Deep Cocktail Network: Multi-source Unsupervised Domain Adaptation with Category Shift

Ruijia Xu, Ziliang Chen, Wangmeng Zuo, Junjie Yan, Liang Lin; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 3964-3973

Paper Reading
Jingge Wang
2020/5/15

Overview

- Motivation
 - Multi source domains
 - Domain shift
 - Category shift

Challenges

- eliminate the distribution discrepancy between target and each source maybe too strict, and harmful
- cannot simply apply same UDA via combining all source domains since there are possible domain shifts among sources
- category shift in sources
- DCTN (deep cocktail network)
 - multi-way adversarial learning
 - minimize the discrepancy
 - Weighted source predictions
 - source-specific perplexity scores

(b) Multi-source domain adaptation with category shift

Settings

- Vanilla MDA
 - ullet N different underlying source distributions $\{p_{\mathbf{s}_j}(x,y)\}_{j=1}^N$

$$\circ \,\, X_{s_j} = \left\{x_i^{s_j}
ight\}_{i=1}^{\left|X_{s_j}
ight|}$$

$$\circ \ Y_{s_j} = \left\{y_i^{s_j}
ight\}_{i=1}^{\left|Y_{s_j}
ight|}$$

• 1 target distribution $p_t(x, y)$, no label

$$\circ \ X_t = \left\{x_i^t
ight\}_{i=1}^{|X_t|}$$

Category Shift

$$\mathcal{C}_t = igcup_{j=1}^N \mathcal{C}_{s_j}$$

- Architecture
 - Feature extractor F
 - Domain discriminator D

- Category classifier C
- Target classification operator

Feature extractor F

- Fully convolutional network
- map all N sources and target into a common feature space
- employ adversarial learning to obtain the optimal mapping
- domain-invariant features
- related to each source domain

- (Multi-source) domain discriminators $\{D_{s_i}\}_{j=1}^N$
 - two-output classifier
 - N source-specific discriminative results:

$$\left\{D_{s_j}(F(x^t))
ight\}_{j=1}^N$$

• target-source perplexity scores for x^t

$$S_{cf}(x^t; F, D_{s_j}) = -\log(1 - D_{s_j}(F(x^t))) + \alpha_{s_j}$$
 (1)

■ (Multi-source) category classifiers $\{C_{s_j}\}_{j=1}^N$

Target classification operator

• takes each source perplexity score $S_{cf}(x^t; F, D_{s_j})$

$$S_{cf}(x^t; F, D_{s_j}) = -\log(1 - D_{s_j}(F(x^t))) + \alpha_{s_j}$$
 (1)

• re-weight each source-specific classification $\{C_{s_j}\}_{j=1}^N$

$$Confidence\left(c|x^{t}\right) := \sum_{c \in \mathcal{C}_{s_{j}}} \frac{\mathcal{S}_{cf}\left(x^{t}; F, D_{s_{j}}\right)}{\sum\limits_{c \in \mathcal{C}_{s_{k}}} \mathcal{S}_{cf}\left(x^{t}; F, D_{s_{k}}\right)} C_{s_{j}}\left(c|F\left(x^{t}\right)\right)$$

$$where \ c \in \bigcup_{j=1}^{N} \mathcal{C}_{s_{j}}$$

$$(2)$$

Learning

- Pre-training feature extractor F and category classifier C
 - jointly train F and C
 - all source images
 - perplexity scores
 - uniform distribution simplex weight
 - predict pseudo label for target
 - categories with high confidence
 - obtain the pre-trained F and C
 - further fine-tuning with sources and the pseudo-labeled target

Learning

- Alternative adaptation pipeline
 - Multi-way Adversarial Adaptation

$$\min_{F} \max_{D} V(F, D; \overline{C}) = \mathcal{L}_{adv}(F, D) + \mathcal{L}_{cls}(F, \overline{C})$$
 (4)

Target Discriminative Adaptation

$$\min_{F, C} \mathcal{L}_{cls}(F, C) = \sum_{j}^{N} \mathbb{E}_{(x,y) \sim (X_{s_j}, Y_{s_j})} [\mathcal{L}(C_{s_j}(F(x)), y)]
+ \mathbb{E}_{(x^t, \hat{y}) \sim (X_t^p, Y_t^p)} [\sum_{\hat{y} \in \mathcal{C}_{\hat{s}}} \mathcal{L}(C_{\hat{s}}(F(x^t)), \hat{y})]$$
(8)

Algorithm 2 Learning algorithm for DCTN

Input: N source labeled datasets $\{X_{s_j}, Y_{s_j}\}_{j=1}^N$; target unlabeled dataset X_t ; initiated feature extractor F; category classifier C and domain discriminator D; confidence threshold γ ; adversarial iteration threshold β .

Output: well-trained feature extractor F^* , domain discriminator D^* and category classifier C^* .

- 1: **Pre-train** C and F
- 2: **while** not converged **do**
- 3: Multi-way Adversarial Adaptation:
- 4: **for** $1:\beta$ **do**
- 5: Sample <u>mini-batch</u> from $\{X_{s_j}\}_{j=1}^N$ and X_t ;
- 6: Update D by Eq.4;
- 7: Update F by Algorithm. 1; sequentially
- 8: **end for**
- 9: Target Discriminative Adaptation:
- 10: Estimate confidence for X_t by Eq.2 with perplexity scores offered by Eq.1. Samples $X_t^P \subset X_t$ with confidence larger than γ get annotations Y_T^P ;
- 11: Update F and C by Eq.8.
- 12: end while
- 13: **return** $F^* = F$; $C^* = C$; $D^* = D$.

Learning

- Online hard domain batch mining
 - batch M
 - compute D_{s_j} 's loss

$$\sum_i^M -\log D_{s_j}(F(x_i^{s_j})) -\logigl(1-D_{s_j}(F(x_i^t))igr)$$

• find hard source domain j^*

$$\mathcal{L}_{cf}\left(x; F, D_{s_{j}}\right) = \frac{1}{2}\log D_{s_{j}}(F(x)) + \frac{1}{2}\log\left(1 - D_{s_{j}}(F(x))\right)$$

$$\mathcal{L}_{adv}(F, D) = \frac{1}{N} \sum_{j}^{N} \mathbb{E}_{x \sim X_{s_{j}}} \mathcal{L}_{cf}\left(x; F, D_{s_{j}}\right) + \mathbb{E}_{x \sim X_{t}} \mathcal{L}_{cf}\left(x; F, D_{s_{j}}\right)$$

$$\min_{F} \max_{D} V(F, D; \overline{C}) = \mathcal{L}_{adv}(F, D) + \mathcal{L}_{cls}(F, \overline{C})$$

$$(4)$$

$$egin{aligned} \mathcal{L}_{adv}^{s_{j}^{*}}(F,D) &= \sum_{i}^{M} \mathcal{L}_{cf}\left(x_{i}^{s_{j}^{*}}; F, D_{s_{j}^{*}}
ight) + \mathcal{L}_{cf}\left(x_{i}^{t}; F, D_{s_{j}^{*}}
ight) \ \min_{F} \max_{D} V(F,D; ar{C}) &= \mathcal{L}_{adv}^{s_{j}^{*}}(F,D) + \mathcal{L}_{cls}(F,ar{C}) \end{aligned}$$

Algorithm 1 Mini-batch Learning via online hard domain batch mining

Input: Mini-batch $\{x_i^t, \{x_i^{s_j}, y_i^{s_j}\}_{j=1}^N\}_{i=1}^M$ sampled from X_t and $\{(X_{s_j}, Y_{s_j})\}_{j=1}^N$ respectively; feature extractor F; domain discriminator D; category classifier \overline{C} .

Output: Updated F'.

1: Select the source domain
$$j^* \in [N]$$
, where $j^* = \underset{j}{\arg \max} \{\sum_{i}^{M} - \log D_{s_j}(F(x_i^{s_j})) - \log(1 - D_{s_j}(F(x_i^t)))\}_{j=1}^{N};$
2: $\mathcal{L}_{adv}^{s_{j*}} = \sum_{i}^{M} \mathcal{L}_{cf}(x_i^{s_{j*}}; F, D_{s_{j*}}) + \mathcal{L}_{cf}(x_i^t; F, D_{s_{j*}})$

- 3: Replace \mathcal{L}_{adv} in Eq.4 with $\mathcal{L}_{adv}^{s_{j}^{*}}$, update F by Eq.4.
- 4: return F' = F.

Experiments

- Datasets
 - Office-31
 - 3 domains: A (Amazon), D (DSLR), W (Webcam).
 - 31 categories
 - ImageCLEF-DA
 - 3 domains: I (ImageNet ILSVRC 2012), P (Pascal VOC 2012), C (Caltech-256)
 - 12 categories
 - Digits-five
 - 5 digit domains: mt (MNIST) [26], mm (MNIST-M) [11], sv(SVHN) [36], up (USPS), sy (Synthetic Digits)
 - 10 categories
- Vanilla setting
 - samples from diverse sources share a same category set
- Category shift setting
 - categories from different sources might be also different

Experiments

Vanilla setting

Table 1. Classification accuracy (%) on Office-31 dataset for MDA in the vanilla setting.

Standards	Models	$A,W \rightarrow D$	$A,D \rightarrow W$	$D,W \rightarrow A$	Avg
Single best	TCA	95.2	93.2	51.6	68.8
	GFK	95.0	95.6	52.4	68.7
	DDC	98.5	95.0	52.2	70.7
	DRCN	99.0	96.4	56.0	73.6
	RevGrad	99.2	96.4	53.4	74.3
	DAN	99.0	96.0	54.0	72.9
	RTN	99.6	96.8	51.0	73.7
Source combine	Source only	98.1	93.2	50.2	80.5
	RevGrad	98.8	96.2	54.6	83.2
	DAN	98.8	95.2	53.4	82.5
Multi- source	Source only	98.2	92.7	51.6	80.8
	sFRAME	54.5	52.2	32.1	46.3
	SGF	39.0	52.0	28.0	39.7
	DCTN (ours)	99.6	96.9	54.9	83.8

Experiments

- Category shift setting
 - Overlap

Disjoint

- reduces performance drops
- resist negative transfer

Table 4. Evaluations on Office-31 $(A,D \rightarrow W)$ for MDA in the category shift setting.

Category Shift	Models	Accuracy	Degraded Accuracy	Transfer Gain
Overlap	Source only	84.4	-8.3	0
	RevGrad	86.3	-7.9	1.9
	DAN	87.8	-6.4	3.4
	DCTN(ours)	90.2	-6.7	5.8
Disjoint	Source only	78.1	-14.6	0
	RevGrad	78.6	-15.6	0.5
	DAN	75.5	-18.7	-2.6
	DCTN(ours)	82.9	-14.0	4.8

Table 5. Evaluations on ImageCLEF-DA (I,P \rightarrow C) for MDA in the category shift settings.

Category Shift	Models	Accuracy	Degraded Accuracy	Transfer Gain
Overlap	Source only	86.3	-3.0	0
	RevGrad	85.7	-4.5	-0.6
	DAN	85.5	-4.0	-0.8
	DCTN(ours)	88.7	-1.3	2.4
Disjoint	Source only	81.5	-7.8	0
	RevGrad	71.5	-18.7	-10.0
	DAN	71.0	-18.5	-10.5
	DCTN(ours)	82.0	-8.0	0.5

Feature visualization

Figure 3. The t-SNE [32] visulization of A,D \rightarrow W. Green, black and red represent domains A, D and W respectively. We use different markers to denote 5 categories, e.g., bookcase, calculator, monitor, printer, ruler. Best viewed in color.

Discussion

- Inspired from the distribution weighted combining rule, this paper proposed the deep cocktail network (DCTN) together with the alternating adaptation algorithm to learn transferable and discriminative representation.
- multi-way adversarial learning to minimize the discrepancy between the target and each of the multiple source domains
- Did not show completed comparison for multi-source combination results
- Hard domain batch mining may be not necessary or not enough
- Not consider unknow classes in target