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Abstract—Many network information theory problems face the
similar difficulty of single letterization. We argue that this is due
to the lack of a geometric structure on the space of probability
distribution. In this paper, we develop such a structure by
assuming that the distributions of interest are close to each other.
Under this assumption, the K-L divergence is reduced to the
squared Euclidean metric in an Euclidean space. Moreover, we
construct the notion of coordinate and inner product, which will
facilitate solving communication problems. We will also present
the application of this approach to the point-to-point channel
and the general broadcast channel, which demonstrates how our
technique simplifies information theory problems.

I. INTRODUCTION

Since Shannon introduced the notion of capacity sixty years

ago, finding the capacity of channels and networks are core

problems in information theory. The analyzation of capacity

answers the problem that how many bits can be transmitted

through a communication network, and also provides many

insights in engineer problems [1]. However, for general prob-

lems, there is no systematic way to obtain optimal single-letter

solutions. By cleverly picking auxiliary random variables, we

sometimes can prove the constructed single-letter solutions are

optimal for some problems. But, when this fails, we cannot

tell whether it is because we have not tried hard enough or the

problem itself does not have an optimal single-letter solution.

The difficulty of obtaining optimal single letter solutions

comes from the fact that, most of the information theoretical

quantities, such as entropy, mutual information, and error

exponents, are all special cases of the Kullback-Leibler (K-

L) divergence. The K-L divergence is a measure of distance

between two probability distributions. However, in multi-

terminal communication problems, there are multiple input

and output distributions, and we usually need to deal with

problems in high dimensional probability spaces. In these

cases, describing problems only with the distance measure is

cumbersome, and solving these information theory problems

turns out to be extremely hard even with numerical aids.

Therefore, we need more geometric structures to describe the

problems, such as inner products. This is however difficult,

as the K-L divergence between two distributions, D(P‖Q), is

not symmetric between P and Q, and the K-L divergence is

in general not a valid metric. Thus, the space of probability

distributions is not a linear vector space but a manifold [2],

when the K-L divergence behaves as the distance measure.

In this paper, we present an approach [3] to simplify the

problems with the assumption that the distributions of interest

are close to each other. With this assumption, the manifold

formed by distributions can be approximated by a tangent

plane, which is an Euclidean space. Moreover, the K-L diver-

gence will behave as the squared Euclidean metric between

distributions in this Euclidean space. Therefore, we obtain the

notion of coordinate, inner product, and orthogonality in a

linear metric space, to describe information theory problems.

Moreover, we will demonstrate in the rest sections that,

the linear structure constructed from out local approximation

will transfer information theory problems to linear algebra

problems, which can be solved easily. In particular, we show

that a systematic approach can be used to solve the single-

letterization problems. We apply this to the general broadcast

channel, and obtain new insights of the optimality of the

existing solutions [4]-[7]

The rest of this paper is organized as follows. We introduce

the notion of local approximation in section II, and show

that the K-L divergence can be approximated as the squared

Euclidean metric. In section III and IV, we present the

application of our local approximation to the point-to-point

channel and the general broadcast channel, respectively. We

will illustrate how the information theory problems become

simple linear algebra problems when applying our technique.

II. THE LOCAL APPROXIMATION

The key step of our approach is to use a local approximation

of the Kullback-Leibler (K-L) divergence. Let P and Q be

two distributions over the same alphabet X . We assume that

Q(x) = P (x) + εJ(x), for some small value ε, then the K-L

divergence can be written, with second order Taylor expansion,

as

D(P‖Q) = −
∑
x

P (x) log
Q(x)

P (x)

= −
∑
x

P (x) log

(
1 + ε · J(x)

P (x)

)

=
1

2
ε2 ·

∑
x

1

P (x)
J2(x) + o(ε2).

We denote
∑

x J
2(x)/P (x) as ‖J‖2P , which is the weighted

norm square of the perturbation vector J . It is easy to verify

here that replacing the weight in this norm by Q only results in
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a o(ε2) difference. That is, up to the first order approximation,

the weights in the norm simply indicate the neighborhood

of distributions where the divergence is computed. As a

consequence, D(P‖Q) and D(Q‖P ) are considered as equal

up to the first order approximation.

For convenience, we define the weighted perturbation vector

as

L(x) � 1√
P (x)

J(x), ∀x,

or in vector form L �
[√

P
−1

]
J , where

[√
P
−1

]
represents

the diagonal matrix with entries
{√

P (x)
−1

, x ∈ X
}

. This

allows us to write ‖J‖2P = ‖L‖2, where the last norm is

simply the Euclidean norm.

With this definition of the norm on the perturbations of

distributions, we can generalize to define the corresponding

notion of inner products. Let Qi(x) = P (x)+ε·Ji(x), ∀x, i =
1, 2, we can define

〈J1, J2〉P �
∑
x

1

P (x)
J1(x)J2(x) = 〈L1, L2〉,

where Li =
[√

P
−1

]
Ji, for i = 1, 2. From this, notions

of orthogonal perturbations and projections can be similarly

defined. The point here is that we can view a neighborhood

of distributions as a linear metric space, and define notions of

orthonormal basis and coordinates on it.

III. THE POINT TO POINT CHANNEL

We start by using this local geometric structure to study

the point-to-point channels to demonstrate the new insights

we can obtain from this approach, even on a well-understood

problem. It is well-known that the capacity problem is

max
PX

I(X;Y ), (1)

but this is in fact a single letter solution of the coding problem

max
U→Xn→Y n

1

n
I(U ;Y n), (2)

for some discrete random variable U , such that U → Xn →
Y n forms a Markov chain.

Now, to apply the local approximations, instead of solving

(2). we study a slightly different problem

max
U→Xn→Y n: 1n I(U ;Xn)≤ 1

2 ε
2

1

n
I(U ;Y n). (3)

We call the problem (3) as the linear information coupling
problem. The only difference between (2) and (3) lies in the

constraint 1
nI(U ;Xn) ≤ 1

2ε
2 on (3). That is, instead of trying

to find how many bits in total that we can send through the

given channel, we ask the question of how efficiently we can

send a thin layer of information through this channel. One

advantage of (3) is that it allows easy single letterization as

we will demonstrate in the following. In fact, the step of

single-letterization, namely, form (2) to (1), is the difficult step

of most network problems. For these problems, the approach

we used for the point-to-point problem can not be applied.

What we will show in the rest of this section is that there

is an alternative approach to do the well-known steps [1]

to go from (2) to (1), and this new approach based on the

geometric structures can be applied to more general problems.

For simplicity, in this paper, we assume that the marginal

distribution PXn is given, and is an i.i.d. distribution over

the n letters1, so that we can focus on finding U and the

conditional distribution PXn|U optimizing (3).

First, we solve the single-letter version, namely n = 1, of

this problem. Observing that we can write the constraint as

I(U ;X) =
∑
u

PU (u) ·D(PX|U (·|u)‖PX) ≤ 1

2
ε2.

This implies that for each value of u, the conditional dis-

tribution PX|U=u is a local perturbation from PX , that is,

PX|U=u = PX + ε · Ju.

Next, using the notation that Lu =
[√

P
−1

]
Ju, for each

value of u, we observe that

PY |U=u = WPX|U=u

= WPX + ε ·WJu

= PY + ε ·W [
√
PX ]Lu,

where the channel applied to an input distribution is simply

viewed as the channel matrix W , of dimension |Y| × |X |,
multiplying the input distribution as a vector. At this point, we

have reduced both the spaces of input and output distributions

as linear spaces, and the channel acts as a linear transform

between these two spaces. The information coupling problem

can be rewritten as, ignoring the o(ε2) terms:

max .
∑
u

PU (u) · ‖WJu‖2PY
,

subject to:
∑
u

PU (u) · ‖Ju‖2PX
= 1,

or equivalently in terms of Euclidean norms,

max .
∑
u

PU (u) · ‖
[√

PY

−1
]
W

[√
PX

]
· Lu‖2,

subject to:
∑
u

PU (u) · ‖Lu‖2 = 1.

This problem of linear algebra is simple. We need to find

the joint distribution U → X → Y by specifying the PU and

the perturbations Ju for each value of u, such that the marginal

constraint on PX is met, and also these perturbations are the

most visible at the Y end, in the sense that multiplied by the

channel matrix, WJu’s have large norms. This can be readily

solved by setting the weighted perturbation vectors Lu’s to

be along the input (right) singular vectors of the matrix B �[√
PY

−1
]
W

[√
PX

]
with large singular values. Moreover, the

1This assumption can be proved to be “without loss of the optimality” for
some cases [3]. In general, it requires a separate optimization, which is not
the main issue addressed in this paper. To that end, we also assume that the
given marginal PXnhas strictly positive entries.
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Fig. 1. (a) Choice of PU and PX|U to maintain the marginal PX . (b)
Divergence Transition Map as a linear map between two spaces, with right
and left singular vectors as orthonormal bases.

choice of PU has no effect in the optimization, and might be

taken as binary uniform for simplicity. This is illustrated in

Figure 1(a).

We call the matrix B the divergence transition matrix
(DTM). It maps divergence in the space of input distribu-

tions to that of the output distributions. The singular value

decomposition (SVD) structure of this linear map has a critical

role of our analysis. It can be shown that the largest singular

value of B is 1, corresponding to an input singular vector[√
PX , x ∈ X ]T

, which is orthogonal to the simplex of prob-

ability distributions. This is not a valid choice for perturbation

vectors. However, all vectors orthogonal to this vector, or

equivalently, all linear combinations of other singular vectors

are valid choices of the perturbation vectors Lu. Thus, the

optimum of the above problem is achieved by setting Lu to

be along the singular vector with the second largest singular

value.

This can be visualized as in Figure 1(b), the orthonormal

bases for the input and output spaces, respectively, according

to the right and left singular vectors of B. The key point here

is that while I(U ;X) measures how many bits of information

is modulated in X , depending on how they are modulated, in

terms of which direction the corresponding perturbation vector

is, these bits have different levels of visibility at the Y end.

This is a quantitative way to show why viewing a channel as

a bit-pipe carrying uniform bits is a bad idea.

Moreover, recalling that the data processing inequality tells

that, from the Markov chain U → X → Y , the mutual

informations have the relation I(U ;X) ≥ I(U ;Y ). Let us

assume that the second largest singular value of B is σ ≤ 1,

then the above derivations imply that σ2 ·I(U ;X) ≥ I(U ;Y ).
Thus, we actually come up with a stronger result than the

data processing inequality, and the equality can be achieved

by setting the perturbation vector to be along the right singular

vector of B, with the second largest singular value.

The most important feature of the linear information cou-

pling problem is that the single-letterization (3) is simple. To

illustrate the idea, we consider a 2-letter version of the point-

to-point channel:

max
U→X2→Y 2: 12 I(U ;X2)≤ 1

2 ε
2

1

2
I(U ;Y 2). (4)

Let PX , PY , W , and B be the input and output distributions,

channel matrix, and the DTM, respectively for the single letter

version of the problem. Then, the 2-letter problem has P
(2)
X =

PX ⊗ PX , P
(2)
Y = PY ⊗ PY , and W (2) = W ⊗W , where ⊗

denotes the Kronecker product. As a result, the new DTM is

B(2) = B⊗B. We have the following lemma on the singular

values and vectors of B(2).

Lemma 1. Let vi and vj denote two singular vectors of B
with singular values μi and μj . Then vi ⊗ vj is a singular
vector of B(2) and its singular value is μiμj .

Now, recall that the largest singular value of B is μ0 = 1,

with the singular vector v0 =
[√

PX , x ∈ X ]T
, which corre-

sponds to the direction orthogonal to the distribution simplex.

This implies that the largest singular value of B(2) is also

1, again corresponds to the direction that is orthogonal to all

valid choices of the perturbation vectors.

The second largest singular value of B(2) is a tie between

μ0μ1 and μ1μ0, with singular vectors v0⊗v1 and v1⊗v0. The

optimal solution of (4) is thus to set the perturbation vectors

to be along these two vectors. This can be written as

PX2|U=u

=PX ⊗ PX +
[√

PX ⊗ PX

]
· (εv0 ⊗ v1 + ε′v1 ⊗ v0)

=
(
PX + ε′

[√
PX

]
v1

)
⊗
(
PX + ε

[√
PX

]
v1

)
+O(ε2).

Here, we use the fact that v0 =
[√

PX , x ∈ X ]T
. This means

that the optimal conditional distribution PX2|U=u for any u has

the product form, up to the first order approximation. With a

simple time-sharing argument, it is easy to see that we can

indeed set ε = ε′, that is, pick this conditional distribution to

be i.i.d. over the two symbols, to achieve the optimum.

The simplicity of this proof of the optimality of the single

letter solutions is astonishing. All we have used is the fact

that the singular vector of B(2) corresponding to the second

largest singular value has a special form. A distribution in the

neighborhood of PX⊗PX is a product distribution if and only

if it can be written as a perturbation from PX⊗PX , along the

subspace spanned by vectors v0⊗ vi and vj ⊗ v0, in the form

of v0 ⊗ v + v′ ⊗ v0, for some v and v′. Thus, all we need to

do is to find the eigen-structure of the B-matrix, and verify if

the optimal solutions have this form. This procedure is used

in more general problems.

One way to explain why the local approximation is useful

is as follows. In general, tradeoff between multiple K-L
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divergence (mutual information) is a non-convex problem.

Thus, finding global optimum for such problems is in gen-

eral intrinsically intractable and extremely hard. In contrast,

with our local approximation, the K-L divergence becomes

a quadratic function. Now, the tradeoff between quadratic

functions remains quadratic. Effectively, our approach focus

on verifying the local optimality of the quadratic solutions,

which is a natural thing to do, since the overall problem is not

convex.

IV. THE GENERAL BROADCAST CHANNEL

Let us now apply our local approximation approach to the

general broadcast channel. A general broadcast channel with

input X ∈ X , and outputs Y1 ∈ Y1, Y2 ∈ Y2, is specified by

the memoryless channel matrices W1 and W2. These channel

matrices specify the conditional distributions of the output

signals at two users, 1 and 2 as Wi(yi|x) = PYi|X(yi|x), for

i = 1, 2. Let M1, M2, and M0 be the two private messages

and the common message, with rate R1, and R2, and R0,

respectively. The multi-letter capacity region can be written

as ⎧⎨
⎩

R0 ≤ 1
n min{I(U ;Y n

1 ), I(U ;Y n
2 )},

R1 ≤ 1
nI(V1;Y

n
1 ),

R2 ≤ 1
nI(V2;Y

n
2 ),

for some mutually independent random variables U , V1, and

V2, such that (U, V1, V2)→ Xn → (Y n
1 , Y n

2 ) forms a Markov

chains.

The linear information coupling problems of the private

messages, given that the common message is decoded, are

essentially the same as the point-to-point channel case. Thus,

we only need to focus on the linear information coupling

problem of the common message:

max .
1

n
min {I(U ;Y n

1 ), I(U ;Y n
2 )} , (5)

subject to: U → Xn → (Y n
1 , Y n

2 ) :
1

n
I(U ;Xn) ≤ 1

2
ε2

The core problem we want to address here is that whether or

not the single-letter solutions are optimal for (5). To do this,

suppose that PXn|U=u = P
(n)
X + ε · Ju. Define the DTMs

Bi �
[√

PYi

−1
]
Wi

[√
PX

]
, for i = 1, 2, and the scaled

perturbation Lu =

[√
P

(n)
X

−1]
Ju, the problem then becomes

max
Lu:‖Lu‖2=1

min
{
‖B(n)

1 Lu‖2, ‖B(n)
2 Lu‖2

}
, (6)

where B
(n)
i is the nth Kronecker product of the single-letter

DTM Bi, for i = 1, 2.

Different from the point-to-point problem, we need to

choose the perturbation vectors Lu to have large images si-

multaneously through two different linear systems. In general,

the tradeoff between two SVD structures can be rather messy

problems. However, in this problem, for both i = 1, 2, B
(n)
i

have the special structure of being the Kronecker product of

the single letter DTMs. Furthermore, both B1 and B2 have the

largest singular value of 1, corresponding to the same singular

vector φ0 =
[√

PX , x ∈ X ]T
, although the rest of their SVD

structures are not specified. The following theory characterizes

the optimality of single-letter and finite-letter solutions for the

general cases.

Theorem 1. Suppose that Bi are DTM’s for some DMC and
input/output distributions, for i = 1, 2, . . . , k, then the linear
information coupling problem

max
Lu:‖Lu‖2=1

min
1≤i≤k

{
‖B(n)

i Lu‖2
}
, (7)

has optimal single letter solutions for the case with 2 receivers.
In general, when there are k > 2 receivers, single letter
solutions can not be optimal, when the cardinality |U| is
bounded by some function of |X |. However, there still exists
k-letter solutions that are optimal.

While we will not present the full proof of this re-

sult in this paper, it worth pointing out how conceptually

straightforward it is. We can write the right singular vec-

tors of the two DTMs, B1 and B2, as φ0, φ1, . . . , φn−1

and ϕ0, ϕ1, . . . , ϕn−1. The only structure we have is that

φ0 = ϕ0 =
[√

PX(x), x ∈ X
]T

, both correspond to the

largest singular value of 1. For other vectors, the relation

between the two bases can be written as a unitary matrix Ψ,

with φi =
∑

j Ψijϕj . Now, we can define an orthonormal

basis for the space of multi-letter distributions on Xn. For

example, with 2-letter distributions, we can use φi⊗φj , i, j ∈
{0, 1, ..., n− 1} and (i, j) �= (0, 0). Note that any Lu can

be written as Lu =
∑

i,j �=(0,0) αijφi ⊗ φj . If a perturbation

vector Lu has any non-zero component along φi ⊗ φj , with

i, j �= 0, we can always move this component to either φi⊗φ0

or φ0⊗φj to have, say, φi⊗φ0 =
∑

j Ψijϕj⊗ϕ0. This results

in larger norms of the output vectors through both channels.

As a result, the optimizer of (7) can only have components

on the vectors φ0 ⊗ φj and φi ⊗ φ0. This means that the

resulting conditional distribution must be product distributions,

i.e. PXn|U=u = PX1|U=u · PX2|U=u . . .. This simple observa-

tion greatly simplifies the multi-letter optimization problem:

instead of searching for general joint distributions, now we

have the further constraint of conditional independence. This

directly gives rise to the proof of the optimality of i.i.d.

distributions and hence single letter solutions for the 2 user

case, which is the first definitive answer on the general

broadcast channels.

The more interesting case is when there are more than

2 receivers. In such cases, i.i.d. distributions simply do not

have enough degrees of freedom to be optimal in the tradeoff

of more than 2 linear systems. Instead, one has to design

multi-letter product distributions to achieve the optimal. The

following example, constructed with the geometric method,

illustrate the key ideas.

Example:
We consider a 3-user broadcast channel. Let the input al-

phabet X be ternary, so that the perturbation vectors have

2 dimensions and can be easily visualized. Suppose that
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Fig. 2. (a) A ternary input broadcast channel (b) The optimal perturbations
over 3 time slots.

the three DTMs are rotations of 0, 2π/3, 4π/3, respec-

tively, followed (left multiplied) by the projection to the

horizontal axis. This corresponds to the ternary input chan-

nels as shown in Figure 2(a). Now if we use single-letter

inputs, it can be seen that for any Lu with ‖Lu‖2 = 1,

min
{‖B1Lu‖2, ‖B2Lu‖2, ‖B3Lu‖2

} ≤ 1/4. The problem

here is that no matter what direction Lu0 takes, the three

output norms are unequal, and the minimum one always limits

the performance. Now, if we use 3-letter input, and denote

φθ = [cos θ, sin θ]T , then we can take

PX3|U=u = (PX + εφθ)⊗ (PX + εφθ+ 2π
3
)⊗ (PX + εφθ+ 4π

3
)

for any value of θ, as shown in Figure 2(b). Intuitively, this

input equalizes the three channels, and gives for all i = 1, 2, 3,

‖B(3)
i L

(3)
u ‖2 = 1/2, which doubles the information coupling

rate. Translating this solution to the coding language, it means

that we take turns to feed the common information to each

individual user. Note that the solution is not a standard time-

sharing input, and hence the performance is strictly out of the

convex hull of i.i.d. solutions. One can interpret this input as a

repetition of the common message over three time-slots, where

the information is modulated along equally rotated vectors.

For this reason, we call this example the “windmill” channel.

Additionally, it is easy to see that the construction of the

windmill channel can be generalized to the cases of k > 3
receivers, where k-letter solutions is necessary.

Note that in this example, we let U be a binary random

variable, and in this case, while there are optimal 3-letter

solutions, the optimal single-letters do not exist. However,

one can in fact take U to be non-binary. For example, let

U = {0, 1, 2, 3, 4, 5} with PU (u) = 1/6 for all u, and let

LU=0 = −LU=1 = φθ, LU=2 = −LU=3 = φθ+ 2π
3

, and

LU=4 = −LU=5 = φθ+ 4π
3

, then we can still achieve the

information coupling rate 1/2. Thus, there actually exits an op-

timal single-letter solution with cardinality |U| = 6. However,

when there are k receivers, it requires cardinality |U| = 2k
for obtaining optimal single-letter solutions. Essentially, this

example shows that finding a single perturbation vector with

a large image at the outputs of all 3 channels is difficult. The

tension between these 3 linear systems requires more degrees

of freedom in choosing the perturbations, or in other words,

the way that common information is modulated. Such more

degrees of freedom can be provided either by using multi-letter

solutions or have larger cardinality bounds. This effect is not

captured by the conventional single-letterization approach.

Theorem 1 reduces most of the difficulty of solving the

multi-letter optimization problem (5). The remaining is to find

the optimal scaled perturbation Lu for the single-letter version

of (5), if the number of receivers k = 2, or the k-letter version,

if k > 2. These are finite dimensional convex optimization

problems [8], which can be readily solved.

We can see that all these information theory problems are

solved with essentially the same procedure, and all we need

in solving these problems is simple linear algebra. This again,

demonstrates the simplicity and uniformity of our approach in

dealing with information theory problems.

V. CONCLUSION

In this paper, we present the local approximation approach,

and show that with this approach, we can handle the issue

of single-letterization in information theory by just solving

simple linear algebra problems. Moreover, we demonstrate

that our approach can be applied to different communication

problems with the same procedure, which is a very attractive

property. Finally, we provide the geometric insight of the

optimal finite-letter solutions in sending the common message

to k > 2 receivers, which also explains why optimal single-

letter solutions fail to be existed in these cases.
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