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Abstract— Complex visual data contain discriminative
structures that are difficult to be fully captured by any single
feature descriptor. While recent work on domain adaptation
focuses on adapting a single hand-crafted feature, it is important
to perform adaptation of a hierarchy of features to exploit the
richness of visual data. We propose a novel framework for
domain adaptation using a sparse and hierarchical network
(DASH-N). Our method jointly learns a hierarchy of features
together with transformations that rectify the mismatch between
different domains. The building block of DASH-N is the latent
sparse representation. It employs a dimensionality reduction
step that can prevent the data dimension from increasing too
fast as one traverses deeper into the hierarchy. The experimental
results show that our method compares favorably with the
competing state-of-the-art methods. In addition, it is shown
that a multi-layer DASH-N performs better than a single-layer
DASH-N.

Index Terms— Domain adaptation, hierarchical sparse
representation, dictionary learning, object recognition.

I. INTRODUCTION

IN MANY practical computer vision applications, we are
often confronted with the situation where the data that we

use to train classification/regression algorithm has a different
distribution or representation with that presented during test-
ing. The ubiquity of this problem is well-known to machine
learning and computer vision researchers. This challenge
is commonly referred to as covariate shift [1], or class
imbalance [2]. For instance, indoor images are quite different
from outdoor images, just as videos captured with a high
definition camera are from those collected using a webcam.
This detrimental effect is often a dominant factor contributing
to the poor performances of many computer vision algorithms.
As an example of the effect of distribution mismatch,
Ben-David et al. [3] show that, under certain assumption,
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the bound on the test error linearly increases with the �1 diver-
gence between training and testing distributions. Even worse,
data from the test domain are often scarce and expensive to
obtain. This makes it impractical to re-train an algorithm from
scratch since a learning algorithm would generalize poorly
when an insufficient amount of data is presented [4]. Regard-
less of the cause, any distributional change that may occur after
training can degrade the performance of the system when it
comes to testing. Domain adaptation also known as domain-
transfer learning attempts to minimize this degradation.

The problems caused by domain changes have received
substantial attention in recent years. The problem can be
informally stated as follows. Given a source domain whose
representation or distribution can be different from that of the
target domain, how to effectively utilize the model trained
on the source data to achieve a good performance on the
target data. It is also often assumed that the source domain
has sufficient labelled training samples while there are only
a few (both labelled and unlabelled) samples available in the
target domain. It has been shown in [5]–[9] that domain adap-
tation techniques can significantly improve the performance
of computer vision tasks such as visual object detection and
recognition.

Most of the algorithms for adapting a recognition system to
a new visual domain share a common architecture containing
two main stages. First, features are extracted separately for
source and target using hand-crafted feature descriptors,
followed by the second stage where transformations are
learned in order to rectify the discrepancy between the two
domains. This architecture has several drawbacks. Without
any knowledge about the target domain, the feature extraction
performed on the source data can ignore information important
to the target data. In addition, the process of designing
features, such as SIFT [10] or SURF [11], is tedious and
time-consuming. It requires a deep understanding and a care-
ful examination of the underlying physics that governs the
generation of data. Such requirements might be impractical
given that the data from the target domain are often very
scarce.

Another issue is that discriminative information can be
embedded in multiple levels of the features hierarchy. High-
level features are sometimes more useful than low-level ones.
In fact, this is one of the main motivations behind the
development of hierarchical networks (e.g. [12], [13]) so that
more complex abstraction from a visual object can be captured.
The traditional framework of domain adaptation employs
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a shallow architecture containing a single layer. This ignores
the possibility of transferring at multiple levels of the feature
hierarchy. In this paper, we show that jointly learning a
hierarchy of features could significantly improve the accuracy
of cross-domain classification. We compare and contrast our
approach with recent work on using deep networks in domain
adaptation. Our method uses the latent sparse representation.
The network incorporates a dimensionality reduction stage to
prevent the feature dimension from increasing too fast as one
traverses deeper into the hierarchy. The contributions of our
paper are summarized below.

Contributions: In order to address the limitations of existing
approaches, we propose a novel approach for domain adapta-
tion that possesses the following advantages:

• Adaptation is performed on multiple levels of the feature
hierarchy in order to maximize the knowledge transfer.
The hierarchical structure allows the transfer of useful
information that might not be well captured by existing
domain adaptation techniques.

• Adaptation is done jointly with feature learning. Our
method learns a hierarchy of sparse codes and uses them
to describe a visual object instead of relying on any low-
level feature.

• Unlike existing hierarchical networks, our network is
more computationally efficient with a mechanism to
prevent the data dimension from increasing too fast as
the number of layer increases.

We performed extensive experiments to show that our
approach performs better than many current state-of-the-art
domain adaptation methods. This is interesting since in our
method, training is entirely generative followed by a linear
support vector machine while several other methods employ
discriminative training together with non-linear kernels.
Furthermore, we introduce a new set of data for benchmarking
the performance of our algorithm. The new dataset has two
domains containing half-toned and edge images, respectively.
In order to facilitate future research in the area, a Matlab
implementation of our method will be made available.

A. Organization of the Paper

This paper is organized as follows. Related works on
domain adaptation are discussed in Section II. The main
formulation of DASH-N is given in Section III, followed by
the optimization procedure in Section V. Experimental results
of domain adaptation for object recognition are presented in
Section VI. Finally, Section VII concludes the paper with a
brief summary and discussion.

II. RELATED WORKS

In this section, we review some related works on domain
adaptation and hierarchical feature learning.

A. Domain Adaptation

While domain adaptation was first investigated in speech
and natural language processing [14]–[16], it has been studied
extensively in other areas such as machine learning [3], [17]
and computer vision, especially in the context of visual object

recognition [5]–[9], [18]. Domain adaptation for visual
recognition was introduced by Saenko et al. [5] in a semi-
supervised setting. They employed metric learning to learn
the domain shift using partially labeled data from the target
domain. This work was extended by Kulis et al. [6] to
handle asymmetric domain transformations. Gopalan et al. [7]
addressed the problem of unsupervised domain adaptation,
where samples from the target domain are unlabeled, by
using an incremental approach based on Grassmann manifolds.
By formulating a geodesic flow kernel, Gong et al. [8] and
Zheng et al. [19] independently extended the idea of inter-
polation to integrate an infinite number of subspaces on the
geodesic flow from the source domain to the target domain.
Chen et al. [20] presented a co-training based method that
slowly adapted a training set from the source to the target
domain. An information-theoretic method for unsupervised
domain adaptation was proposed by Shi and Sha [21] that
attempted to find a common feature space, where the source
and target data distributions are similar and the misclassifica-
tion error is minimized.

Sparse representation and dictionary-based methods for
domain adaptation [22]–[24] are also gaining a lot of trac-
tion. In particular, [22] modeled dictionaries across different
domains with a parametric mapping function, while [24]
enforced different domains to have a common sparse
representation on some latent domain. Another class of
techniques [25], [26] performed domain adaptation by directly
learning a target classifier using classifiers trained on the
source domain(s).

A major drawback of some of the existing approaches is
that the domain shifting transformation is considered only
at a single layer and may not capture adequately the shift
between the source and target domains. It is worth noting that
although [27] also named their method hierarchical domain
adaptation, the paper is not related to ours. They made use
of hierarchical Bayesian prior, while we employ a multi-layer
network of sparse representation.

There are also some closely related machine learning
problems that have been studied extensively, including transfer
learning or multi-task learning [28], self-taught learning [29],
semi-supervised learning [30] and multiview analysis [31].
A review of domain adaptation methods from machine learn-
ing and the natural language processing communities can be
found in [32]. A survey on the related field of transfer learning
can be found in [17].

B. Hierarchical Feature Learning

Designing features for visual objects is a time-consuming
and challenging task that requires a deep understanding of
domain knowledge. It is also non-trivial to adapt these manu-
ally designed features to new types of data such as hyperspec-
tral or range-scan images. For this reason, learning features
from the raw data has become increasingly popular with
demonstrated competitive performances on practical computer
vision tasks [12], [13], [33]. In order to capture the richness
of data, a multi-layer or hierarchical network is employed to
learn a spectrum of features, layer by layer.
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The design of multi-layer networks has been an active
research topic in computer vision. One of the early works
includes [34], which used a multistage system to extract salient
features in the image at different spatial scales. By learning
higher-level feature representations from unlabelled data, deep
belief networks (DBN) [12] and its variants, such as convo-
lutional DBNs [13] and deep autoencoders [35], have been
shown to be effective when applied to classification problems.
Motivated by recent works on deep learning, multi-layer sparse
coding networks [33], [36], [37] have been proposed to build
feature hierarchies layer by layer using sparse codes and
spatial pooling. Each layer in these networks contains a coding
step and a pooling step. A dictionary is learned at each coding
step which then serves as a codebook for obtaining sparse
codes from image patches or pooled features. Spatial pooling
schemes, most notably max-pooling, group the sparse codes
from adjacent blocks into common entities. This operation
makes the resulting features more invariant to certain changes
caused by translation and rotation. The pooled sparse codes
from one layer serve as the input to the next layer.

Although the high dimension of the feature vectors obtained
from a hierarchical network may provide some improvements
in classification tasks [12], [13], [33], it may also lead to high
redundancy and thus, reduce the efficiency of these algorithms.
As a result, it is desirable to have a built-in mechanism in
the hierarchy to reduce the dimension of the feature vectors
while keeping their discriminative power. Hierarchical feature
learning has also been used in domain adaptation such as
in [38], [39].

Deep learning has recently made significant improvement
to cross-domain classification [38]–[42]. One of the early
works [38] uses stacked auto-encoder (SDA) to learn high-
level features in an unsupervised manner. They show that
deep features improve sentiment classification accuracy on
a dataset of 22 different domains. A fast variant of auto-
encoder [39] was developed to make SDA training two orders
of magnitudes faster than that of the traditional counterpart.
Another architecture [43] was based on CNN to learn generic
features from a large dataset containing millions of images of
over 1000 classes. This work was able to bring down the state-
of-the-art error on ImageNet dataset from 26.1% to 15.3%. In
addition, the learned features have been shown to generalize
well across different domains [40], [41], making them suit-
able for domain adaptation. The effectiveness of the learned
features can be attributed to the large number of training
images which probably contains significant information from
all interested domains. Another work [42] also makes use of
CNN to learn features but with an interesting twist inspired by
the work of [7]. In particular, they create a path of interpolated
representations by slowly varying the sampling proportion of
source and target data. Each representation along the path is
generated by applying CNN on the resulting dataset.

Additional data greatly benefit the performance of domain
adaptation algorithm. For example, [41] showed that the
cross-domain classification accuracies on several popular
datasets [5], [44] can be improved by employing a large num-
ber of training images from other sources. The improvement
can be attributed to the high-capacity learning framework

of deep network like CNN. It might also be because the
learner has seen sufficient information for different domains
from the large number of additional training images. It is
understandable that this approach requires a lot of data to
perform well. However, data collection is difficult in many
practical applications. For instance, medical data are rarely
available in abundance like RGB images. For this reason, our
paper will focus on comparing with those methods that do not
use additional data from external sources.

III. BACKGROUND

Since our formulation is based on sparse coding and
dictionary learning, in this section, we briefly give a
background on these topics.

A. Dictionary Learning

Given a set of training samples Y = [y1, . . . , yn] ∈ R
d×n ,

the problem of learning a dictionary together with the sparse
codes is typically posed as the minimization of the following
cost function over (D, X):

‖Y − DX‖2
F + β�(X) s.t. ‖di‖2 = 1, ∀i ∈ [1, K ] (1)

where ‖Y‖F denotes the Frobenius norm defined as

‖Y‖F =
√∑

i, j |Yi, j |2, D = [d1, . . . , dK ] ∈ R
d×K is the

sought dictionary, X = [x1, . . . , xn] ∈ R
K×n is the horizontal

concatenation of sparse codes, β is a non-negative constant
and � promotes sparsity. Various methods have been proposed
in the literature for solving such optimization problem. In the
case when �0 norm is enforced, the K-SVD [45] algorithm can
be used to train a dictionary. One can also promote sparsity
by enforcing the �1 norm on X. In this case, one can use
the algorithm proposed in [46] to solve the above problem.
See [45] and [46] for more details.

B. Latent Sparse Representation

From the observation that signals often lie on a
low-dimensional manifold, several authors have proposed to
perform dictionary learning and sparse coding in a latent
space [47]–[49]. We call it latent sparse representation to
distinguish from the formulation in (1). This is done by
minimizing the following cost function over (P, D, X):

L(Y, P, D, X, α, β)

= ‖PY − DX‖2
F + α‖Y − PT PY‖2

F + β‖X‖1

s.t. PPT = I and ‖di‖2 = 1, ∀i ∈ [1, K ], (2)

where P ∈ R
p×d is a linear transformation that brings the

data to a low-dimensional feature space (p < d). Note that
the dictionary is now in the low-dimensional space D ∈ R

p×K .
The first term of the cost function promotes sparsity of signals
in the reduced space. The second term is the amount of energy
discarded by the transformation P, or the difference between
low-dimensional approximations and the original signals. The
minimization of the second term encourages the learned
transformation to preserve the useful information present in
the original signals. Besides the computational advantage,
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Fig. 1. An illustration of DASH-N algorithm. The source domain is RGB images and the target domain is halftone images. First, images are divided into
small overlapping patches. These patches are vectorized while maintaining their spatial arrangements. (a) Performing contrast-normalization and dimensionality
reduction using PS for source images and PT for target images. The circular feedbacks between PS and PT indicate that these two transformations are learned
jointly. (b) Otaining sparse codes using the common dictionary D1. (c) Performing max pooling. The process then repeats for layer 2 (d & e), except that the
input is the sparse codes from layer 1 instead of pixel intensities. At the final stage, spatial pyramid with max pooling are used to create image descriptors.
Classification is done using linear support vector machine.

[48] shows that this optimization can recover the underlying
sparse representation better than the traditional dictionary
learning methods. This formulation is attractive since it allows
the transformation of the data into another domain to better
handle different sources of variation such as illumination and
geometric articulation.

IV. HIERARCHICAL DOMAIN ADAPTATION

We propose a method to perform hierarchical domain
adaptation jointly with feature learning. Figure 1 shows an
overview of the proposed method. The network contains mul-
tiple layers, each of which contains 3 sub-layers as illustrated
in Figure 1. The first sub-layer performs contrast-
normalization and dimensionality reduction on the input
data. Sparse coding is carried out in the second sub-layer.
In the final sub-layer, adjacent features are max-pooled
together to produce a new features. Output from one layer
becomes the input to the next layer. We note that the
hierarchical sparse coding technique was used to extract
powerful features for object classification [33]. However, the
work in [33] is essentially different from our work in terms
of network architecture, learning algorithm, and application.
For the simplicity of notation, we consider a single source
domain. The extension of DASH-N to multiple source
domains is straight forward and is discussed in the Appendix.

Let YS ∈ R
dS×nS and YT ∈ R

dT ×nT be the input data at
each layer from source domain and target domain, respectively.
Note that there are nS , dS-dimensional samples in the source
domain and nT , dT -dimensional samples in the target domain.
Given YS and YT , in each layer of DASH-N, we learn a joint
latent sparse representation by minimizing the following cost
function with respect to (PS, PT , D, XS, XT ):

L(YS, PS, D, XS , α, β) + λL(YT , PT , D, XT , α, β) (3)

s.t. PSPT
S = PT PT

T = I, ‖di‖2 = 1, ∀i ∈ [1, K ], (4)

where (α, β, λ) are the non-negative constants, D ∈ R
p×K is

the common dictionary, PS ∈ R
p×dS and PT ∈ R

p×dT are

the transformations to the latent domain, XS ∈ R
K×nS and

XT ∈ R
K×nT are the sparse codes of the source and the target

domains, respectively. As can be seen from the above formu-
lation, two domains are forced to share a common dictionary
in the latent domain. Together with the sparsity constraint,
the common D provides a coupling effect that promotes the
discovery of common structure between the two domains. For
simplicity, in what follows, we provide a detailed discussion
on a two-layer DASH-N network. Extension of DASH-N to
multiple layers is straight forward.

A. Layer 1

We perform dense sampling on each training image to get
a set of overlapping patches. These patches are then contrast-
normalized. If f is a vector corresponding to a patch, then the
contrast-normalization can be performed as in [37]

f̂ = f√‖f‖2 + ε
, (5)

where ε is some parameter. We set the value of ε equal to 0.1
as it is found to work well in our experiments. In order to
make the computation more efficient, only a random subset
of patches from each image is used for learning the latent
sparse representation. We found that setting this number to
150 for images of maximum size of 150×150 provides a good
trade-off between accuracy and computational efficiency. After
learning the dictionary D1 and the transformations (P1

S, P1
T ),

the sparse codes (X1
S, X1

T ) are computed for all sampled
patches by solving the following optimization problem

min
X1∗

‖P1∗Y1∗ − D1X1∗‖2
2 + β1‖X1∗‖1, (6)

where ∗ indicates that the above problem can either correspond
to source data or target data. Each column of Y1∗ is the
vectorized pixel values inside a patch. A fast implementation
of the LARS algorithm is used for solving this optimization
problem [46].
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Spatial max pooling is used to aggregate the sparse codes
over each 4 × 4 neighborhood as this pooling method is par-
ticularly well-suited for the separation of sparse features [50].

B. Layer 2

In this layer, we perform similar computations except that
the input is the sparse codes from layer 1 instead of image
pixels. The features obtained from the previous layer are
aggregated by concatenation over each 4 × 4 neighborhood
and contrast-normalized. This results in a new representation
that is more robust to occlusion and illumination. Similar to
layer 1, we also randomly sample 150 normalized feature
vectors f̂ from each image for training. �1 optimization is
again employed to compute the sparse codes of the normalized
features f̂ .

After layer 2, the sparse codes are then aggregated using
max pooling in a multi-level patch decomposition (i.e. spatial
pyramid max pooling). At level 0 of the spatial pyramid, a
single feature vector is obtained by performing max pooling
over the whole image. At level 1, the image is divided into
four quadrants and max pooling is applied to each quadrant,
yielding 4 feature vectors. Similarly, for level 2, we obtain 9
feature vectors, and so on. In this paper, max pooling using a
three level spatial pyramid is used. As a result, the final feature
vector returned by the second layer for each image is a result
of concatenating 14 feature vectors from the spatial pyramid.

V. OPTIMIZATION PROCEDURE

In this section, we describe how the cost function in (3) is
minimized. First, let us define

KS = YT
S YS, KT = YT

T YT , K =
(

KS 0
0

√
λKT

)
(7)

to be the Gram matrix of source, target, and their block
diagonal concatenation, respectively. It can be shown that (see
the Appendix) the optimal solution of (3) takes the following
form

D = [AT
S KS,

√
λAT

T KT ]B (8)

PS = (YSAS)T , PT = (YT AT )T, (9)

for some AS ∈ R
nS×p , AT ∈ R

nT ×p and B ∈ R
(nS+nT )×K .

Notice that rows of each transformation live in the column
subspace of the data from its own domain. In contrast, columns
of the dictionary are jointly created by the data of both source
and target.

A. Solving for (AS, AT )

The orthogonal constraint in (4) can be re-written
using (9) as

AT
S KSAS = I, AT

T KT AT = I. (10)

By substituting (9), (8) into (3) and making use of the
orthogonal constraint in (10), the formulation can be simplified
as follows (see derivation in the Appendix)

min
G

tr(GT HG) s.t. GT
S GS = GT

T GT
T = I, (11)

where H is defined as

H = �
1
2 VT K((I − BX)(I − BX)T − αI)KV�

1
2 , (12)

V =
(

VS 0
0 VT

)
, � =

(
�S 0
0

√
λ�T

)
, (13)

KS = VS�SVT
S , KT = VT �T VT

T . (14)

Here (14) is given by the eigen-decompositions of the Gram
matrices. Finally, G is defined as

G = [GS,
√

λGT ], (15)

GS = �
1
2
S VT

S AS, GT = �
1
2
T VT

T AT . (16)

The optimization in (11) is non-convex due to the orthogonal-
ity constraints. However, G can be learned efficiently using the
algorithm proposed by [51]. Given G, the solution of (AS, AT )
is simply given by

AS = VS�
− 1

2
S GS, AT = VT �

− 1
2

T GT . (17)

We note that the optimization step involves the eigen-
decompositions of large Gram matrices whose dimensions
equal to the number of training samples (≈ 105 in our
experiments). This is computationally infeasible. We propose a
remedy for this. The source is taken for the illustration purpose
and the computation for the target is similar. First, we compute
the eigen-decomposition of the following matrix

CS = YSYT
S = US�′

SUT
S ∈ R

dS×dS . (18)

Then, the dS dominant eigenvectors of KS can be recovered as

VS = YT
S US�′

S
− 1

2 . (19)

The relationship in (19) between VS and US can be easily
verified using an SVD-decomposition of YS .

The signal dimension dS is much smaller than the number of
training samples nS in our experiments (e.g. 103 versus 105).
The eigen-decomposition of CS is therefore much more effi-
cient than that of KS . Finally, non-zero eigenvalues in �S are
given by the diagonal coefficients of �′

S .

B. Solving for (B, X)

If we fix (AS, AT ), then learning (B, XS , XT ) can be done
using any dictionary learning algorithm. In order to see this,
let us define

Z = [ASKS,
√

λAT KT ], (20)

X = [XS,
√

λXT ]. (21)

The cost function can be re-written in a familiar form as
follows

‖Z − DX‖2
F + β(‖XS‖1 + λ‖XT ‖1). (22)

We use LASSO to solve for the sparse codes X and the effi-
cient online dictionary learning algorithm [46] to solve for D.
The solution of B can be recovered, using the relationship
in (8), simply by

B = Z†D,

where † denotes the MoorePenrose pseudo-inverse.
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Fig. 2. Example images from the LAPTOP-101 class in different domains.
First row: original images, second row: halftone images, third row: edge
images. (a) Amazon. (b) Caltech. (c) DSLR. (d) Webcam.

It is straight forward to extend the above formulation
to handle the case of multiple source domains. Details of
derivation for this case are included in the Appendix.

VI. EXPERIMENTS

The proposed algorithm is evaluated in the context
of object recognition using a recent domain adaptation
dataset [5], containing 31 classes, with the addition of images
from the Caltech-256 dataset [44]. There are 10 common
classes between the two datasets (BACKPACK, TOURING-
BIKE, CALCULATOR, HEADPHONES, COMPUTER-
KEYBOARD, LAPTOP-101, COMPUTER-MONITOR,
COMPUTER-MOUSE, COFFEE-MUG, and VIDEO-
PROJECTOR) which contain a total of 2533 images. Domain
shifts are caused by variations in factors such as pose, lighting,
resolution, etc., between images in different domains.
Figure 2 shows example images from the LAPTOP-101
class with respect to different domains. We compare our
method with state-of-the-art adaptation algorithms such
as [5], [7], [8], and [24]. Baseline results obtained using
the hierarchical feature learning in [33] by learning the
dictionaries separately for the source and target domains
without performing domain adaptation are also included.
Furthermore, in order to better assess the ability to adapt to a
wide range of domains, experimental results are also reported
on new images obtained by performing halftoning [52] and
edge detection [53] algorithms on images from the datasets
in [5] and [45].

A. Experiment Setup

We follow the experimental set-ups of [8]. The results using
10 as well as 31 common classes are reported. In both cases,
experiments are performed in 20 random trials for each pair of
source and target domains. If the source domain is Amazon
or Caltech, 20 samples are used in the training. Otherwise,
only 8 training samples are used for DLSR and Webcam. The
number of target training samples is always set equal to 3.

The remaining images from the target domain in each split
are used for testing.

B. Parameter Settings

In our experiments, all images are resized to be no larger
than 150×150 with preserved ratio and converted to grayscale.
The patch size is set equal to 5 × 5. The parameter λ is
set equal to 4 in order to account for less training samples
from the target than that from the source, and α is set equal
to 1.5 for all experiments. We also found that using
βtrain = 0.3 for training and βtest = 0.15 for testing yields
the best performance. The same values for these parameters
are used for both the first and second layer. A smaller sparsity
constant often makes the decoding more stable, thus, leads
to more consistent sparse codes. This is similar to the finding
in [33]. The number of dictionary atoms is set equal to 200 and
1500 in the first and second layer, respectively. The dimension
of the latent domain is set equal to 20 and 750 in the first and
second layer, respectively. It is worth noting that the input
feature to layer 2 has the dimension of 3200. This results from
aggregating sparse codes obtained from the first layer over a
4×4 spatial cell (4×4×200). By projecting them onto a latent
domain of dimension of 750, the computations become more
tractable. A three level spatial pyramid, partitioned into 1 ×1,
2 × 2, and 3 × 3, is used to perform the max pooling in the
final layer. Linear SVM [54] with the regularization parameter
of 10 is employed for classification. It is worth noting that we
do not use any part of the testing data in tuning the algorithmic
parameters. The sparsity constants such as α, βtrain and βtest

are set to the standard values used by many popular sparse
learning softwares such as SPAMS [46] and ScSPM [55]. For
parameters such as patch size, dictionary size, latent space
dimensions and the linear SVM regularization parameter, the
findings in [33], [45], and [48] are employed to create a small
subset of values and cross-validation on the training data is
performed to obtain the optimal settings.

C. Computation Time

It takes an average of 35 minutes to perform the dictionary
learning and feature extraction of all training samples using
our Matlab implementation on a computer with a 3.8 GHz
Intel i7 processor. It takes less than 2 seconds to compute the
feature for a test image of size 150 × 150 using both layers
of the hierarchy.

D. Object Recognition

1) 10 Common Classes: The recognition results of different
algorithms on 8 pairs of source-target domains are shown
in Table I. It can be seen that DASH-N outperforms all
compared methods in 7 out of 8 pairs of source-target domains.
For pairs such as Caltech-Amazon, Webcam-Amazon, or
DSLR-Amazon, we achieve more than 20% improvements
over the next best algorithm without feature learning used in
the comparison (from 49.5% to 71.6%, 49.4% to 70.4%, and
48.9% to 68.9%, respectively). It is worth noting that while
we employ a generative approach for learning the feature, our
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TABLE I

RECOGNITION RATES OF DIFFERENT APPROACHES ON FOUR DOMAINS (C: CALTECH, A: AMAZON, D: DSLR, W: WEBCAM). 10 COMMON CLASSES
ARE USED. RED COLOR DENOTES THE BEST RECOGNITION RATES. BLUE COLOR DENOTES THE SECOND BEST RECOGNITION RATES

Fig. 3. Dictionary responses of training (left) and testing (right) data for the BACKPACK class for the pair DSLR-Webcam domains in the first layer.

method consistently achieves better performance than [24],
which uses discriminative training together with non-linear
kernels. It is also clear from the table that the multi-layer
DASH-N outperforms the single-layer DASH-N. In the case
of adapting from Caltech to Amazon, the performance gain
by using a combination of features obtained from both layers
rather than just features from the first layer is more than 10%
(from 60.3% to 71.6%).

The results obtained by using Hierarchical Matching
Pursuit (HMP) [33], without performing domain adaptation,
are also included in the comparison in order to better eval-
uate the improvements provided by the proposed approach.
In order to extract features using HMP, a dictionary is learned
separately per the source and target domains in each layer.
Sparse codes for data from the source and target domains
are then computed using the corresponding dictionary. Similar
to our approach, the classification is performed using the
concatenated features obtained a two-layer network. The HMP
parameters are selected using cross-validation on the training
data. It can be seen from Table I that, although HMP does
not perform as well as the proposed method, it achieves
reasonably good performance on the dataset. In many cases, it
even outperforms other domain adaptation methods used in the
comparison. This demonstrates the effectiveness of learning
feature representation. However, it is also clear from the table
that by learning a common representation at each layer of
the hierarchy, our algorithm is able to capture the domain

shift better. As a result, it consistently achieves better
classification rates compare to HMP in all scenarios.

In order to illustrate the encoding of features using the
learned dictionary in the first layer, Figure 3 shows the
responses of the training and testing data for the BACKPACK
class with respect to each atom of the dictionary in the first
layer for the pair DSLR-Webcam domains. The sparse codes
for all the patches of the training and testing images belong to
the class are computed. The absolutes of these sparse vectors
are summed together and normalized to unit length. Small
components of the normalized sparse codes are thresholded
to better show the correspondences between the training and
testing data. It can be seen from the figure that the sparse codes
for the training and testing data for the BACKPACK class
both have high responses in four different dictionary atoms
(43, 103, 136 and 160).

2) 31 Classes and Multiple Sources: We also compare the
recognition results for all 31 classes between our approach
and other methods in both cases of single (Table II) and
multiple source domains (Table III). It can be seen from
Tables II and III that our results, even using only features
extracted from the first layer, are consistently better than
that of other algorithms in all the domain settings, except
the results obtained by using features extracted from deep
networks [41], [42]. This proves the effectiveness of the feature
learning process using latent sparse representation. It is worth
noting that the deep convolutional network used in [41] is
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Fig. 4. Recognition rates with respect to different dimensions of the latent domain in the first and second layer. (a) First layer. (b) Second layer.

TABLE II

SINGLE-SOURCE RECOGNITION RATES ON ALL 31 CLASSES

TABLE III

MULTIPLE-SOURCE RECOGNITION RATES ON ALL 31 CLASSES

trained in a fully supervised fashion for more than a week
using a very large external dataset, called ImageNet [58],
which has millions of images and thousands of classes.
In contrast to [41], our method is only trained using a limited
number of samples for less than half an hour. While the
observation in [41] is interesting, it is also important to deal
with the scenarios where there is no abundance of external
data like in medical domain. Our experimental results indicate
that DASH-N provides the best performances among the
approaches not using external data. The extension of DASH-N
for using external dataset is under investigation.

The performance of our algorithm further increases
when features learned from both layers of the hierarchy are

combined. Especially, in the case of adapting from Webcam
and DSLR to Amazon, we achieve an improvement of more
than 15% compared to the result of SDDL [24] (from 24.1%
to 41.8%). We also want to point to a recent work on
domain adaptation using CNN to learn a set of interpolated
representations from one domain to another [42]. Their results
confirm our findings that hierarchical features make adap-
tation easier. Our method achieves a better performance on
{A → W } pair (60.6% versus 44.87%) while performing
worse on {D → W } (67.9% versus 75.21%) and {W → D}
(71.1% versus 84.94%) [42].

3) Dimensions of Latent Domains: Dimensions of latent
domains are some of the important parameters affecting the
performance of DASH-N. Figure 4a shows the recognition
rates with respect to different dimensions of the latent domain
in the first layer for three pairs of source-target domains
(Amazon-DSLR, Caltech-Amazon and Webcam-DSLR), while
keeping the dimension of latent domain in the second layer
to 750. As the patch size is set at 5×5, we vary the dimension
of the first layer dictionary from 5 to 25. It can be seen from
the figure that if the latent domain dimension is too low, the
accuracy decreases. The optimal dimension is achieved at 20.

Similarly, the recognition rates with respect to different
dimensions of the second layer latent domain are shown
in Figure 4b while the first layer latent dimension is kept at 20.
It can be seen from Figure 4b that the curves for all three
pairs of source-target domains peak at the dimension 750.
Once again, we observe that the performance decreases if
the dimension of the latent domain is too low. More inter-
estingly, as we can observe for the pair Caltech-Webcam and
Webcam-DSLR, setting the dimension of the latent domain
too high is as detrimental as setting it too low. In all of our
experiments, we set the dimension of the latent domain using
the cross validation technique.

E. Halftoned and Edge Images

In order to evaluate the ability of DASH-N in adapting to
a wide range of domains, we also perform experiments on
object recognition from the original image domain to two new
domains generated by applying half-toning and edge extraction
algorithms to the original images. Half-toning images, which
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Fig. 5. The reconstructed dictionaries at layer 1. (a) Source: Amazon original images. (b) Target: Amazon edge images.

TABLE IV

RECOGNITION RATES OF DIFFERENT APPROACHES ON THE HALF-TONING AND EDGE DATASETS.
10 COMMON CLASSES ARE USED. (a) HALF-TONING. (b) EDGE

imitate the effect of jet-printing technology in the past, are
generated using the dithering algorithm in [52]. Edge images
are obtained by applying the Canny edge detector [53] with
the threshold set to 0.07.

Figure 5 is the visualization of the reconstructed dictionaries
atoms at layer 1 when adapting the original images (source) to
edge images (target). Reconstructed dictionaries are obtained
by D̂1∗ = (P1∗)†D1, where † denotes the MoorePenrose pseudo-
inverse. We observe that the dictionary atoms of original
images contain rather fat and smooth regions. In contrast,
dictionary atoms of edge images have many thin and highly
varying patterns that are more suitable for capturing edges.
Table IV shows the performance of different algorithms when
adapting to these new domains. It can be seen from the
table that DASH-N outperforms other methods used in the
comparison in both cases of half-toning and edge images.
This proves the ability of our approach to adapt well to new
domains. As discussed in previous sections, although even
the first layer of DASH-N already achieves very good results
on different settings, the performance consistently improves
with the addition of the second layer. In many cases, the
improvement in the recognition rates can be significant such
as in the case of C → A in Table I or A → W and D → W

in Table IV which is more than 10%. Both the source code
and two new datasets will be released for research purposes.

F. Complexity Analysis

Let w and h be the width and height of an input image,
respectively. Recall that d is the dimension of input sample.
K (�) is the dictionary size at �-layer. q is the number of pixels
considered in the pooling operation. p(�) is the dimension
of the reduced space after the projection at �-layer. The
computation needed for evaluating an input image is given
as follows

O(
w×h×d×p(1) + w×h×p(1)×K (1)×T (1)

+ w×h

q
×K (1)×p(2) + w×h

q
×p(2)×K (2)×T (2)

+ w×h

q2 ×K (2)×p(3) + w×h

q2 ×p(3)×K (3)×T (3)
)

= O( 3∑

�=1

w×h×p(�)

q(�−1)
(K (�−1) + K (�)×T (�))

)
,

where we use the convention that K (0) is the equal to the
dimension of the input patch d . We also assume that the sparse
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coding for each sample could be performed with d×K×T
computation using OMP method or fast variants of Lasso.

VII. CONCLUSION

We have presented a hierarchical method for performing
domain adaptation using multi-layer representations of images.
In the proposed approach, the features and domain shifts are
learned jointly in each layer of the hierarchy in order to
obtain a better representation of data from different domains.
Unlike other hierarchical approaches, our method prevents the
dimension of feature vectors from increasing too fast as the
number of layers increase. Experimental results show that
the proposed approach significantly outperforms other domain
adaptation algorithms considered in the comparison.

Several future directions of inquiry are possible considering
our new approach to domain adaptation and feature learning.
It would also be of interest to incorporate non-linear learning
frameworks to DASH-N.

APPENDIX

In this section, we provide the derivations for the forms
of D in (8) and Pi in (9) as well as extend the optimization
to the case of multiple source domains.

A. Form of D

We consider a general case where there are m different
domains. Let {Yi , Pi , Xi , ni }m

i=1 be the training data, the trans-
formation, the sparse coefficients, and the number of samples
for the i -th domain, respectively. Let D denote the common
dictionary in the latent domain. The objective function that we
want to minimize is

m∑

i=1

λiL(Yi , Pi , D, Xi , α, β)

=
∑

i

λi

(
‖Pi Yi − DXi‖2

F + α‖Yi − PT
i Pi Yi‖2

F + β‖Xi‖1

)
.

(23)

For the convenience of notation, we first define

Z = [√λ1P1Y1, . . . ,
√

λmPmYm]. (24)

One can write D in the following form

D = D|| + D⊥, where D|| = ZB and DT⊥Z = 0, (25)

for some B ∈ R
(
∑

i ni )×K . In other words, columns of D||
and D⊥ are in and orthogonal to the column subspace of Z,
respectively. Let S ∈ R

K×K be a diagonal matrix with non-
negative coefficients such that columns of D̂|| = D||S have
unit-norm. Since the columns of D have unit-norm and
D = D|| + D⊥, the columns of D|| must have norms of no
larger than 1. Therefore, in order for the columns of D̂|| to
have norm 1, the diagonal coefficients in S must be no less
than 1. This gives us the following corollary

‖Xi‖1 = ‖SS−1Xi‖1 = ‖SX̂i‖1 ≥ ‖X̂i‖1, (26)

where X̂i = S−1Xi . In addition, we also have

‖Pi Yi − DXi‖2
F = ‖Pi Yi − D||Xi‖2

F + ‖D⊥Xi‖2
F

≥ ‖Pi Yi − D||Xi‖2
F

= ‖Pi Yi − (D||S)(S−1Xi )‖2
F

= ‖Pi Yi − D̂||X̂i‖2
F . (27)

Using the two inequalities in (26) and (27), we can show that

m∑

i=1

λiL(Yi , Pi , D, Xi , α, β)

≥
∑

i

λi

(
‖Pi Yi − D̂||X̂i‖2

F + α‖Yi − PT
i Pi Yi‖2

F +β‖X̂i‖1

)

=
m∑

i=1

λiL(Yi , Pi , D̂||, X̂i , α, β). (28)

This means that given any feasible solution (D, Xi ), we
can find another feasible solution (D̂||, X̂i ), whose dictionary
atoms normalized to unit-norm, that does not increase the cost
function. Therefore, an optimal solution for D must be in form
of D̂||, which can be generally written as

D = ZB = [√λ1P1Y1, . . . ,
√

λmPmYm ]B. (29)

B. Form of Pi

We perform the orthogonal decomposition of Pi as
follows [59]

Pi = Pi ⊥ + Pi ||, where Pi ⊥Yi = 0 and Pi || = (Yi Ai )
T.

(30)

In other words, rows of Pi || and Pi ⊥ are in and orthogonal to
the column subspace of Yi , respectively. For convenience of
notation, let us define

P =
⎛
⎜⎝

P1 . . . 0
...

. . .
...

0 . . . Pm

⎞
⎟⎠ (31)

Y =
⎛
⎜⎝

√
λ1Y1
...√

λmYm

⎞
⎟⎠ (32)

X = (
√

λ1X1, . . . ,
√

λmXm). (33)

After simple algebraic manipulations, the cost function can be
re-written as

m∑

i=1

λiL(Yi , Pi , D, Xi , α, β)

=
∑

i

λi

(
‖Pi Yi− | DXi‖2

F + α‖Yi − PT
i Pi Yi‖2

F +β‖Xi‖1

)

=
(
‖P||Y(I − BX)‖2

F + αtr(YT Y − P||YYT PT|| )

+ β

m∑

i=1

λi‖Xi‖1

)
. (34)
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Removing all the terms independent of P, we have

tr
(

P||Y((I − BX)(I − BX)T − αI)YT PT||
)
.

The objective function is independent of P⊥. Moreover, an
optimal solution of P|| is given by the eigenvectors of

Y((I − BX)(I − BX)T − αI)YT.

This means P||PT|| = I. However, P||PT|| = I−P⊥PT⊥, therefore,
P⊥ = 0. We conclude that an optimal solution of Pi must have
the following form

Pi = (Yi Ai )
T , ∀i ∈ [1, m]. (35)

C. Optimization for Multiple Source Domains

The first term of (23) is

∑

i

λi‖Pi Yi − DXi‖2
F = ‖Z(I − BX)‖2

F , (36)

where X = [√λ1X1, . . . ,
√

λmXm]. The second term of (23)
can be written as

α
∑

i

λi‖Yi − PT
i Pi Yi‖2

F = α
∑

i

tr
(

Ki − YT
i PT

i Pi Yi

)

= α tr
( ∑

i

(Ki ) − ZT Z
)
. (37)

After discarding all constant terms, the objective function
in (23) is equivalent to

‖Z(I − BX)‖2
F − α tr(ZT Z) + β

∑

i

λi‖Xi‖1. (38)

Solving for Ai : First, we perform the eigen-decomposition
Ki = Vi�i VT

i . Then the eigen-decomposition of K is given by

K = V�VT, (39)

where,

V =
⎛
⎜⎝

V1 . . . 0
...

. . .
...

0 . . . Vm

⎞
⎟⎠ (40)

� =
⎛
⎜⎝

√
λ1�1 . . . 0
...

. . .
...

0 . . .
√

λm�m

⎞
⎟⎠. (41)

Moreover, let us define Gi = �
1
2
i VT

i Ai . Then, the constraints
become

Pi PT
i = AT

i Ki Ai = GT
i Gi = I.

In order to solve for Ai , we assume that (B, Xi ) are fixed.
After removing all the terms independent of Ai , and

using (24) together with (39), the objective in (38) is
equivalent to

‖Z(I − BX)‖2
F − α tr(ZT Z)

= tr
(

Z((I − BX)(I − BX)T − αI)ZT
)

= tr
(

AT K((I − BX)(I − BX)T − αI)KA
)

= tr
(
(AT V�

1
2 )(�

1
2 VT ((I − BX)(I − BX)T − αI)V�

1
2 )

× (�
1
2 VT A)

)

= tr(GT HG), (42)

where,

G = �
1
2 VT A

=
⎛
⎜⎝

V1 . . . 0
...

. . .
...

0 . . . Vm

⎞
⎟⎠

⎛
⎜⎝

√
λ1�

T
1 . . . 0

...
. . .

...

0 . . .
√

λm�T
m

⎞
⎟⎠

⎛
⎜⎝

A1
...

Am

⎞
⎟⎠

= [√λ1G1, . . . ,
√

λmGm]. (43)

Then the solution of Ai can be obtained by first minimizing

min
G

tr(GT HG) s.t. GT
i Gi = I. (44)

This can be solved efficiently in the same way as for the case
of two domains using the algorithm proposed by [51]. The
solution for Ai of each domain is recovered simply by

Ai = Vi�
− 1

2
i Gi . (45)

Solving for (B, Xi ): We now assume that Ai are fixed.
After discarding the terms independent of (B, Xi ) in (38), the
objective function is re-written as

‖Z − DX‖2
F + β

∑

i

λi‖Xi‖1. (46)

This is in the familiar form of dictionary learning problem.
We use the online dictionary learning algorithm proposed
by [46] to learn (D, Xi ). The sparse coding is done using
the LASSO algorithm. After obtaining D, the solution of B is
obtained by

B = Z†D. (47)

REFERENCES

[1] H. Shimodaira, “Improving predictive inference under covariate shift by
weighting the log-likelihood function,” J. Statist. Planning Inference,
vol. 90, no. 2, pp. 227–244, 2000.

[2] N. Japkowicz and S. Stephen, “The class imbalance problem:
A systematic study,” Intell. Data Anal., vol. 6, no. 5, pp. 429–450,
2002.

[3] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and
J. W. Vaughan, “A theory of learning from different domains,” Mach.
Learn., vol. 79, no. 1, pp. 151–175, 2010.

[4] C. J. Stone, “Optimal global rates of convergence for nonparametric
regression,” Ann. Statist., vol. 10, no. 4, pp. 1040–1053, 1982.



5490 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 12, DECEMBER 2015

[5] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual
category models to new domains,” in Proc. 11th ECCV, 2010,
pp. 213–226.

[6] B. Kulis, K. Saenko, and T. Darrell, “What you saw is not what you
get: Domain adaptation using asymmetric kernel transforms,” in Proc.
IEEE Conf. CVPR, Jun. 2011, pp. 1785–1792.

[7] R. Gopalan, R. Li, and R. Chellappa, “Domain adaptation for
object recognition: An unsupervised approach,” in Proc. IEEE ICCV,
Nov. 2011, pp. 999–1006.

[8] B. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic flow kernel for
unsupervised domain adaptation,” in Proc. IEEE Conf. CVPR, Jun. 2012,
pp. 2066–2073.

[9] I.-H. Jhuo, D. Liu, D. T. Lee, and S.-F. Chang, “Robust visual domain
adaptation with low-rank reconstruction,” in Proc. IEEE Conf. CVPR,
Jun. 2012, pp. 2168–2175.

[10] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[11] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (SURF),” Comput. Vis. Image Understand., vol. 110, no. 3,
pp. 346–359, 2008.

[12] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554,
2006.

[13] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional
deep belief networks for scalable unsupervised learning of hierarchical
representations,” in Proc. 26th Annu. ICML, 2009, pp. 609–616.

[14] C. J. Leggetter and P. C. Woodland, “Maximum likelihood linear
regression for speaker adaptation of continuous density hidden Markov
models,” Comput. Speech Lang., vol. 9, no. 2, pp. 171–185, 1995.

[15] H. Daumé, III, and D. Marcu, “Domain adaptation for statistical
classifiers,” J. Artif. Intell. Res., vol. 26, no. 1, pp. 101–126, 2006.

[16] H. Daumé, III, “Frustratingly easy domain adaptation,” in Proc. ACL,
2007, pp. 256–263.

[17] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2009.

[18] V. M. Patel, R. Gopalan, R. Li, and R. Chellappa, “Visual domain
adaptation: A survey of recent advances,” IEEE Signal Process. Mag.,
vol. 32, no. 3, pp. 53–69, May 2015.

[19] J. Zheng, M.-Y. Liu, R. Chellappa, and P. J. Phillips, “A Grassmann
manifold-based domain adaptation approach,” in Proc. 21st ICPR,
Nov. 2012, pp. 2095–2099.

[20] M. Chen, K. Q. Weinberger, and J. Blitzer, “Co-training for domain
adaptation,” in Proc. Adv. NIPS, 2011, pp. 2456–2464.

[21] Y. Shi and F. Sha, “Information-theoretical learning of discriminative
clusters for unsupervised domain adaptation,” in Proc. 29th ICML, 2012,
pp. 1079–1086.

[22] Q. Qiu, V. M. Patel, P. Turaga, and R. Chellappa, “Domain adaptive
dictionary learning,” in Proc. 12th ECCV, 2012, pp. 631–645.

[23] J. Ni, Q. Qiu, and R. Chellappa, “Subspace interpolation via dictionary
learning for unsupervised domain adaptation,” in Proc. IEEE Conf.
CVPR, Jun. 2013, pp. 692–699.

[24] S. Shekhar, V. M. Patel, H. V. Nguyen, and R. Chellappa, “Generalized
domain-adaptive dictionaries,” in Proc. IEEE Conf. CVPR, Jun. 2013,
pp. 361–368.

[25] L. Duan, I. W. Tsang, D. Xu, and T.-S. Chua, “Domain adaptation from
multiple sources via auxiliary classifiers,” in Proc. 26th Annu. ICML,
2009, pp. 289–296.

[26] L. Duan, I. W. Tsang, and D. Xu, “Domain transfer multiple kernel
learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 3,
pp. 465–479, Mar. 2012.

[27] J. R. Finkel and C. D. Manning, “Hierarchical Bayesian domain
adaptation,” in Proc. NAACL, 2009, pp. 602–610.

[28] R. Caruana, “Multitask learning,” Mach. Learn., vol. 28, no. 1,
pp. 41–75, 1997.

[29] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, “Self-taught
learning: Transfer learning from unlabeled data,” in Proc. 24th Int. Conf.
Mach. Learn., 2007, pp. 759–766.

[30] O. Chapelle, B. Schölkopf, and A. Zien, Eds., Semi-Supervised Learning.
Cambridge, MA, USA: MIT Press, 2006.

[31] A. Sharma, A. Kumar, H. Daumé, III, and D. W. Jacobs, “Generalized
multiview analysis: A discriminative latent space,” in Proc. IEEE Conf.
CVPR, Jun. 2012, pp. 2160–2167.

[32] J. Jiang, “Domain adaptation in natural language processing,” Ph.D.
dissertation, Univ. Illinois Urbana-Champaign, Champaign, IL, USA,
2008.

[33] L. Bo, X. Ren, and D. Fox, “Hierarchical matching pursuit for image
classification: Architecture and fast algorithms,” in Proc. Adv. NIPS,
2011, pp. 2115–2123.

[34] B. S. Manjunath and R. Chellappa, “A unified approach to boundary
perception: Edges, textures, and illusory contours,” IEEE Trans. Neural
Netw., vol. 4, no. 1, pp. 96–108, Jan. 1993.

[35] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in Proc.
25th ICML, 2008, pp. 1096–1103.

[36] K. Yu, Y. Lin, and J. Lafferty, “Learning image representations from the
pixel level via hierarchical sparse coding,” in Proc. IEEE Conf. CVPR,
Jun. 2013, pp. 1713–1720.

[37] L. Bo, X. Ren, and D. Fox, “Multipath sparse coding using hierarchical
matching pursuit,” in Proc. IEEE Conf. CVPR, Jun. 2013, pp. 660–667.

[38] X. Glorot, A. Bordes, and Y. Bengio, “Domain adaptation for large-scale
sentiment classification: A deep learning approach,” in Proc. 28th ICML,
2011, pp. 513–520.

[39] M. Chen, Z. Xu, K. Q. Weinberger, and F. Sha, “Marginalized denoising
autoencoders for domain adaptation,” in Proc. 29th ICML, 2012,
pp. 1–8.

[40] J. Hoffman, E. Tzeng, J. Donahue, Y. Jia, K. Saenko, and T. Darrell.
(Dec. 2013). “One-shot adaptation of supervised deep convolutional
models.” [Online]. Available: http://arxiv.org/abs/1312.6204

[41] J. Donahue et al. (Oct. 2013). “DeCAF: A deep convolutional
activation feature for generic visual recognition.” [Online]. Available:
http://arxiv.org/abs/1310.1531

[42] S. Chopra, S. Balakrishnan, and R. Gopalan, “DLID: Deep learning for
domain adaptation by interpolating between domains,” in Proc. ICML
Workshop Challenges Represent. Learn., 2013, pp. 1–8.

[43] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[44] G. Griffin, A. Holub, and P. Perona. (2007). “Caltech-256 object
category dataset,” California Inst. Technol., Pasadena, CA, USA,
Tech. Rep. 7694. [Online]. Available: http://authors.library.caltech.
edu/7694

[45] M. Elad, Sparse and Redundant Representations. New York, NY, USA:
Springer-Verlag, 2010.

[46] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary learning
for sparse coding,” in Proc. 26th ICML, 2009, pp. 689–696.

[47] J. Mairal, F. Bach, and J. Ponce, “Task-driven dictionary learning,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 4, pp. 791–804,
Apr. 2012.

[48] H. V. Nguyen, V. M. Patel, N. M. Nasrabadi, and R. Chellappa,
“Sparse embedding: A framework for sparsity promoting dimensionality
reduction,” in Proc. 12th ECCV, 2012, pp. 414–427.

[49] V. M. Patel, H. V. Nguyen, and R. Vidal, “Latent space sparse
subspace clustering,” in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2013,
pp. 225–232.

[50] Y.-L. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of feature
pooling in visual recognition,” in Proc. 27th ICML, 2010, pp. 1–8.

[51] Z. Wen and W. Yin, “A feasible method for optimization with orthog-
onality constraints,” Math. Program., vol. 142, no. 1, pp. 397–434,
2013.

[52] V. Monga, N. Damera-Venkata, H. Rehman, and B. L. Evans. (2005).
Halftoning Toolbox for MATLAB. [Online]. Available: http://users.
ece.utexas.edu/~bevans/projects/halftoning/toolbox/

[53] J. Canny, “A computational approach to edge detection,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 8, no. 6, pp. 679–698, Nov. 1986.

[54] V. N. Vapnik, Statistical Learning Theory. New York, NY, USA: Wiley,
1998.

[55] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid
matching using sparse coding for image classification,” in Proc. IEEE
Conf. CVPR, Jun. 2009, pp. 1794–1801.

[56] J. Yang, R. Yan, and A. G. Hauptmann, “Cross-domain video concept
detection using adaptive SVMs,” in Proc. 15th Int. Conf. MM, 2007,
pp. 188–197.

[57] M. Yang, L. Zhang, X. Feng, and D. Zhang, “Fisher discrimination
dictionary learning for sparse representation,” in Proc. IEEE ICCV,
Nov. 2011, pp. 543–550.

[58] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2009, pp. 248–255.

[59] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed.
Baltimore, MD, USA: The Johns Hopkins Univ. Press, 2012.



NGUYEN et al.: JOINT HIERARCHICAL DOMAIN ADAPTATION AND FEATURE LEARNING 5491

Hien V. Nguyen (M’08) received the bachelor’s
degree in electrical and computer engineering from
the National University of Singapore, and the
Ph.D. degree in electrical and computer engineer-
ing from the University of Maryland at College
Park. He is currently a Research Scientist with
Siemens Corporate Technology, Princeton. His cur-
rent research interests are in machine learning and
pattern recognition algorithms for medical imaging
and healthcare applications.

Huy Tho Ho (S’07) received the B.Eng. (Hons.)
degree in computer systems engineering and the
M.App.Sc. degree in electrical and electronic engi-
neering from the University of Adelaide, Australia,
in 2007 and 2009, respectively, and the M.Sc. and
Ph.D. degrees in electrical and computer engineering
from the University of Maryland (UMD), College
Park, in 2013 and 2014, respectively. His research
interests include computer vision, machine learning,
and statistical pattern recognition. He received the
Adelaide Achiever Scholarship International for his

undergraduate study at the University of Adelaide, and the Clark School
Distinguished Graduate Fellowship at UMD.

Vishal M. Patel (M’01) received the B.S. (Hons.)
degrees in electrical engineering and applied math-
ematics and the M.S. degree in applied mathemat-
ics from North Carolina State University, Raleigh,
NC, USA, in 2004 and 2005, respectively, and
the Ph.D. degree in electrical engineering from the
University of Maryland, College Park, MD, USA,
in 2010. He was a member of the Research Fac-
ulty with the University of Marylands Institute for
Advanced Computer Studies, College Park, MD,
USA. He is currently an Assistant Professor with

the Department of Electrical and Computer Engineering, Rutgers University.
His current research interests include signal processing, computer vision, and
pattern recognition with applications in biometrics and imaging. He is a
member of Eta Kappa Nu, Pi Mu Epsilon, and Phi Beta Kappa. He was
a recipient of the ORAU Post-Doctoral Fellowship in 2010.

Rama Chellappa (F’92) is currently a Minta
Martin Professor of Engineering and the Chair of
the ECE Department with the University of Mary-
land (UMD). He is a fellow of IAPR, OSA, AAAS,
ACM, and AAAI and holds four patents. He received
the K.S. Fu Prize from the International Association
of Pattern Recognition. He is a recipient of the Soci-
ety, Technical Achievement, and Meritorious Service
Awards from the IEEE Signal Processing Society
and four IBM Faculty Development Awards. He also
received the Technical Achievement and Meritorious

Service Awards from the IEEE Computer Society. At UMD, he received
college and university level recognitions for research, teaching, innovation,
and mentoring of undergraduate students. In 2010, he was recognized as
an Outstanding ECE by Purdue University. He served as the Editor-in-
Chief of the IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE

INTELLIGENCE. He is a Golden Core Member of the IEEE Computer Society,
and served as a Distinguished Lecturer of the IEEE Signal Processing Society
and the President of IEEE Biometrics Council.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


