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SCHUBERT VARIETIES AND DISTANCES BETWEEN SUBSPACES OF

DIFFERENT DIMENSIONS

KE YE AND LEK-HENG LIM

Abstract. We resolve a basic problem on subspace distances that often arises in applications: How
can the usual Grassmann distance between equidimensional subspaces be extended to subspaces of
different dimensions? We show that a natural solution is given by the distance of a point to a Schu-
bert variety within the Grassmannian. This distance reduces to the Grassmann distance when the
subspaces are equidimensional and does not depend on any embedding into a larger ambient space.
Furthermore, it has a concrete expression involving principal angles, and is efficiently computable
in numerically stable ways. Our results are largely independent of the Grassmann distance — if
desired, it may be substituted by any other common distances between subspaces. Our approach
depends on a concrete algebraic geometric view of the Grassmannian that parallels the differential
geometric perspective that is well-established in applied and computational mathematics.

1. Introduction

Biological data (e.g. gene expression levels, metabolomic profile), image data (e.g. mri trac-
tographs, movie clips), text data (e.g. blogs, tweets), etc., often come in the form of a set of
feature vectors a1, . . . , am ∈ Rd and can be conveniently represented by a matrix A ∈ Rm×d (e.g.
gene-microarray matrices of gene expression levels, frame-pixel matrices of grey scale values, term-
document matrices of term frequencies-inverse document frequencies). In modern applications,
it is often the case that one will encounter an exceedingly large sample size m (massive) or an
exceedingly large number of variables d (high-dimensional) or both.

The raw data A is usually less interesting and informative than the spaces it defines, e.g. its
row and column spaces or its principal subspaces. Moreoever, it often happens that A can be
well-approximated by a subspace A ∈ Gr(k, n) where k ≪ m and n ≪ d. The process of getting
from A to A is well-studied, e.g. randomly sample a subset of representative landmarks or compute
principal components.

Subspace-valued data appears in a wide range of applications: computer vision [36, 45], bioin-
formatics [22], machine learning [23, 30], communication [34, 50], coding theory [4, 6, 12, 15],
statistical classification [21], and system identification [36]. In computational mathematics, sub-
spaces arise in the form of Krylov subspaces [32] and their variants [11], as subspaces of structured
matrices (e.g. Toeplitz, Hankel, banded), and in recent developments such as compressive sensing
(e.g. Grassmannian dictionaries [43], online matrix completion [10]).

One of the most basic problems with subspaces is to define a notion of separation between them.
The solution is well-known for subspaces of the same dimension k in Rn. These are points on the
Grassmannian Gr(k, n), a Riemannian manifold, and the geodesic distance between them gives us an
intrinsic distance. The Grassmann distance is independent of the choice of coordinates and can be
readily related to principal angles and thus computed via the singular value decomposition (svd):
For subspaces A,B ∈ Gr(k, n), form matrices A,B ∈ Rn×k whose columns are their respective
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orthonormal bases, then

d(A,B) =
(

∑k

i=1
θ2i

)1/2
, (1)

where θi = cos−1
(

σi(A
TB)

)

is the ith principal angle between A and B. This is the geodesic
distance on the Grassmannian viewed as a Riemannian manifold. There are many other common
distances defined on Grassmannians — Asimov, Binet–Cauchy, chordal, Fubini–Study, Martin,
Procrustes, projection, spectral (see Table 2).

What if the subspaces are of different dimensions? In fact, if one examines the aforementioned
applications, one invariably finds that the most general settings for each of them would fall under
this situation. The restriction to equidimensional subspaces thus somewhat limits the utility of
these applications. For example, the principal subspaces of two matrices A and B for a given noise
level would typically be of different dimensions, since there is no reason to expect the number of
singular values of A above a given threshold to be the same as that of B.

As such one may also find many applications that involve distances between subspaces of different
dimensions: numerical linear algebra [8, 42], information retrieval [7, 51], facial recognition [16, 47],
image classification [7, 16], motion segmentation [13, 35, 49], eeg signal analysis [18], mechanical
engineering [24], economics [39], network analysis [40], blog spam detection [31], and decoding
colored barcodes [5].

These applications are all based on two existing proposals for a distance between subspaces of
different dimensions: The containment gap [28, pp. 197–199] and the symmetric directional distance
[44, 46]. They are however somewhat ad hoc and bear little relation to the natural geometry of
subspaces. Also, it is not clear what they are suppose to measure and neither restricts to the
Grassmann distance when the subspaces are of the same dimension. Our main objective is to show
that there is an alternative definition that does generalize the Grassmann distance but our work
will also shed light on these two distances.

1.1. Main Contributions. Our main result (see Theorem 7) can be stated in simple linear alge-
braic terms: Given any two subspaces in Rn, A of dimension k and B of dimension l, assuming k < l
without loss of generality, the distance from A to the nearest k-dimensional subspace contained
in B equals the distance from B to the nearest l-dimensional subspace that contains A. Their
common value gives the distance between A and B. Taking an algebraic geometric point-of-view:

(∗) The distance between subspaces of different dimensions is the distance between a point and a
certain Schubert variety within the Grassmannian.

This distance has the following properties, established in Section 4:

(a) readily computable via svd;
(b) restricts to the usual Grassmann distance (1) for subspaces of the same dimension;
(c) independent of the choice of local coordinates;
(d) independent of the dimension of the ambient space (i.e., n);
(e) may be defined in conjunction with other common distances in Table 2.

We will see in Section 7 that the two existing notions of distance between subspaces of different
dimensions are special cases of (e).

Evidently, the word ‘distance’ in (∗) is used in the sense of a distance of a point to a set. For
example, if a subspace is contained in another, then the distance between them is zero, even if
they are distinct subspaces. Thus the distance in (∗) is not a metric1. In Section 6, we define a
metric on the set of subspaces of all dimensions using an analogue of our main result: Given any
two subspaces in Rn, A of dimension k and B of dimension l with k < l, the distance from A

to the furthest k-dimensional subspace contained in B equals the distance from B to the furthest

1We will see in Section 5 that this could be attributed to the fact that Met, the category of metric spaces and
continuous contractions, does not admit coproduct.
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l-dimensional subspace that contains A. Their common value gives a metric between A and B.
The most interesting metrics for subspaces of different dimensions can be found in Table 3.

In Section 9, we obtain a volumetric analogue of our main result: Given two arbitrary subspaces
in Rn, A of dimension k and B of dimension l with k < l, we show that the probability a ran-
dom l-dimensional subspace contains A equals the probability a random k-dimensional subspace is
contained in B.

The far-reaching work [17] popularized the basic differential geometry of Stiefel and Grassman-
nian manifolds by casting the discussions concretely in terms of matrices. Subsequent works,
notably [1, 2, 3], have further enriched this concrete matrix-based approach. A secondary objective
of our article is to do the same for the basic algebraic geometry of Grassmannians. In particular, we
introduce some of the objects in Table 1 to an applied and computational mathematics readership.
The proofs of our main results essentially use only the svd. Everything else is explained within the
article and accessible to anyone willing to accept a small handful of unfamiliar terminologies and
facts on faith.

Table 1. Grassmannian and friends

Grassmannian Gr(k, n) models k-dimensional subspaces in Rn §2

Infinite Grassmannian Gr(k,∞) models k-dimensional subspaces regardless of
ambient space

§3

Doubly-infinite Grassmannian Gr(∞,∞) models subspaces of all dimensions regardless
of ambient space

§5

Flag variety Flag(k1, . . . , km, n) models nested sequences of subspaces in Rn;
Flag(k, n) = Gr(k, n)

§8

Schubert variety Ω(X1, . . . ,Xm, n) ‘linearly constrained’ subset of Gr(k, n) §8

2. Grassmannian of linear subspaces

We will selectively review some basic properties of the Grassmannian. The differential geometric
perspectives are drawn from [27, 37], the more concrete matrix-theoretic view from [2, 17, 48], and
the computational aspects from [20].

We fix the ambient space Rn. A k-plane is a k-dimensional subspace of Rn. A k-frame is an
ordered orthonormal basis of a k-plane, regarded as an n × k matrix whose columns a1, . . . , ak
are the orthonormal basis vectors. A flag is a strictly increasing sequence of nested subspaces,
X0 ⊂ X1 ⊂ · · · ⊂ Xm ⊂ Rn; it is complete if m = n.

We write Gr(k, n) for the Grassmannian of k-planes in Rn, V(k, n) for the Stiefel manifold of
orthonormal k-frames, and Ø(n) := V(n, n) for the orthogonal group of n× n orthogonal matrices.
V(k, n) may be regarded as a homogeneous space,

V(k, n) ∼= Ø(n)/Ø(n − k),

or more concretely as the set of n× k matrices with orthonormal columns.
There is a right action of Ø(k) on V(k, n): For Q ∈ Ø(k) and A ∈ V(k, n), the action yields

AQ ∈ V(k, n) and the resulting homogeneous space is Gr(k, n), i.e.,

Gr(k, n) ∼= V(k, n)/Ø(k) ∼= Ø(n)/
(

Ø(n− k)×Ø(k)
)

. (2)

In this picture, a subspace A ∈ Gr(k, n) is identified with an equivalence class comprising all its
k-frames {AQ ∈ V(k, n) : Q ∈ Ø(k)}. Note that span(AQ) = span(A) for all Q ∈ Ø(k).
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There is a left action of Ø(n) on Gr(k, n): For any Q ∈ Ø(n) and A = span(A) ∈ Gr(k, n) where
A is a k-frame of A, the action yields

Q ·A := span(QA) ∈ Gr(k, n). (3)

This action is transitive as any k-plane can be rotated onto any other k-plane by some Q ∈ Ø(n). A
k-planeA ∈ Gr(k, n) will be denoted in boldface; the corresponding italized letter A = [a1, . . . , ak] ∈
V(k, n) will denote a k-frame of A.

Gr(k, n) and V(k, n) are smooth manifolds of dimensions k(n−k) and nk−k(k+1)/2 respectively.
As a set of n × k matrices, V(k, n) is a submanifold of Rn×k and inherits a Riemannian metric
from the Euclidean metric on Rn×k, i.e., given A = [a1, . . . , ak] and B = [b1, . . . , bk] in TX V(k, n),

the tangent space at X ∈ V(k, n), the Riemannian metric g is defined by gX(A,B) =
∑k

i=1 a
T

i bi =

tr(ATB). As g is invariant under the action of Ø(k), it descends to a Riemannian metric on Gr(k, n)
and in turn induces a geodesic distance on Gr(k, n) which we define below.

Let A ∈ Gr(k, n) and B ∈ Gr(l, n) respectively. Let r := min(k, l). The ith principal vectors
(pi, qi), i = 1, . . . , r, are defined recursively as solutions to the optimization problem

maximize pTq
subject to p ∈ A, pTp1 = · · · = pTpi−1 = 0, ‖p‖ = 1,

q ∈ B, qTq1 = · · · = qTqi−1 = 0, ‖q‖ = 1,

for i = 1, . . . , r. The principal angles are then defined by

cos θi = pTi qi, i = 1, . . . , r.

Clearly 0 ≤ θ1 ≤ · · · ≤ θr ≤ π/2. We will let θi(A,B) denote the ith principal angle between
A ∈ Gr(k, n) and B ∈ Gr(l, n).

Principal vectors and principal angles may be readily computed using qr and svd [9, 20]. Let
A = [a1, . . . , ak] and B = [b1, . . . , bl] be orthonormal bases and let

ATB = UΣV T (4)

be the full svd of ATB, i.e., U ∈ Ø(k), V ∈ Ø(l), Σ =
[

Σ1 0
0 0

]

∈ Rk×l with Σ1 = diag(σ1, . . . , σr) ∈
Rr×r where σ1 ≥ · · · ≥ σr ≥ 0.

The principal angles θ1 ≤ · · · ≤ θr are given by

θi = cos−1 σi, i = 1, . . . , r. (5)

It is customary to write ATB = U(cosΘ)V T, where Θ = diag(θ1, . . . , θr, 1, . . . , 1) ∈ Rk×l and
Θ1 = diag(θ1, . . . , θr) ∈ Rr×r. Consider the column vectors,

AU = [p1, . . . , pk], BV = [q1, . . . , ql].

The principal vectors are given by (p1, q1), . . . , (pr, qr). Strictly speaking, principal vectors come
in pairs but we will also call the vectors pr+1, . . . , pk (if r = l < k) or qr+1, . . . , ql (if r = k < l)
principal vectors for lack of a better term.

We will use the following fact from [20, Theorem 6.4.2].

Proposition 1. Let r = min(k, l) and θ1, . . . , θr and (p1, q1), . . . , (pr, qr) be the principal angles
and principal vectors between A ∈ Gr(k, n) and B ∈ Gr(l, n) respectively. If m < r is such that
1 = cos θ1 = · · · = cos θm > cos θm+1, then

A ∩B = span{p1, . . . , pm} = span{q1, . . . , qm}.
If k = l, the geodesic distance between A and B in Gr(k, n) is called the Grassmann distance

and is given by

dGr(k,n)(A,B) =
(

∑k

i=1
θ2i

)1/2
= ‖cos−1Σ‖F . (6)
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An explicit expression for the geodesic [2] connecting A to B on Gr(k, n) that minimizes the
Grassmann distance is given by γ : [0, 1] → Gr(k, n),

γ(t) = span(AU cos tΘ+Q sin tΘ) (7)

where M = Q(tanΘ)UT is a condensed svd of the matrix

M := (I −AAT)B(ATB)−1 ∈ Rn×k

and where U ∈ Ø(k) and Θ = diag(θ1, . . . , θk) ∈ Rk×k are as in (4) and (5). Note that if cosΘ = Σ,

then tanΘ = (Σ−2 − I)1/2. Also, γ(0) = A and γ(1) = B.
Aside from the Grassmann distance, there are many well-known distances between subspaces

[6, 14, 15, 17, 21]. We present some of these in Table 2.

Table 2. Distances on Gr(k, n) in terms of principal angles and orthonormal bases.

Principal angles Orthonormal bases

Asimov dαGr(k,n)(A,B) = θk cos−1‖ATB‖2

Binet–Cauchy dβGr(k,n)(A,B) =
(

1−
∏k

i=1 cos
2 θi

)1/2
(1− (detATB)2)1/2

Chordal dκGr(k,n)(A,B) =
(

∑k
i=1 sin

2 θi

)1/2
1√
2
‖AAT −BBT‖F

Fubini–Study dφGr(k,n)(A,B) = cos−1
(

∏k
i=1 cos θi

)

cos−1|detATB|

Martin dµGr(k,n)(A,B) =
(

log
∏k

i=1 1/ cos
2 θi

)1/2
(−2 log detATB)1/2

Procrustes dρGr(k,n)(A,B) = 2
(

∑k
i=1 sin

2(θi/2)
)1/2

‖AU −BV ‖F

Projection dπGr(k,n)(A,B) = sin θk ‖AAT −BBT‖2

Spectral dσGr(k,n)(A,B) = 2 sin(θk/2) ‖AU −BV ‖2

The value sin θ1 is sometimes called the max correlation distance [21] or spectral distance [15]
but it is not a distance in the sense of a metric (can be zero for a pair of distinct subspaces) and
thus not listed. The spectral distance dσGr(k,n) is also called chordal 2-norm distance [6]. For each

distance in Table 2 defined for equidimensional A and B, Theorem 12 provides a corresponding
version for when dimA 6= dimB.

The fact that all these distances in Table 2 depend on the principal angles is not a coincidence
— the result [48, Theorem 3] implies the following.

Theorem 2. Any notion of distance between k-dimensional subspaces in Rn that depends only on
the relative positions of the subspaces, i.e., invariant under any rotation in Ø(n), must be a function
of their principal angles. To be more specific, if a distance d : Gr(k, n)×Gr(k, n) → [0,∞) satisfies

d(Q ·A, Q ·B) = d(A,B),

for all A,B ∈ Gr(k, n) and all Q ∈ Ø(n), where the action is as defined in (3), then d must be a
function of θi(A,B), i = 1, . . . , k.

We will next introduce the infinite Grassmannian Gr(k,∞) to show that these distances between
subspaces are independent of the dimension of their ambient space.
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3. The Infinite Grassmannian

One way of defining a distance between A ∈ Gr(k, n) and B ∈ Gr(l, n) where k 6= l is to
first isometrically embed Gr(k, n) and Gr(l, n) into an ambient Riemannian manifold and then
define the distance between A and B as their distance in the ambient space. This approach is
taken in [12, 41], via an isometric embedding of Gr(0, n),Gr(1, n), . . . ,Gr(n, n) into a sphere of
dimension (n − 1)(n + 2)/2. Such a distance suffers from two shortcomings: It is not intrinsic to
the Grassmannian and it depends on both the embedding and the ambient space.

The distance that we propose in Section 4 will depend only on the intrinsic distance of the
Grassmannian and is independent of n, i.e., a k-plane A and an l-plane B in Rn will have the same
distance if we regard them as subspaces in Rm for any m ≥ min(k, l). We will first establish this
for the special case k = l.

Consider the inclusion map ιn : Rn → Rn+1, ιn(x1, . . . , xn) = (x1, . . . , xn, 0). It is easy to see that
ιn induces a natural inclusion of Gr(k, n) into Gr(k, n+1) which we will also denote by ιn. For any
m > n, composition of successive natural inclusions gives the inclusion ιnm : Gr(k, n) → Gr(k,m),
where ιnm := ιn ◦ ιn+1 ◦ · · · ◦ ιm−1. To be more concrete, if A ∈ Rn×k has orthonormal columns,
then

ιnm : Gr(k, n) → Gr(k,m), span(A) 7→ span

([

A
0

])

, (8)

where the zero block matrix is (m− n)× k so that
[

A
0

]

∈ Rm×k.
For a fixed k, the family of Grassmannians {Gr(k, n) : n ∈ N, n ≥ k} together with the inclusion

maps ιnm : Gr(k, n) → Gr(k,m) for m > n form a direct system. The infinite Grassmannian of
k-planes is defined to be the direct limit of this system in the category of topological spaces and
denoted by

Gr(k,∞) := lim−→Gr(k, n).

Those unfamiliar with the notion of direct limits may simply take

Gr(k,∞) =
⋃∞

n=k
Gr(k, n),

where we regard Gr(k, n) ⊂ Gr(k, n + 1) by identifying Gr(k, n) with ιn
(

Gr(k, n)
)

. With this
identification, we no longer need to distinguish between A ∈ Gr(k, n) and its image ιn(A) ∈
Gr(k, n + 1) and may regard A ∈ Gr(k,m) for all m > n.

We now define a distance dGr(k,∞) on Gr(k,∞) that is consistent with the Grassmann distance
on Gr(k, n) for all n sufficiently large.

Lemma 3. The natural inclusion ιn : Gr(k, n) → Gr(k, n + 1) is isometric, i.e.,

dGr(k,n)(A,B) = dGr(k,n+1)

(

ιn(A), ιn(B)
)

. (9)

Repeated applications of (9) yields

dGr(k,n)(A,B) = dGr(k,m)

(

ιnm(A), ιnm(B)
)

(10)

for all m > n and if we identify Gr(k, n) with ιn
(

Gr(k, n)
)

, we may rewrite (10) as

dGr(k,n)(A,B) = dGr(k,m)(A,B)

for all m > n.

Proof. If a ∈ Rn, we write â = [ a0 ] ∈ Rn+1. Let A = [a1, . . . , ak] and B = [b1, . . . , bk] be any
orthonormal bases of A and B respectively. By the definition of ιn, ιn(A) is the subspace in Rn+1

spanned by an orthonormal basis that we will denote by ιn(A) := [â1, . . . , âk] ∈ R(n+1)×k. Hence
we have

ιn(A)
Tιn(B) =

[

ATB
0

]

.

By the expression for Grassmann distance in (6), we see that (9) must hold. �
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Since the inclusion of Gr(k, n) in Gr(k, n + 1) is isometric, a geodesic in Gr(k, n) remains a
geodesic in Gr(k, n+1). Given A,B ∈ Gr(k,∞), there must exist some n sufficiently large so that
both A,B ∈ Gr(k, n) and in which case we define the distance between A and B in Gr(k,∞) to be

dGr(k,∞)(A,B) := dGr(k,n)(A,B).

By Lemma 3, this value is independent of our choice of n and is the same for allm ≥ n. In particular,
dGr(k,∞) is well-defined and yields a distance on Gr(k,∞). We summarize these observations below.

Corollary 4. The Grassmann distance between two k-planes in Gr(k, n) is the geodesic distance
in Gr(k,∞) and is therefore independent of n. Also, the expression (7) for a distance minimizing
geodesic in Gr(k, n) extends to Gr(k,∞).

Lemma 3 also holds for other distances on Gr(k, n) in Table 2, allowing us to define them on
Gr(k,∞).

Lemma 5. For all m > n, the inclusion ιnm : Gr(k, n) → Gr(k,m) is isometric when Gr(k, n) and
Gr(k,m) are both equipped with the same distance in Table 2, i.e.,

d∗Gr(k,n)(A,B) = d∗Gr(k,m)(ιnm(A), ιnm
(

B)
)

,

∗ = α, β, κ, φ, µ, ρ, π, σ. Consequently d∗Gr(k,∞) is well-defined.

Proof. d∗Gr(k,n)(A,B) and d∗Gr(k,n+1)

(

ιn(A), ιn
(

B)
)

depend only on the principal angles between A

and B, so the distance remains unchanged under ιn. Repeated applications to ιn◦ιn+1◦· · ·◦ιm−1 =
ιnm yield the required isometry. �

4. Distances between subspaces of different dimensions

We now address our main problem. The proposed notion of distance will be that of a point x ∈ X
to a set S ⊂ X in a metric space (X, d). Recall that this is defined by d(x, S) := inf{d(x, y) : y ∈ S}.
For us, X is a Grassmannian, therefore compact, and so d(x, S) is finite. Also, S will be a closed
subset and so we write min instead of inf. We will introduce two possible candidates for S.

Definition 6. Let k, l, n ∈ N be such that k ≤ l ≤ n. For any A ∈ Gr(k, n) and B ∈ Gr(l, n), we
define the subsets

Ω+(A) :=
{

X ∈ Gr(l, n) : A ⊆ X
}

, Ω−(B) :=
{

Y ∈ Gr(k, n) : Y ⊆ B
}

.

We will call Ω+(A) the Schubert variety of l-planes containing A and Ω−(B) the Schubert variety
of k-planes contained in B.

As we will see in Section 8, Ω+(A) and Ω−(B) are indeed Schubert varieties and therefore
closed subsets of Gr(l, n) and Gr(k, n) respectively. Furthermore, Ω+(A) and Ω−(B) are uniquely
determined by A and B (see Proposition 20) and may be regarded as ‘sub-Grassmannians’ of
Gr(l, n) and Gr(k, n) respectively (see Proposition 21).

How could one define the distance between a subspace A of dimension k and a subspace B of
dimension l in Rn when k 6= l? We may assume k < l ≤ n without loss of generality. In which case
a very natural solution is to define the required distance δ(A,B) as that between the k-plane A

and the closest k-plane Y contained in B, measured within Gr(k, n). In other words, we want the
Grassmann distance from A to the closed subset Ω−(B),

δ(A,B) := dGr(k,n)

(

A,Ω−
(

B)
)

= min
{

dGr(k,n)(A,Y) : Y ∈ Ω−(B)
}

. (11)

This has the advantage of being intrinsic — the distance δ(A,B) is measured in dGr(k,n) and is
defined wholly within Gr(k, n) without any embedding of Gr(k, n) into an arbitrary ambient space.
Furthermore, by the property of dGr(k,n) in Corollary 4, δ(A,B) does not depend on n and takes
the same value for any m ≥ n. We illustrate this in Figure 1: The sphere is intended to be a
depiction of Gr(1, 3) though to be accurate antipodal points on the sphere should be identified.
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A

Gr(1, 3)

Ω−(B)

γ

X

Figure 1. Distance between a line A and a plane B in R3. X is closest to A among
all lines in B. The length of the geodesic γ from A to X gives the distance.

However, it is equally natural to define δ(A,B) as the distance between the l-plane B and the
closest l-plane Y containing A, measured within Gr(l, n). In other words, we could have instead
defined it as the Grassmann distance from B to the closed subset Ω+(A),

δ(A,B) := dGr(l,n)

(

B,Ω+

(

A)
)

= min
{

dGr(l,n)(B,X) : X ∈ Ω+(A)
}

. (12)

It will have the same desirable features as the one in (11) except that the distance is now measured
in dGr(l,n) and within Gr(l, n).

It turns out that the two values in (11) and (12) are equal, allowing us to define δ(A,B) as their
common value. We will establish this equality and the properties of δ(A,B) in the remainder of
this section. The results are summarized in Theorem 7. Our proof is constructive: In addition to
showing the equality of (11) and (12), it shows how one may explicitly find the closest points on
Schubert varieties X ∈ Ω−(B) and Y ∈ Ω+(A) to any given point in the respective Grassmannians.

Theorem 7. Let A be a subspace of dimension k and B be a subspace of dimension l in Rn.
Suppose k ≤ l ≤ n. Then

dGr(k,n)

(

A,Ω−
(

B)
)

= dGr(l,n)

(

B,Ω+

(

A)
)

. (13)

Their common value defines a distance δ(A,B) between the two subspaces with the following prop-
erties:

(i) δ(A,B) is independent of the dimension of the ambient space n and is the same for all n ≥ l+1;
(ii) δ(A,B) reduces to the Grassmann distance between A and B when k = l;
(iii) δ(A,B) may be computed explicitly as

δ(A,B) =
(

∑min{k,l}
i=1

θi(A,B)2
)1/2

(14)

where θi(A,B) is the ith principal angle between A and B, i = 1, . . . ,min(k, l).

Rewriting (13) as

min
X∈Ω+(A)

dGr(l,n)(X,B) = min
Y∈Ω−(B)

dGr(k,n)(Y,A),

yang
Highlight

yang
Highlight
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the equation says that the distance from B to the nearest l-dimensional subspace that contains A
equals the distance from A to the nearest k-dimensional subspace contained in B. This relation
has several parallels. We will see that:

(a) the Grassmann distance may be replaced by any of the distances in Table 2 (see Theorem 12);
(b) ‘nearest’ may be replaced by ‘furthest’ and ‘min’ above replaced by ‘max’ when n is sufficiently

large (see Proposition 16);
(c) ‘distance’ may be replaced by ‘volume’ with respect to the intrinsic uniform probability density

on the Grassmannian (see Section 9).

We will prove Theorem 7 by way of the next two lemmas.

Lemma 8. Let k ≤ l ≤ n be positive integers. Let δ : Gr(k, n)×Gr(l, n) → [0,∞) be the function
defined by

δ(A,B) =
(

∑k

i=1
θ2i

)1/2

where θi := θi(A,B), i = 1, . . . , k. Then

δ(A,B) ≥ dGr(l,n)

(

B,Ω+(A)
)

.

Proof. It suffices to find an X ∈ Ω+(A) such that δ(A,B) = dGr(l,n)(X,B). Let (p1, q1), . . . , (pk, qk)
be the principal vectors between A and B. We will extend q1, . . . , qk into an orthonormal basis
of B by appending appropriate orthonormal vectors qk+1, . . . , ql. The principal angles are given
by θi = cos−1 pTi qi, ‖pi‖ = ‖qi‖ = 1. If we take X ∈ Gr(l, n) to be the subspace spanned by
p1, . . . , pk, qk+1, . . . , ql, then

dGr(l,n)(X,B) = [(cos−1 pT1 q1)
2 + · · ·+ (cos−1 pTk qk)

2

+ (cos−1 qTk+1qk+1)
2 + · · ·+ (cos−1 qTl ql)

2]1/2 (15)

= [θ21 + · · ·+ θ2k + 02 + · · · + 02]1/2 = δ(A,B).

�

We state the following well-known fact [26, Corollary 3.1.3] for easy reference and deduce a
corollary that will be useful for Lemma 11.

Proposition 9. Let k ≤ l ≤ n be positive integers. Suppose B ∈ Rn×l and Bk ∈ Rn×k is a
submatrix obtained by removing any l − k columns from B. Then the ith singular values satisfy
σi(Bk) ≤ σi(B) for i = 1, . . . , k.

Corollary 10. Let B and Bk be as in Proposition 9 and B and Bk be subspaces of Rn spanned by
the column vectors of B and Bk respectively. Then for any subspace A of Rn, the principal angles
between the respective subspaces satisfy

θi(A,B) ≤ θi(A,Bk)

for i = 1, . . . ,min(dimA,dimBk).

Proof. By appropriate orthogonalization if necessary, we may assume that B and its submatrix Bk

are orthonormal bases of B and Bk. Let A be an orthonormal basis of A. Then σi(A
TB) and

σi(A
TBk) take values in [0, 1]. Since θi(A,B) = cos−1(σi

(

ATB)
)

and cos−1 is monotone decreasing

in [0, 1], the result follows from σi(A
TB) ≥ σi(A

TBk), by Proposition 9 applied to the submatrix
ATBk of ATB. �

Lemma 11. Let A, B be as in Lemma 8. Then δ(A,B) ≤ dGr(k,n)

(

A,Ω−(B)
)

.
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Proof. Let Y ∈ Ω−(B). Then Y is a k-dimensional subspace contained in B and in the notation
of Corollary 10, we may write Y = Bk. By the same corollary we get θi(A,B) ≤ θi(A,Y) for
i = 1, . . . , k. Hence

δ(A,B) =
(

∑k

i=1
θi(A,B)2

)1/2
≤

(

∑k

i=1
θi(A,Y)2

)1/2
= dGr(k,n)(A,Y). (16)

The desired inequality follows since this holds for arbitrary Y ∈ Ω−(B). �

Proof of Theorem 7. Recall that Grassmannians satisfy an isomorphism

Gr(k, n) ∼= Gr(n− k, n)

that takes a k-plane Y to the (n − k)-plane Y⊥ of linear forms vanishing on Y. It is easy to see
that this isomorphism is an isometry. Using this isometric isomorphism, together with Lemma 8
and Lemma 11, we can immediately deduce that

δ(A,B) ≤ dGr(k,n)

(

A,Ω−
(

B)
)

= dGr(n−k,n)

(

A⊥,Ω+

(

B⊥)
)

≤ δ(A⊥,B⊥).

On the other hand, by results in [29], we have δ(A,B) = δ(A⊥,B⊥) and hence

δ(A,B) = dGr(k,n)

(

A,Ω−(B)
)

.

Similarly we can obtain

δ(A,B) = dGr(l,n)

(

B,Ω+(A)
)

.

Hence we have the required equalities (13) and (14) in Theorem 7. Property (ii) is obvious from
(14) and Property (i) follows from Lemma 3. �

The proof of Lemma 8 provides a simple way to find a point X ∈ Ω+(A) that realizes the
distance dGr(l,n)

(

B,Ω+(A)
)

= δ(A,B). Similarly we may explicitly determine a point Y ∈ Ω−(B)

that realizes the distance dGr(k,n)

(

A,Ω−(B)
)

= δ(A,B).
One might wonder whether or not Theorem 7 still holds if we replace dGr(k,n) by other distance

functions described in Table 2. The answer is yes.

Theorem 12. Let k ≤ l ≤ n. Let A ∈ Gr(k, n) and B ∈ Gr(l, n). Then

d∗Gr(k,n)

(

A,Ω−(B)
)

= d∗Gr(l,n)

(

B,Ω+(A)
)

,

for ∗ = α, β, κ, φ, µ, ρ, π, σ. Their common value δ∗(A,B) is given by:

δα(A,B) = θk, δβ(A,B) =
(

1−
∏k

i=1
cos2 θi

)1/2
,

δκ(A,B) =
(

∑k

i=1
sin2 θi

)1/2
, δφ(A,B) = cos−1

(

∏k

i=1
cos θi

)

,

δµ(A,B) =
(

log
∏k

i=1

1

cos2 θi

)1/2
, δρ(A,B) =

(

2
∑k

i=1
sin2(θi/2)

)1/2
,

δπ(A,B) = sin θk, δσ(A,B) = 2 sin(θk/2),

or more generally with min(k, l) in place of the index k when we do not require k ≤ l.

Proof. This follows from observing that our proof of Theorem 7 only involves principal angles
between A and B and the diffeomorphism between Gr(k, n) and Gr(n− k, n) remains an isometry
under these distances. In particular, both (15) and (16) still hold with any of these distances in
place of the Grassmann distance. �

We will see in Section 7 that the projection distance δπ in Theorem 12 is equivalent to the con-
tainment gap, a measure of distance between subspaces of different dimensions originally proposed
in operator theory [28].



DISTANCES BETWEEN SUBSPACES OF DIFFERENT DIMENSIONS 11

5. Grassmannian of subspaces of all dimensions

We view the equality of dGr(k,n)

(

A,Ω−(B)
)

and dGr(l,n)

(

B,Ω+(A)
)

as the strongest evidence
that their common value δ(A,B) provides the most natural notion of distance between subspaces
of different dimensions. As we pointed out earlier, δ is a distance in the sense of a distance from
a point to a set, but not a distance in the sense of a metric on the set of all subspaces of all
dimensions. For instance, δ does not satisfy the separation property: δ(A,B) = 0 for any A ( B.
In fact, it is easy to observe the following.

Lemma 13. Let A ∈ Gr(k, n) and B ∈ Gr(l, n). Then δ(A,B) = 0 iff A ⊆ B or B ⊆ A.

δ also does not satisfy the triangle inequality: For a line L not contained in a subspace A, the
triangle inequality, if true, would imply

δ(L,A) = δ(L,A) + δ(A,B) ≥ δ(L,B),

δ(L,B) = δ(L,B) + δ(A,B) ≥ δ(L,A),

giving δ(L,A) = δ(L,B) for any subspace B, which is evidently false by Lemma 13 (e.g. take
B = A⊕ L).

These observations also apply verbatim to all the other similarly-defined distances δ∗ in Theo-
rem 12, i.e., none of them are metrics.

The set of all subspaces of all dimensions is parameterized by Gr(∞,∞), the doubly infinite
Grassmannian [19], which may be viewed informally as the disjoint union of all k-dimensional
subspaces2 over all k ∈ N,

Gr(∞,∞) =
∐∞

k=1
Gr(k,∞).

To define a metric between any pair of subspaces of arbitrary dimensions is to define one on
Gr(∞,∞). It is easy to define metrics on Gr(∞,∞) that bear little relation to the geometry of
Grassmannian but we will propose one in Section 6 that is consistent with δ and with dGr(k,n) for
all k ≤ n.

We will require the formal definition of Gr(∞,∞), namely, it is the direct limit of the direct
system of Grassmannians {Gr(k, n) : (k, n) ∈ N×N} with inclusion maps ιklnm : Gr(k, n) → Gr(l,m)
for all k ≤ l and n ≤ m such that l − k ≤ m − n. For A ∈ Rn×k with orthonormal columns, the
embedding is given by

ιklnm : Gr(k, n) → Gr(l,m), span(A) 7→ span









A 0
0 0
0 Il−k







 , (17)

where Il−k ∈ R(l−k)×(l−k) is an identity matrix and we have (m − n) − (l − k) zero rows in the
middle so that the 3×2 block matrix is in Rm×l. Note that for a fixed k, ιkknm reduces to ιnm in (8).

Since our distance δ(A,B) is defined for subspaces A and B of all dimensions, it defines a
function δ : Gr(∞,∞) × Gr(∞,∞) → R that is a premetric on Gr(∞,∞), i.e., δ(A,B) ≥ 0 and
δ(A,A) = 0 for all A,B ∈ Gr(∞,∞). This in turn defines a topology τ on Gr(∞,∞) in a standard
way: The ε-ball centered at A is

Bε(A) := {X ∈ Gr(∞,∞) : δ(A,X) < ε},
and U ⊆ Gr(∞,∞) is defined to be open if for any A ∈ U , there is an ε-ball Bε(A) ⊆ U . The
topology τ is consistent with the usual topology of Grassmannians (but it is not the disjoint union
topology). If we restrict τ to Gr(k,∞), then the subspace topology is the same as the topology
induced by the metric dGr(k,∞) on Gr(k,∞) as defined in Section 3. Nevertheless this apparently
natural topology on Gr(∞,∞) turns out to be a strange one.

2As discussed in Section 3, these are independent of the dimension of their ambient space and may be viewed as
an element of the infinite Grassmannian Gr(k,∞).
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Proposition 14. The topology τ on Gr(∞,∞) is non-Hausdorff and therefore non-metrizable.

Proof. τ is not Hausdorff since it is not possible to separate A ( B by open subsets, as we saw in
Lemma 13. Metrizable spaces are necessarily Hausdorff. �

Even though τ restricts to the metric space topology on Gr(k,∞) induced by the Grassmann
distance dGr(k,∞) for every k ∈ N, it is not itself a metric space topology. We view this as a
consequence of a more general phenomenon, namely, the category Met of metric spaces (objects)
and continuous contractions (morphisms) has no coproduct, i.e., given a collection of metric spaces,
there is in general no metric space that will behave like the disjoint union of the collection of metric
spaces. To see this, take metric spaces (X1, d1) and (X2, d2) where X1 = {x1}, X2 = {x2}. Suppose
a coproduct (X, d) of (X1, d1) and (X2, d2) exists. Let Y = {y1, y2} and let dY be the metric on Y
induced by dY (y1, y2) = 2d(x1, x2) 6= 0. Now define ϕi : Xi → Y by ϕi(xi) = yi, i = 1, 2. One sees
that no morphism ϕ : X → Y in Met is compatible with ϕ1 and ϕ2, contradicting the assumption
that X is the coproduct of X1 and X2.

If we instead look at the category of metric spaces with continuous or uniformly continuous
maps as morphisms, then coproducts always exist [25]. In Section 6, we will relax our requirement
and construct a metric dGr(∞,∞) on Gr(∞,∞) that restricts to dGr(k,∞) for all k ∈ N but without
requiring that it comes from a coproduct of {(Gr(k,∞), dGr(k,∞)) : k ∈ N} in Met.

6. Metrics for subspaces of all dimensions

We will describe a simple recipe for turning the distances δ∗ in Theorem 12 into metrics on
Gr(∞,∞). Suppose k ≤ l and we have A ∈ Gr(k, n) and B ∈ Gr(l, n). In this case there are k
principal angles between A and B, θ1, . . . , θk, as defined in (5). First we will set θk+1 = · · · = θl =
π/2. Then we take the Grassmann distance δ or any of the distances δ∗ in Theorem 12, replace
the index k by l, and call the resulting expressions dGr(∞,∞)(A,B) (for Grassmann distance) and
d∗Gr(∞,∞)(A,B) (for other distances) respectively.

When n is sufficiently large, setting θk+1, . . . , θl all equal to π/2 is equivalent to completing A

to an l dimensional subspace of Rn, by adding l− k vectors orthonormal to the subspace B. Hence
the distance between A and B is defined by the distance function on the Grassmannian Gr(l, n).
We show in Proposition 15 that these expressions will indeed define metrics on Gr(∞,∞).

Applying the above recipe to the Grassmann, chordal, and Procrustes distances yield the Grass-
mann, chordal, and Procrustes metrics on Gr(∞,∞) given in Table 3.

Table 3. Metrics on Gr(∞,∞) in terms of principal angles.

Grassmann metric dGr(∞,∞)(A,B) =
(

|k − l|π2/4 +
∑min(k,l)

i=1 θ2i

)1/2

Chordal metric dκGr(∞,∞)(A,B) =
(

|k − l|+∑min(k,l)
i=1 sin2 θi

)1/2

Procrustes metric dρGr(∞,∞)(A,B) =
(

|k − l|+ 2
∑min(k,l)

i=1 sin2(θi/2)
)1/2

Evidently the metrics in Table 3 are all of the form

d∗Gr(∞,∞)(A,B) =
√

δ∗(A,B)2 + c2∗ǫ(A,B)2, (18)

where ǫ(A,B) := |dimA − dimB|1/2. On the other hand, applying the above recipe to other
distances in Table 2 yield the Asimov, Binet–Cauchy, Fubini–Study, Martin, projection, and spectral
metrics on Gr(∞,∞) given by

d∗Gr(∞,∞)(A,B) =

{

d∗Gr(k,∞)(A,B) if dimA = dimB = k,

c∗ if dimA 6= dimB,
(19)



DISTANCES BETWEEN SUBSPACES OF DIFFERENT DIMENSIONS 13

for ∗ = α, β, φ, µ, π, σ, respectively. The constants c∗ > 0 can be seen to be

c = cα = π/2, cσ =
√
2, cµ = ∞, cβ = cφ = cπ = cκ = cρ = 1.

In all cases, for subspaces A and B of equal dimension k, these metrics on Gr(∞,∞) restrict to
the corresponding ones on Gr(k,∞), i.e.,

d∗Gr(∞,∞)(A,B) = d∗Gr(k,∞)(A,B),

where the latter is as described in Corollary 4 and Lemma 5. These metrics on Gr(∞,∞) are the
amalgamation of two pieces of information, the distance δ∗(A,B) and the difference in dimensions
|dimA− dimB|, either via a root mean square or an indicator function.

The Grassmann metric has a natural interpretation (see Proposition 16):

dGr(∞,∞)(A,B) is the distance from B to the furthest l-dimensional subspace that
contains A, which equals the distance from A to the furthest k-dimensional subspace
contained in B.

The chordal metric in Table 3 is equivalent to the symmetric directional distance, a metric on
subspaces of different dimensions [44, 46] popular in machine learning [5, 7, 13, 16, 18, 24, 31, 35,
39, 40, 47, 49, 51] (see Section 7).

Proposition 15. The expressions in Table 3 and (19) are metrics on Gr(∞,∞).

Proof. It is trivial to see that the expression defined in (19) yields a metric on Gr(∞,∞) for
∗ = α, β, µ, π, σ, φ, and so we just need to check the remaining three cases that take the form in
(18). Of the four defining properties of a metric, only the triangle inequality is not immediately
clear from (18).

Let k = dimA, l = dimB, and m = dimC. We may assume wlog that k ≤ l ≤ m ≤ n
where n is chosen sufficiently large so that A,B,C are subspaces in Rn. Let A ∈ Rn×k, B ∈ Rn×l,
C ∈ Rn×m be matrices whose columns are orthonormal bases of A, B, C respectively. Consider
the following (n +m− k)×m matrices:

A′ =

[

A 0
0 Im−k

]

, B′ =





B 0
0 0
0 Im−l



 , C ′ =

[

C
0

]

.

and set A′ = span(A′), B′ = span(B′), C′ = span(C ′); note that these are just A, B, C embedded
in Graff(m,n+m− k) via (17). The expressions in Table 3 satisfy

d∗Gr(∞,∞)(A,B) = d∗Gr(m,n+m−k)(A
′,B′),

d∗Gr(∞,∞)(B,C) = d∗Gr(m,n+m−k)(B
′,C′),

d∗Gr(∞,∞)(A,C) = d∗Gr(m,n+m−k)(A
′,C′).

Since A′,B′,C′ ∈ Gr(m,n + m − k), the triangle inequality for d∗Gr(m,n+m−k) immediately yields

the triangle inequality for d∗Gr(∞,∞). �

The proof shows that for any A ∈ Gr(k, n) and B ∈ Gr(l, n) where k ≤ l ≤ n,

d∗Gr(∞,∞)(A,B) = d∗Gr(l,n+l−k)

(

ιk,ln,n+l−k(A), ιl,ln,n+l−k(B)
)

.

The embeddings ιk,ln,n+l−k : Gr(k, n) → Gr(l, n+ l− k) and ιl,ln,n+l−k : Gr(l, n) → Gr(l, n+ l− k) are

as defined in (17) and are isometric for all k ≤ l ≤ n.

Proposition 16. Let k ≤ l ≤ n/2 and A ∈ Gr(k, n), B ∈ Gr(l, n). Then

max
X∈Ω+(A)

dGr(l,n)(X,B) = max
Y∈Ω−(B)

dGr(k,n)(Y,A) = dGr(∞,∞)(A,B), (20)

i.e., dGr(∞,∞) is the distance between furthest subspaces.
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Proof. We assume wlog that A ∩B = {0} by Proposition 1. Since

dGr(l,n)(X,B) = δ(X,B) =
(

∑l

i=1
θi(X,B)2

)1/2
,

and by Corollary 10, θi(X,B) ≤ θi(A,B), i = 1, . . . , k, we obtain

dGr(l,n)(X,B) ≤
(

δ(A,B)2 +
∑l

i=k+1
θi(X,B)2

)1/2
.

Let (a1, b1), . . . , (ak, bk) be the principal vectors between A and B. We extend b1, . . . , bk to obtain
an orthonormal basis b1, . . . , bk, bk+1, . . . , bl of B. Let X∩A⊥ be the orthogonal complement of A
in X and let B0 := span{bk+1, . . . , bl}. Then

(

∑l

i=k+1
θi(X,B)2

)1/2
= δ(X ∩A⊥,B0),

and the last inequality becomes

dGr(l,n)(X,B) ≤
√

δ(A,B)2 + δ(X ∩A⊥,B0)2.

If n ≥ 2l, then there exist l−k vectors c1, . . . , cl−k orthogonal to A and B simultaneously. Choosing
X = span{a1, . . . , ak, c1, . . . , cl−k}, we attain the required maximum:

dGr(l,n)(X,B) =
√

δ(A,B)2 + (l − k)π2/4 = dGr(∞,∞)(A,B).

The second equality in (20) follows from dGr(∞,∞)(A,B) = dGr(∞,∞)(B,A), given that dGr(∞,∞) is
a metric by Proposition 15. �

The existence of the metrics d∗Gr(∞,∞) as defined in (18) and (19) does not contradict our earlier

discussion about the general nonexistence of coproduct in Met as these metrics do not respect con-
tinuous contractions. Take the Grassmann metric on Gr(∞,∞) for instance. (Gr(∞,∞), dGr(∞,∞))
is an object of the category Met but it is not the coproduct of {(Gr(k,∞), dGr(k,∞)) : k ∈ N}.
Indeed, let Y = {y1, y2} with metric defined by dY (y1, y2) = 1. Consider a family of maps
fk : Gr(k,∞) → Y ,

fk(A) =

{

y1 if k = 2,

y2 otherwise.

Then fk is a continuous contraction between Gr(k,∞) and Y . So {fk : k ∈ N} is a family of
morphisms in Met compatible with {(Gr(k,∞), dGr(k,∞)) : k ∈ N}. If (Gr(∞,∞), dGr(∞,∞)) is the
coproduct of this family, then there must be a continuous contraction f : Gr(∞,∞) → Y such that
f ◦ιk = fk with ιk being the natural inclusion of Gr(k,∞) into Gr(∞,∞). But taking A ∈ Gr(2,∞)
and B ∈ Gr(3,∞), we see that

dGr(∞,∞)(A,B) ≥ π

2
> 1 = dY

(

f(A), f(B)
)

,

contradicting the surmise that f is a contraction. Similarly, one may show that (Gr(∞,∞), d∗Gr(∞,∞))

is not a coproduct in Met for any ∗ = α, β, κ, µ, π, ρ, σ, φ.
(Gr(∞,∞), dGr(∞,∞)) is also not the coproduct of {(Gr(k,∞), dGr(k,∞)) : k ∈ N} in the category

of metric spaces with continuous (or uniformly continuous) maps as morphisms. The coproduct in
this category is simply Gr(∞,∞) with the metric induced by the disjoint union topology, which is
too fine (in the sense of topology) to be interesting. In particular, such a metric is unrelated to the
distance δ.
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7. Comparison with existing works

There are two existing proposals for a distance between subspaces of different dimensions — the
containment gap and the symmetric directional distance. These turn out to be special cases of our
distance in Section 4 and our metric in Section 6.

Let A ∈ Gr(k, n) and B ∈ Gr(l, n). The containment gap is defined as

γ(A,B) := max
a∈A

min
b∈B

‖a− b‖
‖a‖ .

This was proposed in [28, pp. 197–199] and used in numerical linear algebra [42] for measuring sep-
aration between Krylov subspaces [8]. It is equivalent to our projection distance δπ in Theorem 12.
It was observed in [8, p. 495] that

γ(A,B) = sin
(

θk(A,Y)
)

where Y ∈ Ω−(B) is nearest to A in the projection distance dπGr(k,n). By Theorem 12, we deduce

that it can also be realized as

γ(A,B) = sin
(

θl(B,X)
)

where X ∈ Ω+(A) is nearest to B in the projection distance dπGr(l,n), a fact about the containment

gap that had not been observed before. Indeed, by Theorem 12, we get

γ(A,B) = δπ(A,B)

for all A ∈ Gr(k, n) and B ∈ Gr(l, n).
The symmetric directional distance is defined as

d∆(A,B) :=
(

max(k, l)−
∑k,l

i,j=1
(aTi bj)

2
)1/2

(21)

where A = [a1, . . . , ak] and B = [b1, . . . , bl] are the respective orthonormal bases. This was proposed
in [44, 46], and is widely used [5, 7, 13, 16, 18, 24, 31, 35, 39, 40, 47, 49, 51]. The definition (21) is
equivalent to our chordal metric dκGr(∞,∞) in Table 3,

dκGr(∞,∞)(A,B)2 = |k − l|+
min(k,l)
∑

i=1

sin2 θi = max(k, l)−
k,l
∑

i,j=1

(aTi bj)
2 = d∆(A,B)2,

since |k − l| = max(k, l)−min(k, l), and
∑k,l

i,j=1
(aTi bj)

2 = ‖ATB‖2F =
∑min(k,l)

i=1
cos2 θi = min(k, l)−

∑min(k,l)

i=1
sin2 θi.

8. Geometry of Ω+(A) and Ω−(B)

Up to this point, Ω+(A) and Ω−(B), as defined in Definition 6, are treated as mere subsets
of Gr(l, n) and Gr(k, n) respectively. We will see that Ω+(A) and Ω−(B) have rich geometric
properties. Firstly, we will show that they are Schubert varieties, justifying their names.

Definition 17. LetX1 ⊂ X2 ⊂ · · · ⊂ Xk be a fixed flag in Rn. The Schubert variety Ω(X1, . . . ,Xk, n)
is the set of k-planes Y satisfying the Schubert conditions dim(Y ∩Xi) ≥ i, i = 1, . . . , k, i.e.,

Ω(X1, . . . ,Xk, n) = {Y ∈ Gr(k, n) : dim(Y ∩Xi) ≥ i, i = 1, . . . , k}.
Definition 18. Let 0 =: k0 < k1 < · · · < km+1 := n be a sequence of increasing nonnegative
integers. The associated flag variety is the set of flags satisfying the condition dimXi = ki,
i = 0, 1, . . . ,m+ 1. We denote it by Flag(k1, . . . , km, n), i.e.,

{(X1, . . . ,Xm) ∈ Gr(k1, n)× · · · ×Gr(km, n) : Xi ⊂ Xi+1, i = 1, . . . ,m}.
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Observe that a Schubert variety depends on a specific increasing sequence of subspaces whereas
a flag variety depends only on an increasing sequence of dimensions (of subspaces). Flag varieties
may be viewed as a generalization of Grassmannians since if m = 1, then Flag(k, n) = Gr(k, n).
Like Grassmannians, Flag(k1, . . . , km, n) is a smooth manifold and sometimes called a flag manifold.
The parallel goes further, Flag(k1, . . . , km, n) is a homogeneous space,

Flag(k1, . . . , km, n) ∼= Ø(n)/
(

Ø(d1)× · · · ×Ø(dm+1)
)

(22)

where di = ki − ki−1 for i = 1, . . . ,m+ 1, generalizing (2).
Let A ∈ Gr(k, n) and B ∈ Gr(l, n) with k ≤ l. Then

Ω+(A) = Ω(A1, . . . ,Al, n), Ω−(B) = Ω(B1, . . . ,Bk, n),

are Schubert varieties in Gr(l, n) and Gr(k, n) respectively with the flags

{0} =: A0 ⊂ A1 ⊂ · · · ⊂ Ak := A ⊂ Ak+1 · · · ⊂ Al,

{0} =: B0 ⊂ B1 ⊂ · · · ⊂ Bk := B.

where Ak+i is a subspace of Rn containing A of dimension n− l + (k + i) for 1 ≤ i ≤ l − k.
The isomorphism Gr(l, n) ∼= Gr(n−l, n) (resp. Gr(k, n) ∼= Gr(n−k, n)) that sends X to X⊥ takes

Ω+(A) to Ω−(A⊥) (resp. Ω−(B) to Ω+(B
⊥)). Thus Ω+(A) (resp. Ω−(B)) may also be viewed as

Schubert varieties in Gr(n − l, n) (resp. Gr(n − k, n)). More importantly, this observation implies
that Ω+(A) and Ω−(B), despite superficial difference in their definitions, are essentially the same
type of objects.

Proposition 19. For any A ∈ Gr(k, n) and B ∈ Gr(l, n), we have

Ω+(A) ∼= Ω−(A
⊥) and Ω−(B) ∼= Ω+(B

⊥).

Also, Ω+(A) and Ω−(B) are uniquely determined by A and B respectively.

Proposition 20. Let A,A′ ∈ Gr(k, n) and B,B′ ∈ Gr(l, n). Then

Ω+(A) = Ω+(A
′) if and only if A = A′,

Ω−(B) = Ω−(B
′) if and only if B = B′.

Proof. Suppose Ω+(A) = Ω+(A
′). Observe that the intersection of all l-planes containing A is

exactly A and ditto for A′. So

A =
⋂

X∈Ω+(A)
X =

⋂

X∈Ω+(A′)
X = A′.

The converse is obvious. The statement for Ω− then follows from Proposition 19. �

This observation allows us to treat subspaces of different dimensions on the same footing by
regarding them as subsets in the same Grassmannian. If we have a collection of subspaces of
dimensions k ≤ k1 < k2 < · · · < km ≤ l, the injective map A 7→ Ω+(A) takes all of them into
distinct subsets of Gr(l, n). Alternatively, the injective map B 7→ Ω−(B) takes all of them into
distinct subsets of Gr(k, n).

The resemblance between Ω+(A) and Ω−(B) in Proposition 19 goes further — we may view
them as ‘sub-Grassmannians’.

Proposition 21. Let k ≤ l ≤ n and A ∈ Gr(k, n), B ∈ Gr(l, n). Then

Ω+(A) ∼= Gr(l − k, n− k), Ω−(B) ∼= Gr(k, l),

isomorphic as algebraic varieties and diffeomorphic as smooth manifolds. Thus

dimΩ+(A) = (n− l)(l − k), dimΩ−(B) = k(l − k).
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Proof. The first isomorphism is the quotient map ϕ : Ω+(A) → Grl−k(R
n/A), X 7→ X/A ⊆ Rn/A,

composed with the isomorphism Grl−k(R
n/A) ∼= Gr(l − k, n − k). The second isomorphism is

obtained by regarding a k-dimensional subspace Y of Rn in Ω−(B) as a k-dimensional subspace of
B, i.e., Ω−(B) = Grk(B) ∼= Gr(k, l). �

That Ω+(A) and Ω−(B) are Grassmannians allows us to infer the following:

(i) as topological spaces, they are compact and path-connected;
(ii) as algebraic varieties, they are irreducible and nonsingular;
(iii) as differential manifolds, they are smooth and any two points on them can be connected by a

length-minimizing geodesic.

The topology in (i) refers to the metric space topology, not Zariski topology. A consequence of
compactness is that the distance dGr(k,n)

(

A,Ω−(B)
)

= dGr(l,n)

(

B,Ω+(A)
)

can be attained by
points in Ω−(B) and Ω+(A) respectively. We constructed these closest points explicitly when we
proved Theorem 7.

Many more topological and geometric properties of Ω+(A) and Ω−(B) follow from Proposition 21
as they inherit everything that we know about Grassmannians (e.g. coordinate ring, cohomology
ring, Plücker relations, etc.); in particular, Ω+(A) and Ω−(B) are also flag varieties.

The last property in (iii) requires a proof. The length-minimizing geodesic is not unique and so
Ω+(A) and Ω−(B) are not geodesically convex [38, Definition 4.1.35].

Proposition 22. Any two points in Ω−(B) (resp. Ω+(A)) can be connected by a length-minimizing
geodesic in Gr(k, n) (resp. Gr(l, n)).

Proof. By Proposition 19, it suffices to show that any two points in Ω−(B) can be connected by a
geodesic curve in Ω−(B). By Proposition 21, Ω−(B) is the image of Gr(k, l) embedded isometrically
in Gr(k, n). So by Lemma 3, for any X1,X2 ∈ Gr(k, l), dGr(k,n)(X1,X2) = dGr(k,l)(X1,X2) =
dΩ−(B)(X1,X2), where the last is the geodesic distance in Ω−(B). Hence if dΩ−(B)(X1,X2) is
realized by a geodesic curve γ in Ω−(B), then γ must also be a geodesic curve in Gr(k, n). �

We have represented Gr(k, n) as a set of equivalence classes of matrices but it may also be
represented as a set of actual matrices [38, Example 1.2.20], namely, idempotent symmetric matrices
of trace k:

Gr(k, n) ∼= {P ∈ Rn×n : PT = P 2 = P, tr(P ) = k}.
The isomorphism maps each subspaceA ∈ Gr(k, n) to PA ∈ Rn×n, the unique orthogonal projection
onto A, and its inverse takes an orthogonal projection P to the subspace im(P ) ∈ Gr(k, n). P is
an orthogonal projection iff it is symmetric and idempotent, i.e., PT = P 2 = P . The eigenvalues
of an orthogonal projection onto a subspace of dimension k are 1’s and 0’s with multiplicities k
and n − k, so tr(P ) = k is equivalent to rank(P ) = k, ensuring im(P ) has dimension k. In this
representation,

Ω+(A) ∼= {P ∈ Rn×n : PT = P 2 = P, tr(P ) = l, im(A) ⊆ im(P )},
Ω−(B) ∼= {P ∈ Rn×n : PT = P 2 = P, tr(P ) = k, im(P ) ⊆ im(B)},

allowing us to treat Gr(k, n), Gr(l, n), Ω+(A), Ω−(B) all as subvarieties of Rn×n.

9. Probability density on the Grassmannian

We determine the relative volumes of Ω+(A), Ω−(B) and prove a volumetric analogue of (13)
in Theorem 7:

Given k-dimensional subspace A and l-dimensional subspace B in Rn, the proba-
bility that a randomly chosen l-dimensional subspace in Rn contains A equals the
probability that a randomly chosen k-dimensional subspace in Rn is contained in B.
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Every Riemannian metric on a Riemannian manifold yields a volume density that is consistent
with the metric [38, Example 3.4.2]. The Riemannian metric3 on Gr(k, n) that gives us the Grass-
mann distance in (6) and the geodesic in (7) also gives a density dγk,n on Gr(k, n). The volume of
Gr(k, n) is then

Vol
(

Gr(k, n)
)

=

∫

Gr(k,n)
|dγk,n| =

(

n

k

)

∏n
j=1 ωj

(
∏k

j=1 ωj

)(
∏n−k

j=1 ωj

)
, (23)

where ωm := πm/2/Γ(1 +m/2), volume of the unit ball in Rm [38, Proposition 9.1.12].

The normalized density dµk,n := Vol
(

Gr(k, n)
)−1|dγk,n| defines a natural uniform probability

density on Gr(k, n). With respect to this, the probability of landing on Ω+(A) in Gr(l, n) equals
the probability of landing on Ω−(B) in Gr(k, n).

Corollary 23. Let k ≤ l ≤ n and A ∈ Gr(k, n), B ∈ Gr(l, n). The relative volumes of Ω+(A) in
Gr(l, n) and Ω−(B) in Gr(k, n) are equal and their common value depends only on k, l, n,

µl,n

(

Ω+(A)
)

= µk,n

(

Ω−(B)
)

=
l!(n− k)!

∏l
j=l−k+1ωj

n!(l − k)!
∏n

j=n−k+1 ωj
.

Proof. By Proposition 21, Ω+(A) is isometric to Gr(n− l, n−k) and Ω−(B) is isometric to Gr(k, l),
so by (23) their volumes are

(

n− k

n− l

)

∏n−k
j=1 ωj

(
∏n−l

j=1 ωj

)(
∏l−k

j=1 ωj)
,

(

l

k

)

∏l
j=1 ωj

(
∏k

j=1 ωj

)(
∏l−k

j=1 ωj)

respectively. Now divide by the volumes of Gr(l, n) and Gr(k, n) respectively. �

By definition, relative volume depends on the volume of ambient space and the dependence on
n is expected, a slight departure from Theorem 7(i).

10. Conclusions

We provided what we hope is a thorough study of subspace distances, a topic of wide-ranging
interest. We investigated the topic from different angles and filled in the most glaring gap in
our existing knowledge — defining distances and metrics for inequidimensional subspaces. We
also developed simple geometric models for subspaces of all dimensions and enriched the existing
differential geometric view of Grassmannians with algebraic geometric perspectives. We expect
these to be of independent interest to applied and computational mathematicians. Most of the
topics discussed in this article have been extended to affine subspaces in [33].
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