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Figure 1: Horse algebra: the functional representation and map inference algorithm allow us to go beyond point-to-point maps. The source
shape (top left corner) was mapped to the target shape (left) by posing descriptor-based functional constraints which do not disambiguate
symmetries (i.e. without landmark constraints). By further adding correspondence constraints, we obtain a near isometric map which reverses
orientation, mapping left to right (center). The representation allows for algebraic operations on shape maps, so we can subtract this map
from the ambivalent map, to retrieve the orientation preserving near-isometry (right). Each column shows the first 20x20 block of the
functional map representation (bottom), and the action of the map by transferring colors from the source shape to the target shape (top).

Abstract

We present a novel representation of maps between pairs of shapes
that allows for efficient inference and manipulation. Key to our
approach is a generalization of the notion of map that puts in corre-
spondence real-valued functions rather than points on the shapes.
By choosing a multi-scale basis for the function space on each
shape, such as the eigenfunctions of its Laplace-Beltrami opera-
tor, we obtain a representation of a map that is very compact, yet
fully suitable for global inference. Perhaps more remarkably, most
natural constraints on a map, such as descriptor preservation, land-
mark correspondences, part preservation and operator commutativ-
ity become linear in this formulation. Moreover, the representation
naturally supports certain algebraic operations such as map sum,
difference and composition, and enables a number of applications,
such as function or annotation transfer without establishing point-
to-point correspondences. We exploit these properties to devise an
efficient shape matching method, at the core of which is a single lin-
ear solve. The new method achieves state-of-the-art results on an
isometric shape matching benchmark. We also show how this rep-
resentation can be used to improve the quality of maps produced
by existing shape matching methods, and illustrate its usefulness in
segmentation transfer and in the joint analysis of shape collections.
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1 Introduction

Shape matching lies at the core of many operations in geometry
processing. While several solutions to rigid matching are well es-
tablished, non-rigid shape matching remains difficult even when
the space of deformations is limited to e.g. approximate isometries.
Part of the difficulty in devising a robust and efficient non-rigid
shape matching method is that unlike the rigid case, where the de-
formation can be represented compactly as a rotation and transla-
tion, non-rigid shape matchings are most frequently represented as
pairings (correspondences) of points or regions on the two shapes.
This representation makes direct map estimation and inference in-
tractable, since the space of possible point correspondences is ex-
ponential in size. For example, isometric matching techniques try
to find correspondences that preserve geodesic distances as well
as possible, but such optimization problems can be shown to be an
NP-hard subclass of the quadratic assignment problem [Çela 1998].
Perhaps more importantly, this representation does not naturally
support constraints such as map continuity or global consistency.

Additionally, in many practical situations, it is neither possible nor
necessary to establish point-to-point correspondences between a
pair of shapes, because of inherent shape ambiguities or because
the user may only be interested in approximate alignment. Such
ambiguous or approximate map inference is difficult to phrase in
terms of point-to-point correspondences.

The majority of existing methods try to tackle these challenges by
limiting their search for correspondences between a small set of
landmark points and extending those to a dense set of correspon-
dences on entire shapes during final post-processing ([Bronstein
et al. 2006; Huang et al. 2008; Lipman and Funkhouser 2009; Kin-
Chung Au et al. 2010; Ovsjanikov et al. 2010; Kim et al. 2011;
Tevs et al. 2011; Sahillioǧlu and Yemez 2011] among many others).
This strategy has also been justified theoretically, since under gen-
eral conditions a small set of landmark correspondences is known
to be sufficient to obtain a unique dense mapping between isometric
surfaces ([Lipman and Funkhouser 2009; Ovsjanikov et al. 2010]).



Nevertheless, although this landmark-based approach reduces the
complexity of the solution space it still relies on representing shape
maps as point-to-point correspondences, making it difficult to in-
corporate global constraints or return meaningful results when es-
tablishing point correspondences is not possible due to the presence
of only coarse similarities or symmetry ambiguities.

In this paper we present a novel approach for inference and ma-
nipulation of maps between shapes that tries to resolve the issues
above in a fundamentally different way. Rather than putting in
correspondence points on the shapes, we propose to consider map-
pings between functions defined on the shapes. This notion of cor-
respondence generalizes the standard point-to-point map since ev-
ery pointwise correspondence induces a mapping between function
spaces, while the opposite is, in general, not true. However, this
generalized representation is: 1) flexible, since it allows choosing
a basis for the function space on each shape and representing the
mapping as a change of basis matrix and 2) well-suited for shape-
matching, since many natural constraints on the map become linear
constraints on the functional map. As we show in the rest of this pa-
per, our representation works especially well when combined with
the eigenfunctions of the Laplace-Beltrami operator, by benefiting
from their multi-scale, “geometry-aware” nature. This allows us, in
particular, to devise a simple algorithm that achieves state-of-the art
results on an isometric shape matching benchmark and at the heart
of which is a single linear solve. We also demonstrate the useful-
ness of this representation on a number of tasks including improv-
ing existing maps, segmentation transfer and joint analysis of shape
collections without establishing point-to-point correspondences.

2 Related Work

Both shape matching in general and non-rigid shape matching in
particular are relatively well-established fields with several recent
books (e.g. [Bronstein et al. 2008]) and surveys [van Kaick et al.
2011b] dedicated exclusively to this subject. It is out of scope for
the current article to cover the breadth of all existing shape match-
ing methods; we concentrate on the various classes of underlying
representations for maps between pairs of shapes and indicate ways
in which they are optimized for in the literature.

As mentioned in the introduction, the vast majority of existing
shape matching methods represent a map between a pair of shapes
as a point-to-point correspondence. Since it is infeasible to opti-
mize over such correspondences directly, most methods aim to ob-
tain a sparse set of point correspondences and extend them to dense
mappings [Bronstein et al. 2006; Huang et al. 2008; Lipman and
Funkhouser 2009; Kin-Chung Au et al. 2010; Ovsjanikov et al.
2010; Kim et al. 2011; Tevs et al. 2011; Sahillioǧlu and Yemez
2011]. Because sparse point correspondences are inherently dis-
crete, common ways to enforce global consistency include preser-
vation of various quantities between pairs or sets of points, includ-
ing geodesic distances [Bronstein et al. 2006; Huang et al. 2008;
Sahillioǧlu and Yemez 2011], various spectral quantities [Jain et al.
2007; Mateus et al. 2008; Sharma and Horaud 2010; Ovsjanikov
et al. 2010], or embedding shapes into into canonical domains [Lip-
man and Funkhouser 2009] based on landmark correspondences, or
a combination of multiple geometric and topological tests [Dubrov-
ina and Kimmel 2011; Kin-Chung Au et al. 2010].

A related set of techniques aims to establish shape part or segment
correspondences rather than reliable point-to-point matches, e.g.
[Golovinskiy and Funkhouser 2009; Xu et al. 2010; Pokrass et al.
2011; Huang et al. 2011; van Kaick et al. 2011a]. Such techniques
either pre-segment the shape and try to establish part correspon-
dences, or more recently phrase the segmentation and correspon-
dence (and possibly labelling) in a joint optimization framework

[Kalogerakis et al. 2010; Pokrass et al. 2011; Huang et al. 2011]
which generally avoids the need to establish reliable pointwise cor-
respondences. In this paper we show how segment correspondences
can be used as constraints to establish high quality point matches.

Finally, some methods optimize the deformation of one shape to
align it with another, rather than optimizing the correspondences
directly [Zhang et al. 2008; Yeh et al. 2010]. In the majority of
cases, however, such methods still rely on point correspondences
either during alignment or pre-processing as feature matches.

We note that some recent methods have concentrated on measuring
and optimizing consistency of sets of maps [Nguyen et al. 2011;
Kim et al. 2011] and showed superior performance to optimizing in-
dividual correspondences. These applications show the importance
of algebraic operations on maps (averages, differences), which are
challenging to do in the point-to-point correspondence domain.

Our use of spectral quantities is also closely related to spectral em-
beddings [Rustamov 2007] and their application in shape matching
[Jain et al. 2007; Mateus et al. 2008; Ovsjanikov et al. 2008]. How-
ever, unlike such methods our framework does not assume one-
to-one correspondences between eigenfunctions of the Laplace-
Beltrami operator. This difference is crucial for both removing the
combinatorial complexity present in these methods (e.g. sign am-
biguities, order switching) as well as achieving superior results in
practice.

One common characteristic of all existing non-rigid shape match-
ing methods is that they lead to difficult, non-convex, non-linear
optimization problems. In this paper, we argue that this is primarily
because maps between shapes are represented as point or segment
correspondences, making it inherently difficult to devise map in-
ference methods using global constraints. On the other hand, we
show that by generalizing the notion of a map to include pairings
of functions instead of points, map inference can be phrased as a
linear system of equations. One danger of this generalization is that
the solution may not correspond to a point-to-point map. We show
simple regularization techniques that help avoid this possibility.

Note that analyzing mappings through their effect on function
spaces is a common theme used in various fields of mathematics.
A famous example can be found in the field of Representation The-
ory (see for instance [Weyl 1946]). Here, one relates the different
ways in which a compact Lie group (a continuous group of trans-
formations, e.g. the group of rotations of plane) can act on itself to
the induced linear action of the group on functions.

3 Contributions

The key contribution of this paper is a new representation for maps
between pairs of shapes as linear transformations between the cor-
responding function spaces. We show how this notion of a map
generalizes the standard point-to-point representation and yet has
the following key advantages:

• By using the Laplace-Beltrami basis for the function space on
each shape, the map can be well-approximated using a small
number of basis functions and expressed simply as a matrix.

• Most natural constraints on maps, such as descriptor preser-
vation, landmark correspondences, part preservation and op-
erator commutativity become linear in the functional formu-
lation, enabling extremely efficient inference.

• Maps in this representation can be manipulated via standard
algebraic operations e.g. addition, subtraction, composition.

Last but not least, functional maps can be useful even when they do
not correspond to point-to-point maps for information or attribute



transfer between shapes, shape collection analysis, and other shape
processing tasks.

4 Functional Map Representation

To set the stage for functional mappings as a generalization of clas-
sical point-to-point mappings, let T : M → N be a bijective map-
ping between manifolds M and N (either continuous or discrete).
Then, T induces a natural transformation of derived quantities, such
as functions on M . To be precise, if we are given a scalar function
f : M → R then we obtain a corresponding function g : N → R
by composition, as in g = f◦T−1. Let us denote this induced trans-
formation by TF : F(M,R) → F(N,R), where we use F(·,R)
to denote a generic space of real-valued functions. We call TF the
functional representation of the mapping T . We now make the fol-
lowing two simple remarks:

Remark 4.1. The original mapping T can be recovered from TF .

Indeed, to recover the image T (a) of any point a on M , construct
an indicator function f : M → R, s.t. f(a) = 1 and f(x) =
0 ∀ x 6= a ∈ M. By construction if g = TF (f), then g(y) =
f ◦ T−1(y) = 0 whenever T−1(y) 6= a and 1 otherwise. Since T
is assumed to be invertible, there is a unique point y s.t. T (a) =
y. Thus, g must be an indicator function of T (a) and T (a) is the
unique point y ∈ N s.t. g(y) = 1.

Remark 4.2. For any fixed bijective map T : M → N , TF is a
linear map between function spaces.

To see this, note TF (α1f1 + α2f2) = (α1f1 + α2f2) ◦ T−1 =
α1f1 ◦ T−1 + α2f2 ◦ T−1 = α1TF (f1) + α2TF (f2).

We may paraphrase these remarks to say that knowledge of TF is
equivalent to knowledge of T . And while T may be a compli-
cated mapping between surfaces, TF acts linearly between function
spaces.

Now suppose that the function space of M is equipped with a basis
so that any function f : M → R can be represented as a linear
combination of basis functions f =

∑
i aiφ

M
i . Then,

TF (f) = TF

(∑
i

aiφ
M
i

)
=
∑
i

aiTF
(
φMi

)
.

In addition, if N is equipped with a set of basis functions {φNj },
then TF

(
φMi
)

=
∑
j cijφ

N
j for some {cij} and

TF (f) =
∑
i

ai
∑
j

cijφ
N
j =

∑
j

∑
i

aicijφ
N
j . (1)

Therefore if we represent f as a vector of coefficients a =
(a0, a1, ....ai, ...) and g = TF (f) as a vector b =
(b0, b1, ...., bi, ...), then Eq. 1 simply says: bj =

∑
i aicij , where

cij is independent of f and is completely determined by the bases
and the map T . In particular cij is the j th coefficient of TF (φMi )
in the basis {φNj }. Note that C has a particularly simple represen-
tation if the basis functions {φNi } are orthonormal with respect to
some inner product 〈·, ·〉, namely cij = 〈TF (φMi ), φNj 〉.

We conclude with the following key observation:

Remark 4.3. The map TF can be represented as a (possibly in-
finite) matrix C s.t. for any function f represented as a vector of
coefficients a then TF (a) = Ca.

This remark in combination with the previous two remarks shows
that the matrix C fully encodes the original map T .

(a) source (b) ground-truth map

(c) left to right map (d) head to tail map

Figure 2: Two shapes with three maps between them, each ren-
dered as a point-to-point mapping through color correspondence
(top) and its functional representation (bottom) with colors propor-
tional to matrix values. Note that the least isometric map in (d)
leads to a less sparse functional matrix.

Motivated by this discussion, we now turn towards the definition of
linear functional mappings that are strictly more general than func-
tional representations of classical point-to-point mappings. The
point of view that we take is to downplay the mapping T and focus
our attention on the matrix C. We thus define:

Definition 1. Let {φMi } and {φNj } be bases for F(M,R) and
F(N,R), respectively. A generalized linear functional mapping
TF : F(M,R) → F(N,R) with respect to these bases is the op-
erator defined by

TF

(∑
i

aiφ
M
i

)
=
∑
j

∑
i

aicijφ
N
j ,

where cij is a possibly infinite matrix of real coefficients (subject to
conditions that guarantee convergence of the sums above).

Example. As an example, consider a pair of shapes in Figure 2
with three bijective maps between then: two approximate isome-
tries (the ground-truth map and the left-right mirror symmetric
map) and one map that puts the head and tail in correspondence.
For each map, the point-to-point representation is shown as color
correspondence while the functional representation is shown as a
heat map of the matrix C0..20×0..20, where we used the Laplace-
Beltrami eigenfunctions as the basis for the function space on each
shape. Note that the functional representations of the near-isometric
maps are close to being sparse and diagonally dominant, whereas
the representation of the map that associates the head with the tail
is not. Also note that none of the maps is diagonal, an assumption
made by previous algorithms [Jain et al. 2007; Mateus et al. 2008;
Ovsjanikov et al. 2008].
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Figure 3: Average mapping error vs. number of eigenvalues used in the representation. For each shape with a known ground-truth point-
to-point correspondence (shown as a color correspondence), we computed its functional representation and measured its accuracy in finding
a point-to-point map. Note that although more eigenvalues lead to an increase in accuracy, maps that correspond to bigger deformations
require more basis vectors, capturing the intuition that near-isometric maps are more compactly represented.

5 Functional Representation Properties

As we have noted above, the functional representation of a point-
wise bijection can be used to recover its representation as a corre-
spondence, and is thus equivalent. Note, however, that this does not
imply that the space of bijections coincides with the space of linear
maps between function spaces, as the latter may include functional
mappings not associated with any point-to-point correspondence.

Perhaps the simplest example of this is a functional map D that
maps every function on one shape to the constant 0 function on the
other — D clearly cannot be associated with any pointwise cor-
respondences since all such functional maps must, by definition,
preserve the set of values of each function. Nevertheless, by going
to this richer space of correspondences, we obtain a representation
that has several key properties making it more suitable for manipu-
lation and inference.

Intuitively, functional maps are easy to manipulate because they can
be represented as matrices and thus can benefit from standard lin-
ear algebra techniques. To make this intuition practical, however,
the size of the matrices must be moderate (i.e. independent of the
number of points on the shapes), and furthermore map inference
should be phrased in terms of linear constraints in this representa-
tion. In the following sections we will show how to achieve these
goals first by choosing the appropriate basis for the function space
on each shape (Section 5.1) and then by showing how many nat-
ural constraints on the map can be phrased as linear constraints
on the functional map (Section 5.3), reducing shape matching to
a moderately-sized system of linear equations (Section 6).

5.1 Choice of basis

As noted above, the functional map representation is flexible in the
sense that it gives us the freedom to choose the basis functions for
the functional spaces of M and N . Indeed, if we choose the basis
functions to be indicator functions at the vertices of the shapes, then
C is simply the permutation matrix which corresponds to the orig-
inal mapping. However, other choices of bases are possible, which
can lead to significant reductions in representation complexity and
are much better suited for continuous mappings between shapes —
the desired behavior in the majority of practical applications.

Perhaps the two most important characteristics for choosing a ba-
sis for functional maps are compactness and stability. Compact-
ness means that most natural functions on a shape should be well
approximated by using a small number of basis elements, while
stability means that the space of functions spanned by all linear
combinations of basis functions must be stable under small shape

deformations. These two properties together ensure that we can
represent the action TF using a small and robust subset of basis
functions and we need only consider a finite submatrixC0..m×0...n,
for some moderate values of m and n, of the infinite matrix C
(Definition 1). In other words, for a given function f , represented
as a vector of coefficients a = (a0, a1, ....ai, ...), we would like∑
j

∑
i aicijφ

N
j ≈

∑n
j=0

∑m
i=0 aicijφ

N
j , for some fixed small

values of m and n.

In this paper, we will concentrate on shapes undergoing near-
isometric deformations, for which we will use the first n Laplace-
Beltrami eigenfunctions as the basis for their functional representa-
tions (where n = 100 throughout all of our experiments, indepen-
dent of the number of points on the shape). This choice of basis is
natural, since eigenfunctions of the Laplace-Beltrami operator are
ordered from “low frequency” to “higher frequency,” meaning that
they provide a natural multi-scale way to approximate functions,
and as a result functional mappings, between shapes. Moreover,
although individual eigenfunctions are known to be unstable under
perturbations, suffering from well-known phenomena such as sign
flipping and eigenfunction order changes, the space of functions
spanned by the first n eigenfunctions of the Laplace-Beltrami op-
erator can be shown to be stable under near-isometries as long as
the nth and (n + 1)st eigenvalues are well separated, as shown for
example in the work of [Kato 1995].

To illustrate the role of the choice of basis on the functional rep-
resentation, we compare two widely-used discretizations of the
Laplace-Beltrami operator and measure their ability to capture a
ground-truth point-to-point correspondence using a fixed number n
of basis functions. In particular, we consider, the cotangent weight
scheme of Meyer et al. [2002] with and without area normalization
(in the latter case, each vertex is assigned a uniform weight, while
in the former the weight is proportional to the sum of the areas
of triangles around the point). Figure 3 shows the average error in-
duced by the functional representation for a set of pairs of deformed
versions of the cat shape provided in the TOSCA [Bronstein et al.
2008] dataset. Each of these shapes contains 27.8K points, with
a known ground-truth correspondence. We represented this point-
wise correspondence between the cat0 shape and the others using an
increasing number of eigenvectors, and for each point x computed
its image as: T (x) = arg maxy TF (f)(y) where f is the indicator
function at the point x on shape M . I.e. T (x) is the point where
the function g = TF (f) is maximal. The error is measured in aver-
age geodesic error units (see [Kim et al. 2011] Figure 7 middle for
illustration).

Note that the eigenfunctions of the unweighted discretization of
Laplace-Beltrami operator provide a more compact representation
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Figure 4: Sparsity pattern of the matrices C corresponding to two
out of 4 maps shown in Figure 3. Only cells where |C| > 0.11
are shown. Note that more than 94% are not. Note also that the
functional matrix for the more deformed shape cat6 is also farther
from being diagonal.

of the map for the same quality of reconstruction. This may be
because this discretization is less sensitive to volume distortion
(and only sensitive to non-conformal distortions). Moreover, note
that only 30 − 40 eigenfunctions are sufficient to represent the
ground truth map to a quality that is extremely close to the ground-
truth point-to-point map. Since a functional representation with 40
eigenvectors implies a matrix of size 40× 40, this means that even
without exploiting its sparsity (described below), this representa-
tion has 1600 values, which is a nearly 17 times memory savings
over a permutation of size 27.8K.

Sparsity. In addition to the multi-scale property of the functional
representation with the Laplace-Beltrami eigenfunctions, we also
point out that near-isometric maps induce matricesC that are nearly
sparse and thus can be stored efficiently. Indeed, if the shapes M
and N are isometric and T is an isometry, it is easy to see that the
matrix Cij can be non-zero only if φMj and φNi correspond to the
same eigenvalue. In particular, if all eigenvalues are non-repeating,
C is a diagonal matrix. In practice, we observe that if T is only ap-
proximately an isometry, the matrix C is still close to being sparse,
or funnel-shaped. Figure 4 shows the sparsity patterns of the matri-
ces C corresponding to two of the maps shown in Figure 3. In par-
ticular, note that over 94% of the values of these matrices are below
0.1. Let us stress, however, that the functional matrix C stops being
diagonal very quickly under even mild non-isometric deformations,
and this effect is especially pronounced for high-frequency eigen-
functions (Figure 2 illustrates the same effect). While this poses
fundamental challenges to previous spectral methods [Jain et al.
2007; Mateus et al. 2008; Ovsjanikov et al. 2008], the functional
representation naturally encodes such changes.

5.2 Continuity

Another major advantage of using the functional representation of
the mapping is that it naturally handles map continuity unlike the
point-to-point or segment-to-segment bijection which is inherently
discrete. Here continuity means three distinct phenomena:

Continuity under changes of the input function. This means
that the image of a function TF (f) = Ca varies continuously under
changes of the vector of coefficients a and thus under the changes
of the function for a fixed mapping C. This property is useful since
in most natural settings the desired mapping is continuous.

Continuity of the image function. The Laplace-Beltrami oper-
ator is inherently well-suited for representing smooth functions on

the shapes. Thus, for any fixed number n, and any set of coeffi-
cients a, the function f =

∑n
i=0 aiφ

M
i will be smooth. Thus, if we

use a truncated functional representation matrix C0..n×0...n then
the image Ca of any function f will be smooth.

Continuity of the representation. Finally, we also note that the
functional representation is more amenable to numerical optimiza-
tion since it is inherently continuous. That is, the matrix C can be
modified continuously and still produce meaningful results. Note
that there are no inherent restrictions on the matrix C to be able
to establish functional correspondences. Thus, given any matrix C
and any vector of coefficients a, we can interpret Ca as a func-
tional mapping. To illustrate this, in Figure 5 we show the im-
age of a set of three functions from a fixed source shape (shown in
Figure 1) onto a target shape under a mapping matrix, interpolated
between two mappings corresponding to the direct and symmetric
shape matching. Note that each mapping is both meaningful and
produces intuitive results.

5.3 Linearity of constraints

Perhaps even more importantly, the functional representation is par-
ticularly well suited for map inference (i.e. constrained optimiza-
tion) for the following reason: when the underlying map T (and by
extension the matrix C) are unknown, many natural constraints on
the map become linear constraints in its functional representation.
Below we describe the most common scenarios.

Function preservation. Given a pair of functions f : M → R
and g : N → R, the correspondence between f and g can be
written simply as Ca = b where C is the functional representa-
tion of the map, while a and b are the representation of f and g in
the chosen bases of M and N . Note that the function preservation
constraint can be phrased entirely in terms of the matrix C with-
out knowledge of the underlying correspondence T , since a and b
do not depend on the map C. This is especially useful for shape
matching applications where C is unknown, but could possibly be
recovered by phrasing enough constraints of type Cai = bi. The
function preservation constraint is quite general and includes the
following as special cases.

Descriptor preservation. If f and g are functions corresponding
to point descriptors (e.g. f(x) = κ(x) where κ(x) is Gauss curva-
ture of M at x), then the function preservation constraint simply
says that descriptors are approximately preserved by the mapping.
Furthermore if the point descriptors are multidimensional so that
f(x) ∈ Rk for each x then we can phrase k scalar function preser-
vation constraints, one for each dimension of the descriptor.

Landmark point correspondences. If we are given landmark
point correspondences T (x) = y for some known x ∈ M and
y ∈ N (e.g. specified by the user or obtained automatically), we
can phrase this knowledge as functional constraints by considering
functions f and g that are e.g. distance functions to the landmarks
or normally distributed functions around x and y. Indeed, the con-
fidence with which the landmark correspondence is known can be
encoded in the functional constraints very naturally (e.g. if it is only
known within a certain radius).

Segment correspondences. Similarly, if we are given corre-
spondences between parts of shapes rather than individual points
we can phrase such correspondences as functional correspondences
again by either considering the indicator functions on the segments
or more robust derived quantities such as the distance function.

In our implementation for finding functional maps between shapes,



(a) α = 0 (b) α = 0.25 (c) α = 0.5 (d) α = 0.75 (e) α = 1

Figure 5: Mapping of the three coordinate functions from the source shape shown in Figure 3a onto the target shape using an interpolation
between two maps C = αC1 + (1− α)C2. Note that the mapped function varies continuously under changes of the parameter α.

we impose a variety of functional constraints as described above.
We will discuss the actual choice of the functions used below.

5.4 Operator Commutativity

In addition to the function preservation constraint, another class of
constraints on the map that induce linear constraints on its func-
tional representation is commutativity with respect to linear op-
erators on M and N . That is, often M and N can be endowed
with linear functional operators that we may want to preserve. A
first example is a symmetry operator SF : F(M,R) → F(M,R)
which associates with every function f : M → R another function
SF (f) : M → R obtained as SF (f)(x) = f(S−1(x)), where
S : M → M is some symmetry of M . A second example is the
Laplace-Beltrami operator and derived operators (e.g. the heat op-
erator), which are preserved under isometries. The operators on M
and N can be quite general, however, and can represent any asso-
ciation of functions on the manifold. In any case, given functional
operators SF and RF on M and N respectively, it may be natural
to require that the functional map C commute with these operators.
In particular: RFC = CSF or ‖RFC − CSF ‖ = 0. This con-
straint, despite its second order flavor, leads to linear equations in
the elements of C.

5.5 Regularization Constraints

Note that although we mentioned in Section 5.2 that there are no
inherent constraints on the matrix C to be a functional map, this
does not mean that any matrix C is associated with a point-to-point
map. Indeed, while every bijective map T has a functional repre-
sentation through the matrix C, the converse is not necessarily true.
Thus, there may be constraints on the functional representation if
it is known to be associated with a point-to-point map. Although
finding such constraints seems to be a difficult open problem, a very
useful observation is the following:

Theorem 5.1. (1) If the basis functions are discrete and or-
thonormal with respect to the standard inner product, i.e.∑
x φi(x)φj(x) = δij , or if the underlying map T (discrete or con-

tinuous) is volume preserving, i.e. µM (x) = µN (T (x)) where µM

and µN are volume elements on M and N respectively, then the
matrix C associated with the functional representation of T must
be orthonormal. (2) If the underlying map T is an isometry then T
commutes with the Laplace-Beltrami operator.
Proof. See Appendix

It follows that in most natural settings, e.g. when one expects isome-
tries between shapes, if one is using the functional representation
to obtain a point-to-point map it is most meaningful to consider or-
thonormal or nearly-orthonormal functional map matrices. Further-
more, it makes sense to incorporate commutation with the Laplace-
Beltrami operators into the regularization.

5.6 Map Inversion and Composition

A challenging task when considering point-to-point mappings be-
tween shapes is map inversion, i.e. given a map T : M → N that is
not necessarily bijective, one is required to find a meaningful ver-
sion of T−1 : N → M . In the functional representation finding
an inverse can be done simply by finding an inverse of the mapping
matrix C. Moreover, because for near-isometric maps we expect
this matrix to be close to diagonal (or “funnel” shaped as shown in
Figure 4) it is reasonable to take the inverse of the approximating
submatrix of C. Finally, in light of Theorem 5.1 this can be done
by simply taking the transpose of C or its approximation.

Similarly, map composition becomes simple matrix multiplication
in the functional representation. We exploit these properties when
we use our representation for joint map inference on a collection of
shapes in Section 8.2.

6 Functional Map Inference

As mentioned in Section 5, functional shape maps are well-suited
for inference because of their continuous nature and because a large
number of constraints become linear in this representation. In this
section we discuss how such inference can be done in practice. For
this suppose we are given a pair of discrete shapes represented as
meshes, with the corresponding Laplace-Beltrami eigenfunctions.
Our goal is to find the underlying functional map represented as a
matrix C. The simplest way to do so is to construct a large system
of linear equations, where each equation corresponds to one of the
constraints mentioned above (either a functional constraint or the
operator commutativity constraint) and find the best functional map
by finding the matrixC that best satisfies the constraints in the least
squares sense.

6.1 Efficient Conversion to Point-to-Point

As mentioned in Section 4, given a bijection T between two discrete
shapes, and the basis vectors of their function spaces, the functional
representation C of the map T can be obtained by solving a linear
system.

To reconstruct the original mapping from the functional represen-
tation, however, is more challenging. The simplest method al-
luded to in Remark 4.1 to find a corresponding point y ∈ N
to a given point x ∈ M would require constructing a function
f : M → R (either the indicator function, or a highly peaked
Gaussian around x) obtaining its image g = TF (f) using C and
declaring y to be the point at which g(y) obtains the maximum.
Such a method, however, would require O(VNVM ) operations for
a pair of meshes with VN and VM vertices. Such complexity may
be prohibitively expensive in practice for large meshes. To ob-
tain a more efficient method, note that in the Laplace-Beltrami
basis δx, the delta function around a point x ∈ M , has the co-



Algorithm 1 FUNCTIONAL MAP INFERENCE FOR MATCHING

1. Compute a set of descriptors for each point on M and N , and
create function preservation constraints.

2. If landmark correspondences or part decomposition con-
straints are known, compute the function preservation con-
straints using those.

3. Include operator commutativity constraints for relevant linear
operators on M and N (e.g. Laplace-Beltrami or symmetry).

4. Incorporate the constraints into a linear system and solve it in
the least squares sense to compute the optimal C.

5. Refine the initial solutionC using the iterative method in Sec-
tion 6.2.

6. If point correspondences are required, obtain them using the
method in Section 6.1.

efficients: ai = φMi (x). This can be seen for example, since
δx = limt→0+ k

M
t (x, ·) = limt→0+

∑∞
i=0 e

−tλiφMi (x)φMi (·) ,
where kMt (·, ·) is the heat kernel at time t on the shape M .

Therefore, given a matrix ΦM of the Laplace-Beltrami eigen-
functions of M , where each column corresponds to a point and
each row to an eigenfunction, one can find the image of all of
the delta functions centered at points of M simply as CΦM .
Now recall that by Plancherel’s theorem, given two functions g1
and g2 both defined on N , with spectral coefficients b1 and b2,∑
i(b1i − b2i)

2 =
∫
N

(g1(y) − g2(y))2µ(y). That is, the dis-
tances between the coefficient vectors is equal to the L2 difference
between the functions themselves. Therefore an efficient way to
find correspondences between points is to consider for every point
of CΦM its nearest neighbor in ΦN . Using an efficient proxim-
ity search structure, such as a kd-tree, this procedure will require
only O(VN log VN + VM log VN ) operations, giving a significant
efficiency increase in practice.

6.2 Post-Processing Iterative Refinement

The observation made in Section 6.1 can also be used to refine a
given matrix C to make it closer to a point-to-point map. Suppose
we are given an initial estimate matrix C0 that we believe comes
from a point-to-point map T . As noted in Section 6.1, theoretically
C0 must be such that each column of C0ΦM coincides with some
column of ΦN . If we treat ΦM and ΦN as two point clouds with
dimensionality equal to the number of eigenvalues used in the func-
tional representation C0 then this means that C0 must align ΦM

and ΦN . Moreover, since by Theorem 5.1 we expect the mapping
matrix C0 to be orthonormal, we can phrase the problem of finding
the optimal mapping matrix C as rigid alignment between ΦM and
ΦN . Thus an iterative refinement of C0 can be obtained via:

1. For each column x of C0ΦM find the closest x̃ in ΦN .

2. Find the optimal orthonormal C minimizing
∑
‖Cx− x̃‖.

3. Set C0 = C and iterate until convergence.

Note that this technique is identical to the standard Iterative Closest
Point algorithm of Besl & McKay, [1992], except that it is done in
the embedded functional space, rather than the standard Euclidean
space. Note also that this method cannot be used on its own to ob-
tain the optimal functional matrix C because the embedding ΦM

and ΦN are only defined up to a sign change (or more generally an
orthonormal transformation within an eigenspace). Therefore, it is
essential to have a good initial estimate matrixC0. Finally, note that
the output of this procedure is not only a functional matrix C but
also a point-to-point correspondence given by nearest neighbor as-
signment between points on M and N . We will use this method to
obtain good point-to-point maps when we apply these observations
to devise an efficient shape matching method in Section 7.
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Figure 6: Comparison of our method with the state-of-the-art
methods of Kim et al. [2011] and Sahillioglu and Yemez [2011] on
two datasets: SCAPE [Anguelov et al. 2005] and TOSCA [Bron-
stein et al. 2008] with and without symmetric maps allowed (solid
and dashed lines respectively). Note that since our method is in-
trinsic only symmetric (solid line) evaluation is meaningful.

Relation to Existing Methods. Note that this refinement step is
similar to existing spectral matching methods such as [Jain et al.
2007; Mateus et al. 2008; Sharma and Horaud 2010]. However, in
addition to having a good initial estimate C0, our method is differ-
ent since we allow “mixing” across eigenvectors corresponding to
different eigenvalues. In addition, the functional representation al-
lows to formulate other constraints such as operator commutativity
(Section 5.4) and represent the map itself compactly.

7 Shape Matching

In this section we describe a simple yet very effective method for
non-rigid shape matching based on the functional representation of
mappings between shapes.

The simplest version of the shape matching algorithm is summa-
rized in Algorithm 1. Namely, suppose we are given two shapes M
andN in their discrete (e.g. mesh) representation, and the Laplace-
Beltrami eigen-decomposition, we simply compute functional con-
straints that correspond to descriptor and segment preservation con-
straints together with the operator commutativity, form a linear sys-
tem of equations and solve it in the least squares sense. If necessary,
we refine the solution using the method in Section 6.2 and compute
the point-to-point map using the method in Section 6.1.

7.1 Implementation

The key ingredients necessary to implement this method in prac-
tice are the computation of the eigendecomposition of the Laplace-
Beltrami operator, the descriptors used in the function preservation
constraints, and a method to obtain landmark or segment correspon-
dences. Note that our framework allows great flexibility for the
choice of descriptors and correspondence constraints since they all
fit into a general function preservation framework. In our imple-
mentation we have used the cotangent scheme [Meyer et al. 2002]
for the Laplace-Beltrami operator on meshed surfaces. We also
used the Wave Kernel Signature (WKS) and Heat Kernel Signa-
ture descriptors of [Aubry et al. 2011] and [Sun et al. 2009]. Be-
cause the method described above is fully intrinsic and does not
distinguish between left and right symmetries, it is also important
to resolve ambiguities using correspondence constraints. However,
since point-to-point correspondences (e.g. landmark) are gener-
ally unstable and difficult to obtain without manual intervention,
we have used segment correspondences instead. Towards this goal,
we first pre-segment every shape using the persistence-based seg-
mentation technique of [Skraba et al. 2010] with the WKS at a fixed



 

Source  Target 1 Target 2 Target 3 

Figure 7: Maps between remeshed versions of shapes from the
SCAPE collection, mapping the coordinate functions from the
source to the three target shapes using an inferred functional map.

energy value of the underlying function (we used e = 5 in all exam-
ples below). This gives a relatively stable segmentation with a small
number of segments (between 3 and 7 in the shapes we examined).
Given a pair of shapes, we first compute the segment correspon-
dence constraints. For this, we first compute the set of candidate
pairs of segments from the two shapes by computing segment de-
scriptors and finding the ones likely to match. For segment descrip-
tors we use the sum of the WKS values of the points in the segment.
Given a pair of candidate segment matches s1, s2 on M and N re-
spectively, we construct a set of functional constraints using the
Heat Kernel Map [Ovsjanikov et al. 2010] based on segment corre-
spondences. We combine these together with the Laplace-Beltrami
commutativity constraint and the WKS constraints into a single lin-
ear system and solve it to find the optimal functional mapping ma-
trix C. Finally, we refine the solution using the iterative method
described in Section 6.2 and find the final dense point-to-point cor-
respondences using the method in 6.1.

7.2 Results

We have evaluated our basic method for computing point-to-point
correspondences on the shape matching benchmark of Kim et al.
[2011] in which the authors showed state-of-the art results using
their Blended Intrinsic Maps (BIM) approach. Using the correspon-
dence evaluation, Figure 6 shows the results of our automated shape
matching on two standard datasets used in the benchmark of Kim et
al. [2011] on which their method reported significant improvement
over prior work. In addition, we evaluated a recent shape matching
method by Sahillioglu and Yemez [2011] which did not appear in
the benchmark. The graphs show the percent of correspondences
which have geodesic error smaller than a threshold. Note that our
method shows quality improvement over Blended Intrinsic Maps
on both datasets. Note also that all of the parameters for our sys-
tem were fixed before running the benchmark evaluation and were
therefore not optimized for benchmark performance in any way.

Although the shapes in both SCAPE and TOSCA datasets have
the same connectivity structure, this information is not used by our
method, and is not needed for applying our algorithm. To demon-
strate this, Figure 7 shows three maps computed by our method
between a source and three target shapes from the SCAPE collec-
tion, all remeshed with uniform remeshing. We show the map by
transferring the XYZ coordinate functions to the target shapes us-
ing the inferred functional maps. These functions are then rendered
as RGB channels on the source and target shapes.

8 Other Applications

8.1 Improving Point-to-Point Maps

Although the method presented above achieves state-of-the art per-
formance on an isometric shape matching benchmark, its true
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Figure 8: Improvement of the results other methods using our rep-
resentation and iterative refinement.

strength lies perhaps not in the exact optimization decisions (e.g.
the descriptors or segmentation techniques used) but rather in the
representation of the mapping itself. To illustrate this, we have used
the functional representation to improve the quality of other iso-
metric shape matching methods. Here, instead of computing a new
point-to-point map between a pair of shapes, we assume that we are
given a point-to-point map obtained by any external method and our
goal is to improve it through local refinement. The functional rep-
resentation is a natural choice for this task because conversion to
and from this representation is very fast (Sections 4 and 6.1) while
iterative refinement does not require expensive non-linear optimiza-
tion techniques. To test this approach, we used the point-to-point
maps provided by the methods of Kim et al. [2011] and Sahillioglu
and Yemez [2011], and converted them into a functional represen-
tation using the basis provided by the first 100 eigenfunctions of
the cotangent weight scheme [Meyer et al. 2002] of the Laplace-
Beltrami operator. We then ran the iterative refinement procedure
described in Section 6.2 for 20 iterations, and converted the func-
tional representation back to a point-to-point map (Section 6.1). For
models ranging in 10-50 thousand points this entire procedure took
5-15 seconds on one core of Intel Xeon 3.2 GHz on average. Figure
8 shows the improvement in the quality of the final refined maps.
Note that in both datasets and both sets of input maps this simple
technique achieves significant improvements in the quality of the
final maps.

Figure 9 illustrates the types of improvements provided by this iter-
ative refinement method, For four sample pairs of meshes it shows
the error of the initial mapping provided by Kim et al. [2011] and
the error of the map after refinement. The color of each vertex is
proportional to the distance of its match from the ground truth. As
can be seen from this figure qualitatively, iterative refinement is able
to recover from errors if the initial map is approximately correct.

8.2 Shape Collections

In addition to improving maps between pairs of shapes, our repre-
sentation is also beneficial for improving collections of shape maps.

ICSM Recently it has been shown, [Nguyen et al. 2011], that
when given a collection of shapes and maps between them, the pair-
wise maps can be considerably improved by considering the con-
text provided by the collection. The main idea is to compose maps
along cycles (e.g. compose the maps L→ M , M → N , N → L)
in the resulting graph, and compare the composite map to the iden-
tity. When the composition result on a cycle is far from the identity,
it is an indication that one or more of the maps on that cycle may be
faulty. The paper [Nguyen et al. 2011] presented a method (which
we will refer to as ICSM — Iteratively Corrected Shape Maps) to



Figure 9: Improvement of the maps provided by the method of Kim
et al. [2011] using our functional representation with iterative re-
finement. For each pair of shapes, we show the source shape, and
the errors in map of the target shape with color proportional to the
distance from the ground truth. Note that iterative refinement effi-
ciently removes spurious matches if the initial map is approximately
correct.

compute a score for the map between every pair of shapes, as a
function of the consistency of the composed maps along 3-cycles.
Then a shape graph is defined, where each shape is a vertex, and
an edge between shapes is weighted by the computed score. Maps
are improved by replacing the original maps with composed maps
along the shortest paths in this graph.

ICSM can be easily applied using the functional maps representa-
tion, without requiring conversion to point-to-point maps. For map
composition we simply use matrix multiplication, i.e. mL,N =
mM,N ◦mL,M ≡ CMNCLM , whereCMN andCLM are the func-
tional maps M → N and L→M respectively. Note, that if CMN

and CLM are orthogonal matrices, the composition will also be or-
thogonal. As a measure of the distance of a functional map from
the identity we use ‖C − I‖Fro where I is the identity matrix.

Although it is possible to convert the functional maps to point-to-
point maps and run ICSM on the point-to-point maps, it is advan-
tageous to do it directly on the functional maps, as the evaluation
of distance from identity is considerably less expensive: for point-
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Figure 10: (a) Average geodesic errors of maps on a collection of
11 shapes from the SCAPE benchmark. (b) Errors after running
ICSM. (c) Errors after running diffusion on ICSM results.
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Figure 11: Improving a collection of shape maps using ICSM and
diffusion of maps. See the text for details.

to-point maps, one needs to compute the geodesic distance between
the mapped point and the source point, whereas for functional maps
we just need to compute the Frobenius norm of a matrix. Further-
more, evaluating the error of a point-to-point map will be more
costly for a denser mesh, whereas the complexity remains the same
for the functional map.

To evaluate the use of ICSM with functional maps, we generated all
the maps between the first 11 meshes in the SCAPE database. As
our method is fully intrinsic, some of the generated maps were sym-
metric (i.e. left side mapped to right side), and some were straight.
Figure 10(a) shows the average geodesic error for all the pairs in
the collection. The pairs which have large errors are usually pairs
for which the symmetric map was chosen. Figure 10(b) shows the
average geodesic error after applying ICSM to the functional maps,
as described earlier. Note that the maps improved considerably,
leaving only a single shape with noticeable errors.

Map diffusion In [Nguyen et al. 2011] map improvement was
achieved by re-writing maps by compositions of other maps along
shortest paths in the shape graph. However, if we use the func-
tional map representation, we can define a more subtle map im-
provement, which takes into consideration additional information.
Specifically, we can replace a map with a weighted average of other
maps, i.e.: Ĉij =

∑
k wkjCkjwikCik, where Cij is the map be-

tween the shapes Mi and Mj , and wij is a weight which describes
our confidence in the map — thus being better able to deal with the
effects of noise.

In fact, we can construct a “SuperMap” for the whole collection,
by creating a matrix whose (i, j)-th block is wjiCji. Computing
the weighted average of maps described previously is equivalent to
raising the “SuperMap” matrix to the power of 2. This approach
can be thought of as applying heat diffusion in the space of maps,
similarly to what has been done recently in [Singer and Wu 2011].
Our succinct map representation may allow for a generalization
of [Singer and Wu 2011], from rotations in R3 to general maps



between shapes.

We have applied this simple idea to the maps generated by ICSM,
computing wij from the ICSM weights, and subsequently apply-
ing the ICP post-processing described in Section 6.2. Figure 10(c)
shows the average geodesic errors of the resulting maps. As can
be seen in the figure, map diffusion succeeded to further reduce the
error on the problematic shape where ICSM could not improve fur-
ther. Figure 11 shows the percent of correspondences which have
geodesic error smaller than a threshold, for the maps generated by
our matching method, the maps after ICSM, the maps after ICSM
and diffusion, and the maps generated by [Kim et al. 2011]. Again,
we can see that applying map diffusion to the result of ICSM im-
proves the map collection.

8.3 Function (Segmentation) Transfer

As mentioned earlier, one of the advantages of the functional rep-
resentation is that it reduces the transfer of functions across shapes
to a matrix product, without resorting to establishing point-to-point
correspondences. This is particularly useful since function transfer
is one of the key applications of maps between shapes and obtaining
point-to-point correspondences is often challenging. We illustrate
the performance of this idea on the task of segmentation transfer
across shapes. Here we are given a pair of shapes where one of the
shapes is pre-segmented and the goal is to find a compatible seg-
mentation of the second shape. To achieve this task we simply con-
struct an indicator function for each of the segments on the source
shape and use the functional map to transfer this indicator func-
tion. Then each point on the target map will have a set of values
for each of the transferred segments. Finally, if “hard” clustering is
required, we associate with the point the segment that produced the
maximum of these values.

Figure 12 shows this idea applied to several shapes from the
TOSCA and SCAPE datasets. For each pair of shapes we show
the image of the the indicator function of one of the segments as
well as the final “hard” segmentation. Note that throughout this
procedure no point-to-point correspondences were used.

9 Conclusion & Future Work

In this paper we have introduced a novel representation for maps be-
tween pairs of shapes that generalizes the standard notion of a map
as a pairing of points. By concentrating on finding correspondences
between generic functions defined on the shapes, we devised a rep-
resentation that is multiscale, compact, and amenable to efficient
optimization. Perhaps the most important property of the functional
representation is that many natural constraints on a map become lin-
ear, making direct optimization feasible. We have demonstrated the
effectiveness of our representation both by achieving state-of-the-
art results on an isometric shape matching benchmark and by show-
ing that other existing methods can benefit from this representation
as a post-processing step. Finally, we have shown its effectiveness
in segmentation transfer across pairs of shapes without establish-
ing correspondences and on joint analysis of large collections of
shapes.

In the future we will look more carefully at the optimal choice of
bases for the functional representation, thus extending the scope of
functional maps to more general classes of deformations.
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Figure 12: Segmentation transfer using the functional map repre-
sentation. For each pair of shapes we show 3 figures: the user-
provided source segmentation of the first shape, the image of one of
the indicator functions of a segment using the functional map com-
puted with our method, and the final segmentation transfer onto the
target shape. Note that point correspondences were not computed
at any point during this procedure.
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A Proof of Theorem 5.1

It is well-known that isometries commute with the Laplace-
Beltrami operator thus we need only concentrate on the prov-
ing the first statement. Therefore suppose that the map T is
volume-preserving. This means, in particular, that µN (T (x)) =
µM (x) ∀ x ∈ M , where µ is the volume element. Recall
that in the LB basis: Ci,j =

〈
T (φMi ), φNj

〉
=

∫
N
φMi ◦

T−1(y)φN (y)µN (y). Now consider the map S = T−1 : N →
M and let D be its functional representation. Then Dj,i =〈
S(φNj ), φMi

〉
=
∫
M
φNj ◦ T (x)φM (x)µM (x). Note that the in-

tegrands in Ci,j and Dj,i are the same. Moreover, since T is vol-
ume preserving, the integrals themselves have to agree. It follows
that C = DT . But since D is the functional representation of the
inverse map T−1 we must have CD = DC = Id. Therefore,
CTC = Id and C is orthonormal. The proof under the assumption
of discrete orthonormality is identical.


