Solving this problem scales
cubically on the sample sizes, which is often prohibitive in
practice. Adding an entropy regularization, namely

OTε(α, β) , min
π∈Π(α,β)

∫
X 2

c(x, y) dπ(x, y) + εH(π |α⊗ β),

(3)
where H(π | α ⊗ β) =

∫
log(dπ/dα dβ) dπ is the rela-

tive entropy, leads to a problem that can be solved much
more efficiently (Cuturi, 2013; Altschuler et al., 2017) and
with better sample complexity (Genevay et al., 2019) than
the original one. The Sinkhorn divergence (Genevay et al.,
2018), defined as

SDε(α, β) = OTε(α, β)− 1

2
OTε(α, α)− 1

2
OTε(β, β),

has various desirable properties, e. g., it is positive, con-
vex and metrizes the weak∗ convergence of distributions
(Feydy et al., 2019).

In the discrete case, problem (3) can be solved with the
Sinkhorn algorithm (Cuturi, 2013; Peyré & Cuturi, 2019),
a matrix-scaling procedure which iteratively updates u ←
a�Kv and v ← b�K>u, where K , exp{− 1

εC} and
the division � and exponential are entry-wise.
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Figure 1. The importance of labels: the second pair of datasets
are much closer than the first under the usual (label-agnostic) OT
distance, while the opposite is true for our (label-aware) distance.

4. Optimal Transport between Datasets
The definition of dataset is notoriously inconsistent across
the machine learning literature, sometimes referring only
to features or both features and labels. In the context of
supervised learning, where the ultimate goal is to estimate
predictors f : X → Y (or conditional distributions P (y |
x)), we define a dataset D as a set of feature-label pairs
(x, y) ∈ X ×Y over a certain feature space X and label set
Y . For simplicity, we will use z , (x, y) to denote these
pairs, and Z , X × Y for their underlying space.

Henceforth, we focus on the case of classification, so Y
shall be a finite set. We consider two datasets DA and DB ,
and assume, for simplicity, that their feature spaces have
the same dimensionality, but will discuss how to relax this
assumption later on. On the other hand, we make no as-
sumptions on the label sets YA and YB whatsoever. In par-
ticular, the classes these encode could be partially overlap-
ping or related (e. g., IMAGENET and CIFAR-10) or com-
pletely disjoint (e. g., CIFAR-10 and MNIST). Although
not a formal assumption of our approach, it will be useful
to think of the samples in these two datasets as being drawn
from joint distributions PA(x, y) and PB(x, y).

Given DA = {(x(i)
A , y

(i)
A )}ni=1 ∼ PA(x, y) and DB =

{(x(j)
B , y

(j)
B )}mj=1 ∼ PB(x, y), our goal is to define a dis-

tance d(DA,DB) that depends exclusively on the informa-
tion contained in these datasets. The probabilistic inter-
pretation of these collections suggests a simple-yet-proven
approach: comparing these datasets by means of a statis-
tical divergence on their joint distributions. Among many
such notions, optimal transport stands out because of vari-
ous characteristics described in Section 3: its direct use of
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Figure 2. Our approach represents labels as distributions over features and computes Wasserstein distances between them (left). Com-
bined with the usual metric between features, this yields a transportation cost between datasets. The optimal transport problem then
characterizes the distance between them as the minimal possible cost of coupling them (optimal coupling π∗ shown on the right).

the geometry of the underlying space, its characterization
of distance as correspondence (which will prove to have
various useful applications in this context) and the vast the-
ory, spanning three centuries, which it is built upon.

Note, however, that direct application of OT to this setting
is challenging. Indeed, problem (1) requires us to define
a metric on the ground space, i. e., on Z = X × Y . A
straightforward way to do so would be via the individual
metrics inX and Y . Indeed, if dX , dY are metrics onX and
Y respectively, then dZ : X × Y → R+, given as:

dZ(z, z′) =
(
dX (x, x′)p + dY(y, y′)p

)1/p
,

for p ≥ 1 is a metric on Z .

In most applications, dX is readily available, e. g., as the
euclidean distance in the feature space. On the other hand,
dY will rarely be so, particularly between labels from unre-
lated label sets (e. g., between cars in one image domain
and and dogs in the other). If we had some prior knowl-
edge of the label spaces, we could use it to define a no-
tion of distance between pairs of labels. However, in the
challenging —but common— case where no such knowl-
edge is available, the only information we have about the
labels is their occurrence in relation to the feature vectors
x. Thus, we can take advantage of the fact that we have a
meaningful metric in X and use it to compare labels. Ar-
guably, the simplest such approach is as follows. Let us
defineND(y) := {x ∈ X | (x, y) ∈ D}, i. e.,ND(y) is the
set of feature vectors with label y in dataset D, and let ny
be its cardinality. With this, a distance between two labels y
and y′ can be defined as the distance between the centroids
of their associated feature vector collections:

d(y, y′) = dX

(
1

ny

∑
x∈ND(y)

x,
1

ny′

∑
x∈ND(y′)

x

)
. (4)

Although appealing for its simplicity, representing the col-
lections ND(y) only through their mean is too simplistic
for real datasets. Ideally, we would like to represent labels

through the actual distribution over the feature space that
they define, namely, by means of the map y 7→ αy(X) ,
P (X | Y = y), of which ND(y) can be understood as
a finite sample. If we use this representation, defining a
distance between labels boils down to choosing a statisti-
cal divergence between their associated distributions. Once
more, there are many possible choices for this distance, but
—yet again— we argue that an OT is an ideal choice, since
the notion of divergence we seek should: (i) provide a valid
metric, (ii) be computable from finite samples, which is
crucial since the distributions αy are not available in ana-
lytic form, and (iii) be able to deal with sparsely-supported
distributions, all of which OT satisfies.

The approach described so far grounds the comparison of
the αy distributions to the feature space X , so we can sim-
ply use dpX as the optimal transport cost, leading to a p-
Wasserstein distance between labels: Wp

p(αy, αy′), and in
turn, to the following distance between feature-label pairs:

dZ
(
(x, y), (x′, y′)

)
,
(
dX (x, x′)p+Wp

p(αy, αy′)
) 1

p . (5)

This gives us a point-wise notion of distance in Z , but we
ultimately seek a distance between distributions over this
space, i. e., between joint distributions P (x, y). Optimal
transport allows us to lift the ground (i. e., point-wise) met-
ric defined above into a distance between measures:

dOT(DA,DB) = min
π∈Π(α,β)

∫
Z×Z

dZ(z, z′)π(z, z′). (6)

The following result, an immediate consequence of the dis-
cussion above, states that Eq. (6) is a proper distance – the
Optimal Transport Dataset Distance (OTDD).

Proposition 4.1. dOT(DA,DB) defines a valid metric on
P(X × P(X )) the space of measures over feature and
label-distribution pairs.
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It remains to describe how the distributions αy are to be
represented. A flexible non-parametric approach would be
to treat the samples in ND(y) as support points of a uni-
form empirical measure, i. e., αy =

∑
x(i)∈ND(y)

1
ny
δx(i) ,

as described in Section 3. The main downside of this ap-
proach is that each evaluation of (5) involves solving an
optimization problem, which could be prohibitive. Indeed,
in Section C.1 we show that for datasets of size n, this ap-
proach has worst-case O(n5 log n) complexity.

Instead, we propose an alternative representation of the
αy as Gaussian distributions, which leads to a simple yet
tractable realization of the general dataset distance (6). For-
mally, let us denote by µ̂y ∈ Rd and Σ̂y ∈ Rd×d+ the
sample mean and covariance matrix associated with label y
(through its feature neighborhood ND(y)), that is:

µ̂y ,
1

ny

∑
x∈ND(y)

x; Σ̂y ,
1

ny

∑
x∈ND(y)

(x−µ̂y)>(x−µ̂y).

With this, we model each label-feature distribution αy as
a Gaussian Distribution N (µ̂y, Σ̂y) whose parameters are
the sample mean and covariance of ND(y).

The main motivation behind this choice is that the
2-Wasserstein distance between Gaussian distributions
N (µα,Σα) and N (µβ ,Σβ) has as an analytic form:

W2
2(α, β) = ‖µα−µβ‖22+tr(Σα+Σβ−2(Σ

1
2
αΣβΣ

1
2
α)

1
2 ) (7)

where Σ
1
2 denotes the matrix square root. Furthermore,

whenever Σα and Σβ commute, this further simplifies to

W2
2(α, β) = ‖µα − µβ‖22 + ‖Σ

1
2
α − Σ

1
2

β ‖2F . (8)

When using Eq. (7) in the point-wise distance (5), we de-
note the resulting distance (6) by dOT-N .

Representing label-defined distributions as Gaussians
might seem like a heuristic choice driven only by algebraic
convenience. However, the following result, a consequence
of a bound by Gelbrich (1990), shows that this approxima-
tion lower-bounds the distance that would be obtained had
it been computed using the label distances on the true dis-
tributions (regardless of their form):

Proposition 4.2. For any two datasets DA,DB , we have:

dOT-N (DA,DB) ≤ dOT(DA,DB) (9)

Furthermore, if the label distributions αy are all Gaussian
or elliptical, these quantities are equal, i. e., dOT-N is exact.

An illustration of the OTDD in a synthetic dataset summa-
rizing its main characteristics is shown in Figure 2.

5. Computational Considerations
Since our goal in this work is to use the proposed dataset
distance as a tool for tasks like transfer learning in realistic
(i. e., large) machine learning datasets, scalability is cru-
cial. Indeed, most compelling use cases of any notion of
distance between datasets will involve computing it repeat-
edly on very large samples.

While estimation of Wasserstein —and more generally, op-
timal transport— distances is known to be computationally
expensive in general, in Section 3 we briefly discussed how
entropy regularization can be used to trade-off accuracy for
runtime. Recall that both the general and Gaussian versions
of the dataset distance proposed in Section 4 involve solv-
ing optimal transport problems (though the latter, owing the
closed form solution of subproblem (7), only requires opti-
mization for the global problem). Therefore, both of these
distances benefit from approximate OT solvers.

But further speed-ups are possible. For dOT-N , a simple
and fast implementation can be obtained if (i) the metric in
X coincides with the ground metric in the transport prob-
lem on Y , and (ii) all covariance matrices commute. While
(ii) will rarely occur in practice, one could use a diago-
nal approximation to the covariance, or with milder as-
sumptions, simultaneous matrix diagonalization (De Lath-
auwer, 2003). In either case, using the simplification in
(8), the pointwise distance d(z, z′) can be computed by cre-
ating augmented representations of each dataset, whereby
each pair (x, y) is represented as a stacked vector x̃ :=

[x;µy; vec(Σ
1/2
y )] for the corresponding label mean and

covariance. Then, ‖x̃ − x̃′‖22 = dZ(x, y;x′, y′)2 for dZ
as defined in Eq. (5). Therefore, in this case the OTDD can
be immediately computed using an off-the-shelf OT solver
on these augmented datasets. While this approach is ap-
pealing computationally, here instead we focus on a exact
version that does not require diagonal or commuting co-
variance approximations, and leave empirical evaluation of
this approximate approach for future work.

The steps we propose next are motivated by the observa-
tion that, unlike traditional OT distances for which the cost
of computing pair-wise distance is negligible compared to
the complexity of the optimization routine, in our case the
latter dominates, since it involves computing multiple OT
distances itself. In order to speed up computation, we first
precompute and store in memory all label-to-label pairwise
distances d(αy, αy′), and retrieve them on-demand during
the optimization of the global OT problem.

For dOT-N , computing the label-to-label distances
d(N (µ̂y, Σ̂y),N (µ̂y′ , Σ̂y′)) is dominated by the cost of
computing matrix square roots, which if done exactly
involves a full eigendecomposition. Instead, it can be
computed approximately using the Newton-Schulz itera-
tive method (Higham, 2008; Muzellec & Cuturi, 2018).
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Figure 3. Dataset Distance between MNIST and USPS. Left: The label Wasserstein distances —computed without knowledge of the
relation between labels across domains— recover expected relations between classes in the two domains. Center/Right: The optimal
coupling π∗ for different regularization levels exhibits a block-diagonal structure, indicating class-coherent matches across domains.

Besides runtime, loading all examples of a given class to
memory (to compute means and covariances) might be
infeasible for large datasets (especially if running on GPU),
so we instead use a two-pass stable online batch algorithm
to compute these statistics (Chan et al., 1983).

The following result summarizes the time complexity of
our two distances and sheds light on the trade-off between
precision and efficiency they provide.

Theorem 5.1. For datasets of size n and m, with p and q
classes, dimension d, and maximum class size n, both dOT
and dOT-N incur in a cost of O(nm log(max{n,m})τ−3)
for solving the global OT problem τ -approximately, while
the worst-case complexity for computing the label-to-label
pairwise distances (5) is O

(
nm(d + n3 log n + dn2)

)
for

dOT and O
(
nmd+ pqd3 + d2n(p+ q)

)
for dOT-N .

In most practical applications, the cost of computing pair-
wise distances will dominate, making dOT-N superior. For
example, if n = m and the largest class size is O(n),
this step becomesO(n5 log n) —prohibitive for all but toy
datasets— for dOT but onlyO(n2d+d3) for dOT-N .

6. Experiments
6.1. Dataset Selection for Transfer Learning

A driving motivation for proposing a dataset distance was
to provide a learning-free criterion on which to select a
source dataset for transfer learning. In this section, we
put this hypothesis to test on a simple domain adaptation
setting on MNIST (LeCun et al., 2010) and three of its ex-
tensions: FASHION-MNIST (Xiao et al., 2017), KMNIST
(Clanuwat et al., 2018) and the letters split of EMNIST
(Cohen et al., 2017), in addition to USPS. All datasets
consist of 10 classes, except EMNIST, for which the se-
lected split has 26 classes. Throughout this section, we use
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Figure 4. Pairwise OT Distances for *NIST+USPS datasets.

a simple LeNet-5 neural network (two convolutional layers,
three fully conntected ones) with ReLU activations. When
carrying out adaptation, we freeze the convolutional layers
and fine-tune only the top three layers.

We first compute all pairwise OTDD distances (Fig 4). For
the example of dOT-N (MNIST, USPS), Figure 3 illustrates
two key components of the computation of the distance:
the label-to-label distances (left) and the optimal coupling
π∗ obtained for two choices of entropy regularization pa-
rameter ε (center, right). The diagonal elements of the first
plot (i. e., distances between corresponding digit classes)
are overall relatively smaller than off-diagonal elements.
Interestingly, the 0 class of USPS appears remarkably far
from all MNIST digits under this metric. On the other
hand, most correspondences lie along the (block) diago-
nal of π∗, which shows the dataset distance is able to infer
class-coherent correspondences across them.

We test the robustness of the distance by computing it re-
peatedly for varying sample sizes. The results (Fig. 9, Ap-
pendix F) show that the distance converges towards a fixed
value as sample sizes grow, but interestingly, small sample
sizes for USPS lead to wider variability, suggesting that this
dataset itself is more heterogeneous than MNIST.
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Figure 5. Dataset distance vs. adaptation for *NIST datasets (M:
MNIST, E: EMNIST, K: KMNIST, F: FASHION-MNIST, U:
USPS). The error bars correspond to ±1 s.d. over 10 repetitions.

Despite both consisting of digits, MNIST and USPS are not
the closest among these datasets according to the OTDD,
as Figure 4 shows. The closest pair is instead (MNIST,
EMNIST), while FASHION-MNIST appears comparatively
far from all others, particularly MNIST.

Next, we compare these distances against the transferabil-
ity between datasets, i. e., the gain in performance from
using a model pertrained on the source domain and fine-
tuning it on the target domain. To make these numbers
comparable across adaptation pairs which involve datasets
of very different hardness, we define the transferability T
of a source domainDS to a target domainDT as the relative
decrease in classification error when doing adaptation com-
pared to training only on the target domain, i. e.,

T (DS→DT ) = 100× error(DS→DT )− error(DT )

error(DT )
.

We run the adaptation task 10 times with different random
seeds for each pair of datasets, and compare T against their
distance. The strong significant correlation between these
(Fig. 5) shows that the OTDD is highly predictive of trans-
ferability across these datasets. In particular, EMNIST led
to the best adaptation to MNIST, justifying the —initially
counter-intuitive— value of the OTDD.

6.2. Distance-Driven Data Augmentation

Data augmentation —i. e., applying carefully chosen trans-
formations on a dataset to enhance its quality and
diversity— is another key aspect of transfer learning that
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Figure 6. Dataset distance vs. adaptation between MNIST with
various transformations applied to it and USPS. While cropping
the MNIST digits leads to better adaptation, rotating them de-
grades it, both in agreement with the dataset distance.

has substantial empirical effect on the quality of the trans-
ferred model yet lacks principled guidelines. Here, we in-
vestigate if the OTDD could be used to compare and select
among possible augmentations.

For a fixed source-target dataset pair, we generate repli-
cas of the source data with various transformations ap-
plied to it, compute their distance to the target dataset, and
compare against the transferability as before. We present
results for a small-scale (MNIST →USPS) and a larger-
scale (Tiny-ImageNet→CIFAR-10) setting. The transfor-
mations we use on MNIST consist of rotations by a fixed
degree [30◦, . . . , 180◦], random rotations (−180◦, 180◦),
random affine transformations, center-crops and random
crops. For Tiny-ImageNet we randomly vary brightness,
contrast, hue and saturation. The models use are respec-
tively the LeNet-5 and a ResNet-50 (training details pro-
vided in Appendix E).

The results in both of these settings (Figures 6 and 7) show,
again, a strong significant correlation between these two. A
reader familiar with the MNIST and USPS datasets will not
be surprised by the fact that cropping images from the for-
mer leads to substantially better performance on the latter,
while most rotations degrade transferability.

6.3. Transfer Learning for Text Classification

Natural Language Processing (NLP) is of the areas where
large-scale transfer learning has had the most profound im-
pact over the past few years, in part driven by the avail-
ability of off-the-shelf large language-models pretrained on
massive amounts of the data (Peters et al., 2018; Devlin
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Figure 7. Dataset distance vs. adaptation between Tiny-ImageNet
with various transformations (source) and CIFAR-10 (target).

et al., 2019; Radford et al., 2019).

While natural language inherently lacks the fixed-size con-
tinuous vector representation required by our framework to
compute pointwise distances, we can take advantage of pre-
cisely these pretrained models to embed sentences in vector
space, furnishing them with a rich geometry. In our exper-
iments, we first embed every sentence of every dataset us-
ing the (base) BERT model (Devlin et al., 2019),2 and then
compute OTDD on these embedded datasets.

Here, we focus on the problem of sentence classification,
and consider the following datasets3 by Zhang et al. (2015):
AG NEWS (ag), DBPEDIA (db), YELP REVIEWS with
5-way classification (yl5) and binary polarity (yl+) label
encodings, AMAZON REVIEWS with 5-way classification
(am5) and binary polarity (am+) label encodings, and YA-
HOO ANSWERS (yh). We provide details for all these
datasets in the Appendix.

As before, we simulate a challenging adaptation setting by
keeping only 100 examples per target class. For every pair
of datasets, we first fine-tune the BERT model using the en-
tirety of the source domain data, after which we fine-tune
and evaluate on the target domain. Figure 8 shows that the
OT dataset distance is highly correlated with transferability
in this setting too. Interestingly, adaptation often leads to
drastic degradation of performance in this case, which sug-
gests that off-the-shelf BERT is on its own powerful and
flexible enough to initialize many of these tasks, and there-
fore choosing the wrong domain for initial training might
destroy some of that information.

2Using the sentence_transfomers library.
3Available via the torchtext library.
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Figure 8. Distance vs. adaptation for text classification datasets
(see main text for key), with sentence embedding via BERT.

7. Discussion
We have shown that the notion of distance between datasets
proposed in this work is scalable and flexible enough to be
used in realistic transfer learning scenarios, all the while of-
fering appealing theoretical properties, interpretable com-
parisons and requiring minimal assumptions on the under-
lying datasets.

There are many natural extensions of this framework. Here
we assumed that the datasets where defined on feature
spaces of the same dimension, but one could instead lever-
age a relational notion such as the Gromov-Wasserstein
distance (Mémoli, 2011) to compute the distance between
datasets whose features and not directly comparable. On
the other hand, our efficient implementation relies on mod-
eling groups of points with the same label as Gaussian dis-
tributions. This could naturally be extended to more gen-
eral distributions for which the Wasserstein distance ei-
ther has an analytic solution or at least can be computed
efficiently, such as elliptic distributions (Muzellec & Cu-
turi, 2018), Gaussian mixture models (Delon & Desolneux,
2019), certain Gaussian Processes (Mallasto & Feragen,
2017), or tree metrics (Le et al., 2019).

In this work, we purposely excluded two key aspects of any
learning task from our notion of distance: the loss function
and the predictor function class. While we posit that it is
crucial to have a notion of distance that is independent of
these choices, it is nevertheless appealing to ask whether
our distance could be extended to take those into account,
ideally involving minimal training. Exploring different av-
enues to inject such information into this framework will
be the focus of our future work.
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A. Proof of Proposition 4.1
Whenever the cost function used in the of optimal transport
problem is a metric in a given space X , the optimal trans-
port problem is a distance (the Wasserstein distance) on
P(X ) (Villani, 2008, Chapter 6). Therefore, it suffices to
show that the cost function dZ defined in Eq. (5) is indeed a
distance. Clearly, it is symmetric because both dX and Wp

are. In addition, since both of these are distances:

dZ(z, z′) = 0⇔ dX (x, x′) = 0 ∧Wp(αy, α
′
y) = 0

⇔ x = x′, αy = α′y

⇔ z = z′

Finally, we have that

dZ(z1, z3) =
(
dX (x1, x3)p + Wp(αy1 , αy3)p

) 1
p

≤
(
dX (x1, x2)p + dX (x2, x3)p+

Wp(αy1 , αy2)p + Wp(αy2 , αy3)p
) 1

p

=
(
dZ(z1, z2)p + dZ(z2, z3)p

) 1
p

= dZ(z1, z2) + dZ(z2, z3)

where the last step is an application of Minkowski’s in-
equality. Hence, dZ satisfies the triangle inequality, and
therefore it is a metric on Z = X × P(X ). We therefore
conclude that the value of the optimal transport (6) that uses
this metric as a cost function is a distance itself.

B. Proof of Proposition 4.2
Our proof relies directly on a well-known bound for the
2-Wasserstein distance between distributions by (Gelbrich,
1990):

Lemma B.1 (Gelbrich bound). Suppose α, β ∈ P(Rd) are
any two measures with mean vectors µα, µβ ∈ Rd and co-
variance matrices Σα,Σβ ∈ Sd+ respectively. Then,

W2
2

(
N (µα,Σα),N (µβ ,Σβ)) ≤W2

2(α, β) (10)

where W2
2

(
N (µα,Σα),N (µβ ,Σβ)) is as in Eq. (7).

In the notation of Section 3, Lemma B.1 implies that for
every feature-label pairs z = (x, y) and z′ = (x′, y′), we
have:

dX (x, x′) + W2
2

(
N (µy,Σy),N (µy′ ,Σy′))

≤ dX (x, x′) + W2
2(αy, αy′) (11)

Therefore: ∫
dZ(z, z′) dπ ≤

∫
dZ(z, z′) dπ (12)

for every coupling π ∈ Π(α, β). In particular, for the min-
imizing π∗, we obtain that

dOT (DA,DB ;N ) ≤ dOT (DA,DB) (13)

Clearly, Gelbrich’s bound holds with equality when α and
β are indeed Gaussian. More generally, equality is attained
for elliptical distributions with the same density generator
(Kuhn et al., 2019)). This immediately implies equality of
the two quantities in equation (13) in that case.

C. Time Complexity Analysis
For the analyses in this section, assume thatDS andDT re-
spectively have n and m labeled examples in Rd and ks, kt
classes. In addition, let N S

D(i) := {x ∈ X | (x, y = i) ∈
D} be the subset of examples inDS with label i, and define
analogously N T

D (j). The denote the cardinalities of these
subsets as nis , |N (i)

s | and analogously for njt .

Direct computation of the distance (5) involves two main
steps:

(i) computing pairwise pointwise distances (each requir-
ing solution of a label-to-label OT sub-problem), and

(ii) a global OT problem between the two samples.

Step (ii) is identical for both the general distance dOT and
its Gaussian approximation counterpart dOT-N , so we ana-
lyze it first. This is an OT problem between two discrete
distributions of size n and m, which can be solved exactly
inO

(
(n+m)nm log(nm)

)
using interior point methods or

Orlin’s algorithm for the uncapacitated min cost flow prob-
lem (Peyré & Cuturi, 2019). Alternatively, it can be solved
τ -approximately in O(nm log(max{n,m})τ−3) time us-
ing the Sinkhorn algorithm (Altschuler et al., 2017).

We next analyze step (i) individually for the two OTDD
versions. Combined, they provide a proof of Theo-
rem 5.1.

C.1. Pointwise distance computation for dOT

Consider a single pair of points, (x, y = i) ∈ DA
and (x′, y′ = j) ∈ DB . Evaluating ‖x − x′‖ has
O(d) complexity, while W (αy, βy′) is an nis × njt OT
problem which itself requires computing a distance ma-
trix (at cost O(nisn

j
td)), and then solving the OT prob-

lem, which as discussed before, be done exactly in
O
(
(nis + njt )n

i
sn
j
t log(nis + njt )

)
or τ -approximately in

O(nisn
j
t log(max{nis, njt})τ−3).

For simplicity, let us denote ns = maxi n
i
s, and nt =

maxj n
j
t the size of the largest label cluster in each dataset,

and n = max{ns, nt} the overall largest one. Using these,
and combining all of the above, the overall worst case com-

12
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Dataset Input Dimension Number of Classes Train Examples Test Examples Source

USPS 16× 16∗ 10 7291 2007 (Hull, 1994)
MNIST 28× 28 10 60K 10K (LeCun et al., 2010)

EMNIST (letters) 28× 28 26 145K 10K (Cohen et al., 2017)
KMNIST 28× 28 10 60K 10K (Clanuwat et al., 2018)

FASHION-MNIST 28× 28 10 60K 10K (Xiao et al., 2017)

TINY-IMAGENET 64× 64‡ 200 100K 10K (Deng et al., 2009)
CIFAR-10 32× 32 10 50K 10K (Krizhevsky & Hinton, 2009)

AG-NEWS 768† 4 120K 7.6K (Zhang et al., 2015)
DBPEDIA 768† 14 560K 70K (Zhang et al., 2015)

YELPREVIEW (Polarity) 768† 2 560K 38K (Zhang et al., 2015)
YELPREVIEW (Full Scale) 768† 5 650K 50K (Zhang et al., 2015)

AMAZONREVIEW (Polarity) 768† 2 3.6M 400K (Zhang et al., 2015)
AMAZONREVIEW (Full Scale) 768† 5 3M 650K (Zhang et al., 2015)

YAHOO ANSWERS 768† 10 1.4M 60K (Zhang et al., 2015)

Table 1. Summary of all the datasets used in this work. ∗: we rescale the USPS digits to 28× 28 for comparison to the *NIST datasets.
‡: we rescale Tiny-ImageNet to 32 × 32 for comparison to CIFAR-10. †: for text datasets, variable-length sentences are embedded to
fixed-dimensional vectors using BERT.
.

plexity for the computation of the n×m pairwise distances
can be expressed as

O
(
nm(d+ n3 log n + dn2)

)
, (14)

which is what we wanted to show.

C.2. Pointwise distance computation for dOT-N

As before, consider a pair of points (x, y = i) ∈ DA and
(x′, y′ = j) ∈ DB whose cluster sizes are nis and njt re-
spectively. As mentioned in Section 5, for dOT-N we first
compute all the per-class means and covariance matrices.
This step is clearly dominated by latter, which isO(d2nis).4

Considering all labels from both datasets, this amounts to a
worst-case complexity of O

(
d2(ksns + ktnt)

)
.

Once the means and covariances have been computed, we
precompute all the ks×kt pair-wise label-to-label distances
W2(αy, βy′) using Eq. (7). This computation is dominated
by the matrix square roots. If done exactly, these involve a
full eigendecomposition, at costO(d3), so the total cost for
this step is O(ksktd

3).

Finally, while computing the pairwise distance, we will in-
cur in O(nmd) to obtain ‖x = x′‖. Putting all of these
together, and replacing ns, nt by n, we obtain a total cost
for precomputing all the point-wise distances of:

O(nmd+ ksktd
3 + d2n(ks + kt),

which concludes the proof.

4technically, this would beO(dωni
s) where ω is the coefficient

of matrix multiplication, but we take ω = 3 for simplicity.

D. Dataset Details
Information about all the datasets used, including refer-
ences, are provided in Table 1.

E. Optimization and Training Details
For the adaptation experiments on the *NIST datasets,
we use a LeNet-5 architecture with ReLU nonlinearities
trained for 20 epochs using ADAM with learning rate
1× 10−3 and weight decay 1× 10−6 It was fine-tuned for
10 epochs on the target domain(s) using the same optimiza-
tion parameters.

For the Tiny-ImageNet to CIFAR-10 adaptation results,
we use a ResNet-50 trained for 300 epochs using SGD
with learning rate 0.1 momentum 0.9 and weight decay
1× 10−4 It was fine-tuned for 30 epochs on the target do-
main using SGD with same parameters except 0.01 learn-
ing rate. We discard pairs for which the variance on adap-
tation accuracy is beyond a certain threshold.

For the text classification experiments, we use a pretrained
BERT architecture (the bert-base-uncased model of
the transformers5 library). We first embed all sen-
tences using this model. Then, for each pair of source/tar-
get domains, we first fine-tune using ADAM with learning
rate 2× 10−5 for 10 epochs on the full source domain data,
and the fine-tune on the restricted target domain data with
the same optimization parameters for 2 epochs.

Our implementation of the OTDD relies on the pot6 and
geomloss7 python packages.

5huggingface.co/transformers/
6pot.readthedocs.io/en/stable/
7www.kernel-operations.io/geomloss/
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F. Robustness of the Distance
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Figure 9. Robustness Analysis: distances computed on subsets of varying size (rows: MNIST, columns: USPS), over 10 random
repetitions, for two values of the regularization parameter ε.
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