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One of the challenges in data analysis is to distinguish between different sources of 
variability manifested in data. In this paper, we consider the case of multiple sensors 
measuring the same physical phenomenon, such that the properties of the physical 
phenomenon are manifested as a hidden common source of variability (which we 
would like to extract), while each sensor has its own sensor-specific effects (hidden 
variables which we would like to suppress); the relations between the measurements 
and the hidden variables are unknown. We present a data-driven method based on 
alternating products of diffusion operators and show that it extracts the common 
source of variability. Moreover, we show that it extracts the common source of 
variability in a multi-sensor experiment as if it were a standard manifold learning 
algorithm used to analyze a simple single-sensor experiment, in which the common 
source of variability is the only source of variability.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Measurement systems typically have many sources of variability. When multiple sensors are used to 
measure the same physical phenomenon, some sources of variability are related to the actual physical phe-
nomenon, whereas other sources of variability are irrelevant, sensor-specific effects. In this case, extracting 
the common source of variability and discarding the sensor-specific sources may uncover the essence of the 
data, separating the relevant information from the irrelevant information.

The motivation for this work arises from applications of exploratory data analysis in areas such as complex 
biological systems, neural systems and biomedical devices. In these problems, the sensor-related sources of 
variability are not necessarily restricted to noise and interferences that can often be suppressed by averaging, 
but also include variables such as the position and orientation of a sensor, environmental effects, channel 
characteristics, and local activity in different components of the complex system. The different components 
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of complex systems like these can be modeled as different “sensors” and the interaction between them can 
be modeled as a common variable; so the term “sensor” used in this paper is interpreted more generally 
than simply a physical measurement device.

Unsupervised Manifold Learning is a class of nonlinear data-driven methods, e.g. ISOMAP [1], locally 
linear embedding (LLE) [2], Hessian Maps [3], and Laplacian Eigenmaps [4], often used to extract the 
sources of variability in given data sets. Of particular interest in the context of this paper is Diffusion 
Geometry [5–9], a manifold learning framework, in which discrete diffusion processes are constructed on 
the given data points; these diffusion processes are designed to capture the geometry of the sources of 
variability. In the case of multiple sensors, despite having more information, adding sensors adds sources of 
variability, making it more difficult to extract the common source of variability. Various methods have been 
proposed to analyze data from multiple sensors within the framework of Manifold Learning. One approach is 
to concatenate the vectors representing the data into one vector [10], but in this case it is not clear how the 
data from each sensor should be scaled, especially if the sensors are of very different nature. To address this 
challenge, it has been proposed in [11] to use Diffusion Maps to obtain a low-dimensional “standardized” 
representation of data from each sensor, and then to concatenate the low dimensional representations. 
However, these methods aggregate all sources of variability from all sensors, and they neither distinguish 
the common variable nor discard the sensor-specific variables.

A classic approach designed to extract the common source of variability from two sensors is Canonical 
Correlation Analysis (CCA) [12], which recovers highly correlated linear projections in linear systems, but 
has limited applicability to non-linear problems. Kernel CCA (KCCA), the generalization of CCA to the 
kernel feature space (e.g. [13,14]), treats some aspects of nonlinearity, but it relies on inversion of covariance 
matrices, an operation that raises statistical and numerical issues in applications. Another related method 
[15] also assumes certain linearities in the problem.

In the context of supervised learning, alternating conditional expectations (ACE) has been proposed for 
regression analysis [16], and linear combinations of kernels have been the subject of considerable work on 
multi-kernel learning (e.g. [17]). In this paper, we consider an unsupervised setting where no examples of 
the unknown hidden variables are available, and we propose a data-driven method based on an alternating 
product of diffusion operators. In the field of multi-view problems, there has been ample work based on 
various manipulation or combination of operators. For example, several approaches for metric-fusion, clus-
tering and classification, have been proposed, which rely on various manipulation of affinity matrices (e.g. 
[18–21]), Markov and diffusion matrices (e.g. [22,23]), graph Laplacians (e.g. [24,25]) and sets of nearest 
neighbors (e.g. [26,27]). Tensor products of Markov matrices have also been considered in [28], and products 
of Markov matrices and their transposes have been presented in [29]. A recent work on products of kernels 
extends diffusion maps for the case where the same underlying process is observed using several different 
modalities [30,31]. Additional aspects of multimodal data fusion are discussed in [32].

The main contribution of this paper is: 1) the presentation of an unsupervised method based on alter-
nating diffusion, and 2) a theoretical analysis of alternating diffusion showing that it recovers the common 
variable while it discards the sensor-specific variables. More specifically, we show that the common source 
of variability is extracted by this method from multiple sensors as if it were the only source of variability in 
a single sensor, extracted by a manifold learning method.

The analysis of the method distinguishes between two types of objects: observable objects, which are 
quantities that can be approximated based on the measurements (following the standard practice in manifold 
learning), and hidden objects, which are not approximated/accessible directly. We discuss a hidden effective 
diffusion process based on hidden objects and use it to develop a manifold learning method for extracting 
the geometry of the latent common variable. While the hidden effective diffusion is merely a formal object 
that is not accessible directly, our method is based on observables and builds a geometry equivalent to the 
geometry of the hidden effective diffusion.
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The structure of this paper is as follows. In the remainder of Section 1, we formulate the common 
variable problem and present a caricature illustration of our method. In Section 2, we briefly describe 
some of the notation and mathematical methods used in this paper. In Section 3, we present the 
alternating-diffusion method. In Section 4, the method is analyzed and the theoretical results are pre-
sented. In Section 5, we present several modifications that are useful in implementation. In Section 6, we 
demonstrate the performance of the method on simulated and real data; the robustness to complicated 
measurements is demonstrated using random projections. Finally, in Section 7 we outline our conclu-
sions.

The data sets used in this paper with code examples and additional results are available online at 
http://roy.lederman.name/alternating-diffusion/. Additional experimental results in sleep research are pre-
sented in [33], where it is shown that the extracted common variable from multimodal respiratory measure-
ments reflects the sleep stage.

1.1. Problem formulation

Consider three hidden random variables (X, Y, Z) ∼ πx,y,z(X, Y, Z), from the (possibly high dimensional) 
spaces X , Y and Z, where, given X, the variables Y and Z are independent. In other words, the joint 
probability density of the hidden variables can be factorized as

πx,y,z(X,Y, Z) = πx(X)πy|x(Y |X)πz|x(Z|X), (1)

where πx is the marginal density of X, πy|x is the conditional density of Y given X, and πz|x is the conditional 
density of Z given X.

We have access to these hidden variables through two observable random variables

S(1) = g(X,Y ) (2)

and

S(2) = h(X,Z) (3)

from the (possibly high dimensional) spaces S(1) and S(2), where g and h are bilipschitz functions.
One realization of the system consists of the hidden triplet (xi, yi, zi) and the corresponding measurements 

(s(1)
i , s(2)

i ); while xi, yi and zi are hidden and not available to us directly, s(1)
i = g(xi, yi) and s(2)

i = h(xi, zi)
are observable. We refer to s(1)

i and s(2)
i as the measurement in Sensor 1 and the measurement in Sensor 2, 

respectively. We note that both s(1)
i and s(2)

i are functions of the hidden common xi, whereas yi and zi are 
the sensor-specific components.

From n realizations of the system {(xi, yi, zi)}ni=1, we have n pairs of corresponding measurements {
(s(1)

i , s
(2)
i )

}n

i=1
. Our goal is to recover a parametrization of the samples of the common variable {xi}ni=1.

1.2. Illustrative toy problem

To illustrate this setup, we consider the following toy problem. We placed three objects: Yoda (the green 
action figure), a bulldog, and a bunny, on three rotating displays, as depicted in Fig. 1(a). Two cameras 
were used to take simultaneous snapshots of the rotating objects: the field of view of Camera 1 included 
Yoda and the bulldog, as presented in Fig. 1(b), and the field of view of Camera 2 included the bulldog and 
the bunny, as presented in Fig. 1(c).

http://roy.lederman.name/alternating-diffusion/
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Fig. 1. (a) The experiment setup of the toy problem. (b) Sample snapshot taken by Camera 1, where only Yoda (the action figure) 
and the bulldog are visible. (c) Sample snapshot taken by Camera 2, where only the bunny and the bulldog are visible.

In this problem, the rotation angles of the bulldog, Yoda and the bunny are the hidden variables X, Y
and Z, respectively, and the snapshots from Camera 1 and Camera 2 are the measurements S(1) = g(X, Y )
and S(2) = h(X, Z), respectively. The goal is to find a parametrization of the common variable X, i.e., the 
rotation angle of the bulldog, from the snapshots.

The proposed algorithm is data-driven and it does not rely on prior knowledge of the problem setup; in 
particular, the algorithm does not assume that the common variable X is the rotation angle of an object. 
The setup is given here for the purpose of illustration.

To demonstrate the underlying concept, we describe a caricature of the alternating-diffusion based on the 
toy problem. We start with an arbitrary pair of simultaneous snapshots, for example, the pair presented at 
the top row in Fig. 2. On the left is the snapshot taken by Camera 1, and on the right is the corresponding 
snapshot taken by Camera 2.

We find the nearest neighbors of this initial pair in the entire sequence. For this nearest neighbors search, 
we consider only the snapshots taken by Camera 1, ignoring the snapshots taken by Camera 2, i.e., in this 
step, two pairs are similar if and only if their respective snapshots from Camera 1 are similar.

We compute the average of these neighbors and present it in the middle row of Fig. 2: the average image 
of the snapshots taken by Camera 1 is presented on the left, and the average image of the corresponding 
snapshots taken by Camera 2 at the same times is presented on the right.

The average image on the left is sharp and very similar to the initial image taken by Camera 1, implying 
that both the bulldog and Yoda are at similar rotation angles in the nearest neighbors snapshots. However, 
in the average image on the right, the bunny is blurred, implying that it was in different rotation angles 
in the nearest neighbors snapshots. This result stems from the fact that the bunny was visible only to 
Camera 2, and it was completely ignored when we computed the nearest neighbors based on snapshots 
taken by Camera 1.
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Fig. 2. Demonstration of the alternating-diffusion. The images on the left column are snapshots taken by Camera 1 (or average 
snapshots taken by Camera 1) and the images on the right column are snapshots taken by Camera 2 (or average snapshots taken 
by Camera 2). Two actual snapshots taken by Camera 1 are presented in the top row. The averages of neighbors are presented in 
the middle row. The averages of indirect neighbors are presented in the bottom row.

Now, we take each one of the nearest neighbors that we found in the previous step, and find its nearest 
neighbors, however, this time we search for the new nearest neighbors based on similarity in the snapshots 
taken by Camera 2. We refer to the nearest neighbors in Camera 2 of all the nearest neighbors in Camera 1
as the indirect nearest neighbors.

We aggregate all the indirect nearest neighbors, and compute their average images, presented in the 
bottom row of Fig. 2. In the two new average images, only the bulldog is sharp, while Yoda and the bunny 
are blurred. This implies that the bulldog was in very similar rotation angles in all the indirect nearest 
neighbors, whereas Yoda and the bunny were oriented in “random” directions. In other words, the rotation 
angle of the bulldog is coherent across the indirect nearest neighbors, while the angles of the camera-specific 
objects, Yoda and the bunny, are incoherent.

In summary, the coherence in the rotation angle of the bunny is suppressed when we process the nearest 
neighbors in Camera 1, and the coherence in the rotation angle of Yoda is suppressed when we process 
the indirect nearest neighbors in Camera 2. However, the coherence in the rotation angle of the bulldog is 
largely preserved.
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In this paper we will use these coherence and incoherence properties across indirect nearest neighbors 
to recover the structure of the coherent common variable, while discarding the incoherent sensor-specific 
variables.

We note that the averaging of images in this example is performed only for the purpose of illustration. 
In this case, where the objects are decoupled spatially, i.e., they occupy different pixels, the averaging of 
images is convenient for visualization. However, averaging is inadequate in other models. The algorithm 
does not assume spatial decoupling and does not compute average samples, but rather essentially compares 
the sets of indirect nearest neighbors of different points in order to measure the similarity between points.

2. Preliminaries

2.1. Notation

We find it convenient to use the expected value notation for integration; the underlying probability 
density πx,y,z generating the data is implied by the expected value notation, whereas operators, kernels and 
functions are presented explicitly.

Unless specifically stated otherwise, the underlying probability density throughout this paper is assumed 
to be the probability density πx,y,z specified in the problem formulation in Section 1.1.

We denote by Ex,y,z the expected value with respect to the probability density πx,y,z; the expected value 
of the function f(x, y, z) is defined by

Ex,y,z (f(x, y, z)) =
∫

X ,Y,Z

f(x, y, z)πx,y,z(x, y, z)dxdydz. (4)

The expected value with respect to a marginal probability density, such as πx of X, will be denoted 
by Ex; the expected value Ex is defined by

Ex (f(x)) =
∫
X

f(x)πx(x)dx (5)

where

πx(x) =
∫

Y,Z

πx,y,z(x, y, z)dzdy. (6)

The expected value with respect to a conditional probability density, such as πy|x of Y given X, will be 
denoted by Ey|x; for a given value of x ∈ X , the expected value Ey|x is defined by

Ey|x (f(x, y)) =
∫
Y

f(x, y)πy|x(x, y)dy (7)

where

πy|x(y|x) =
∫
Z πx,y,z(x, y, z)dz∫

Y,Z πx,y,z(x, y, z)dzdy
. (8)
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2.2. Diffusion geometry

This section provides a short overview of a simplified version of diffusion geometry that is convenient in 
the context used in this paper. For more detailed descriptions and additional variations and generalizations 
see, for example, [5,7,8]. We will discuss both the asymptotic continuous form of diffusion geometry and its 
discrete counterpart on sample sets.

Suppose A is a metric space and πa is a probability density defined on A. The operators in diffusion 
geometry do not have direct access to the variables in A ∈ A, but rather through S = ρ(A), where S is a 
metric space and ρ : A → S is a mapping from A to S.

The primary component in diffusion geometry is a diffusion operator; for any function f : A → R, the 
diffusion operator is defined by

(D(f)) (a) = Ea′ (K(a, a′)f(a′)) , ∀a ∈ A (9)

where the kernel K(a, a′) is a “local” kernel; for simplicity, we assume a “local” Markov kernel in this paper, 
so that

Ea ((D(f)) (a)) = Ea (f(a)) , (10)

and, in particular, if the function f is a probability density function, then, Ea ((D(f)) (a)) = Ea (f(a)) = 1.
The “local” kernel is defined based on the observable variable, often using a weighted Gaussian kernel, 

e.g.

K(a, a′) = 1
ω(a′)e

−‖ρ(a)−ρ(a′)‖2
S/ε, (11)

where ‖ρ(a) − ρ(a′)‖S is the distance in the space of observations S and

ω(a′) = Ea′′

(
e−‖ρ(a′)−ρ(a′′)‖2

S/ε
)
. (12)

Intuitively, the diffusion operator “smoothens” functions; suppose that p0 is the Dirac delta function at 
α ∈ A, then the function p1 = D(p0) is a “bump” around α and p2 = D(p1) = D2(p0) is a wider “bump”. This 
way, a sequence of increasingly wider “bumps” {pt}∞t=0 is defined by successive “smoothening” operations:

pt(a) =
(
Dt(p0)

)
(a), a ∈ A. (13)

We refer to this sequence of functions as the propagation of p0.
The other component used in diffusion geometry is a norm. The typical choice in the literature is a 

weighted L2 norm. In this paper, we consider a more general form; we define the seminorm of a function 
f : A → R using a quadratic form:

‖f‖M =
√

EaEa′ (f(a)M(a, a′)f(a′)), (14)

where M(a, a′) is a positive semidefinite kernel.
The diffusion operator and the seminorm are used to define the diffusion distance dt(α, α′) at the prop-

agation time t between any two points α, α′ ∈ A;

dt(α, α′) = ‖pt − qt‖, (15)

where the initial functions p0 and q0 of the sequences are delta functions at α and α′, respectively.
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In the discrete setting, we consider n samples {ai}ni=1 of the random variable A ∈ A, sampled from πa. 
These samples are not accessible directly, but rather via si = ρ(ai).

The discrete counterpart of the diffusion operator D is an n × n matrix K typically of the form

K(i, j) = W(i, j)
w(j) , (16)

where

W(i, j) = e−‖si−sj‖2
S/ε, (17)

and

w(j) =
n∑

l=1

e−‖sj−sl‖2
S/ε. (18)

In these expressions, ‖si − sj‖S is the distance between si and sj in the metric space S.
The discrete diffusion can be interpreted as a Markov chain on a graph G = (V, E). Each of the n samples 

is represented by one of the vertices in V = {1, . . . , n}, i.e., the i-th vertex represents the i-th realization of 
the system ai and the i-th measurement si = ρ(ai). The weight of the edge eji ∈ E between the vertices i
and j is W(i, j). Then, K can be viewed as the transition probability matrix on this graph: the probability 
of transition to vertex i from vertex j in a single step is K(i, j).

We note that the graph vertices represent realizations of the entire system, so that the i-th sample is 
associated with the observable si and the hidden ai. The weights of the edges and the transition probabilities 
are observable because they are computed from the measured samples {si}.

Let v0 = (0, 0, . . . , 0, 1, 0, . . .)T be the vector of dimensionality n, of all zeros, except for the i-th position. 
The propagation from the i-th point is defined as a sequence of vectors {vt}∞t=0 such that

vt+1 = Kvt. (19)

The vectors v0 and vt are the discrete counterparts of the functions p0 and pt; the j-th element of vt is 
viewed as the sample of the function pt(aj) at the point aj .

Intuitively, the transition matrix K can be viewed as allowing a transition from the vertex j to the vertex 
i only when ‖si − sj‖S ≤ √

ε. For a bilipschitz function ρ, it implies that the transition is allowed when 
‖ai − aj‖ is small. As a result, after the first step of the discrete diffusion initialized at the j-th vertex, the 
vector v1 has non-negligible values in elements i, such that ai are a small neighborhood around aj. Following 
a similar argument, each additional step extends this neighborhood of elements with non-negligible values 
to a larger neighborhood around aj.

The discrete diffusion distance between sample i and sample j is defined using a Euclidean distance (or 
a weighted Euclidean distance, see [7])

dt(i, j) = ‖vt − ut‖2, (20)

where vt and ut are vectors in the propagation sequences (defined in (19)) from the sample i and the sample 
j, respectively.

The diffusion distance has been shown to be a powerful metric of comparing samples that capture the 
structure of the graph, e.g., it is invariant to small topological distortions and moderate noise [7,34]. While 
the Euclidean distance ‖si − sj‖S compares two individual samples, the diffusion distance integrates other 
samples and measures the “connectivity” between the two samples via the entire sample set.
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3. Algorithm

The alternating-diffusion method discussed in this paper is detailed in Algorithm 1.

Algorithm 1 Alternating-diffusion.
Input: aligned samples from the two sensors 

{
(s(1)

i , s
(2)
i )

}n

i=1
.

Output: diffusion distances d2m(i, j). Optionally, refined diffusion distances and diffusion maps embedding.

1. Calculate two pairwise affinity matrices (kernels) W(s1) and W(s2) based on a Gaussian as follows:

W
(s1)
ij = exp

(
−

‖s(1)
i − s

(1)
j ‖2

ε(1)

)
; W

(s2)
ij = exp

(
−

‖s(2)
i − s

(2)
j ‖2

ε(2)

)
(21)

for all i, j = 1, . . . , n, where ε(1) and ε(2) are the kernel scales.
2. Create two diffusion operators K(s1) and K(s2):

K
(s1)
ij =

W
(s1)
ij

n∑
l=1

W
(s1)
lj

;K(s2)
ij =

W
(s2)
ij

n∑
l=1

W
(s2)
lj

(22)

3. Build an alternating-diffusion kernel:

K = K(s2)K(s1). (23)

4. Compute the diffusion distance at time 2m between each two points i, j:

d2m(i, j) =
n∑

l=1

(
(Km)l,i − (Km)l,j

)2
. (24)

5. (Optionally:) Compute refined diffusion distances and refined diffusion maps using a standard diffusion maps algorithm 
(see Appendix A), by substituting the diffusion distance d2m(i, j) computed in the previous step into the distance between 
measurements in the input of the diffusion maps algorithm.

3.1. Description of the algorithm

In the common variable problem discussed in this paper, we have two sample sets, {s(1)
i }ni=1 and {s(2)

i }ni=1
from Sensor 1 and Sensor 2, respectively. For each sample set, we construct the affinity matrices W(s1)

and W(s2), specified in (21), and the associated diffusion operators K(s1) and K(s2), specified in (22). By 
construction, K(s1) and K(s2) are Markov matrices.

The propagation from the i-th sample is defined as a sequence of vectors {vt}∞t=0 such that

vt+1 =
{

K(s1)vt, t = 2m
K(s2)vt, t = 2m + 1

(25)

for every integer m ≥ 0, where the initial vector v0 = (0, 0, . . . , 0, 1, 0, . . .)T is a vector of dimensionality n, 
of all zeros, except for the i-th position. It follows that the even steps of the propagation defined in (25)
can be restated as

v2m = Kmv0, (26)

where K is the alternating-diffusion Markov matrix defined in (23).
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We define the diffusion distance between sample i and sample j based on the alternating-diffusion as the 
following Euclidean distance

dt(i, j) = ‖vt − ut‖2, (27)

where vt and ut are vectors in the propagation sequences (defined in (25)) from the sample i and the 
sample j, respectively.

The diffusion distance defined in (27) is computed according to (24) using the columns of the matrix 
Km. The two expressions (27) and (24) are equivalent since the i-th column of Km is equal to the vector vt.

We will show in Section 4 that the new alternating-diffusion operator K is related to an “effective” 
diffusion operator, and that it captures the structure of the common variable and ignores the variables 
specific to either sensor. It follows that the diffusion distances (24) inherit the properties of diffusion distances 
computed from data where the common variable is the only source of variability.

Optionally, the results can be refined using a standard diffusion maps algorithm on the diffusion dis-
tances d2m(i, j) computed in the previous step as the distances between measurements, thereby obtaining 
a low-dimensional embedding of the data. In contrast to K(s1) and K(s2), the matrix K is not similar to a 
symmetric matrix, therefore, diffusion maps cannot be applied directly.

3.2. Intuitive interpretation

Applying standard diffusion to the set of measurements {s(1)
i } builds a Markov chain on a graph G(1) =

(V, E(1)). Each of the n samples is represented by one of the vertices in V = {1, . . . , n}, i.e., the i-th vertex 
represents the i-th realization of the system. The weight of the edge e(1)

ij ∈ E(1) between the vertices i and 
j is W(s1)(i, j). Therefore, the diffusion matrix K(s1) can be viewed as the transition probability matrix on 
this graph: the probability of transition to vertex i from vertex j in a single step is K(s1)(i, j). Similarly, a 
separate application to the set {s(2)

i } builds a Markov chain with a different transition probability matrix 
K(s2) on a graph G(2) = (V, E(2)). In other words, we obtain two graphs with the same set of vertices 
V , representing the samples, and two different sets of weighted edges E(1) and E(2), determined by the 
distances between samples within each separate set of measurements.

The alternating-diffusion operates on the same set of vertices V . However, the transition probabilities 
are defined as follows: the transition probability matrix in odd steps is K(s1), and the transition probability 
matrix in even steps is K(s2). Therefore, the combination of two consecutive steps is a Markov chain on a 
new (directed) graph G = (V, E), where the transition probabilities are determined by the matrix K.

To illustrate the diffusion in more detail, we revisit the example in Fig. 2 and describe it more detail. We 
consider a sequence of vectors {vt}∞v=0 (defined in (25)) of alternating-diffusion propagation from sample i; 
this state is represented by the initial vector v0 in the sequence, which is nonzero only at the i-th coordinate. 
At this initial state, the bulldog, Yoda, and the bunny are oriented in angles xi, yi and zi, respectively; the 
snapshots s(1)

i and s(2)
i are depicted in the top row of Fig. 2.

In the middle row of Fig. 2, we present the weighted average 
∑

j v1(j)s(1)
j and 

∑
j v1(j)s(2)

j of the 

snapshots, based on the propagated vector v1. On the left, we observe that the average image 
∑

j v1(j)s(1)
j

is almost identical to the initial snapshot s(1)
i . It implies that the v1(j) is non-negligible only if both the 

rotation angles of the bulldog xj and of Yoda yj are close to the initial rotation angles xi and yi respectively.
On the right, we observe that the bunny in the average image 

∑
j v1(j)s(2)

j is blurred; this implies that 
v1(j) is non-negligible at some of the coordinates that correspond to samples where the rotation angle of 
the bunny zj is significantly different from the initial rotation angle zi.

The middle image demonstrates that the propagated vector v1 (after the first step of the alternating-
diffusion) is non-negligible only in coordinates that correspond to small neighborhoods of X and Y around 
the initial values xi and yi, but to a large range of values of the variable Z, ignoring the initial value zi.
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In the bottom row of Fig. 2 we present the weighted average of the snapshots 
∑

j v2(j)s(1)
j and 

∑
j v2(j)s(2)

j

based on the propagated vector v2. We observe that both Yoda and the bunny are now blurred, whereas 
the bulldog remains sharp in both the right and the left images. This implies that the second step of the 
alternating-diffusion leads to a small neighborhood of X around the initial xi, but to a large range of the 
variables Y and Z, ignoring the initial values yi and zi.

In a similar manner, the following alternating-diffusion steps propagate the values of the common variable 
X to gradually growing neighborhoods around the initial xi. At the same time, the variables Y and Z are 
distributed across large ranges, as evident from the first two alternating-diffusion steps. We will show that 
this alternating-diffusion process can be viewed as a diffusion process on the common variable X, ignoring 
the values of Y and Z. In other words, the alternating-diffusion extracts the common variable X from the 
given sample sets.

3.3. More than two sensors

The method applies to the problem of finding the common source of variability in measurement from 
more than two sensors. One approach to integrating more than two sensors is to replace (23) with

K = K(sm) . . .K(s2)K(s1), (28)

and optionally average over all the possible permutations in the order of the operators. The extension of 
the algorithm and its analysis, which will be presented in Section 4, is straightforward.

4. Analysis

4.1. Observable diffusion on Sensor 1 and Sensor 2

We denote the observable diffusion operator of Sensor 1 by D(s1). For a function p : S(1) → R, the 
operation of D(s1) is defined by

(
D(s1)(p)

)
(s) = Es′

(
e−‖s−s′‖2/ε

Es′′
(
e−‖s′′−s′‖2/ε

)
)
. (29)

This operator is approximated by K(s1) defined in (22). Since by (2) each point in X × Y × Z is mapped 
to S(1) by the function g, the following definition is equivalent to (29):

(
D(s1)(p)

)
(x, y, z) = Ex′,y′,z′

(
K(s1)((x, y), (x′, y′))p(x′, y′, z′)

)
, (30)

where K(s1)((x, y), (x′, y′)) is defined by

K(s1)((x, y), (x′, y′)) = 1
ω(s1)(x′, y′)

e−‖g(x,y)−g(x′,y′)‖2/ε, (31)

and

ω(s1)(x′, y′) = Ex′′,y′′,z′′

(
e−‖g(x′′,y′′)−g(x′,y′)‖2/ε

)
. (32)

We note that the variable z appears on the left side of (30), but does not appear on the right side of the 
equation, because the measurement from Sensor 1 is independent of Z given X; the significance is discussed 
in Lemma 1 below.
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Similarly, we denote the observable diffusion operator of Sensor 2 by D(s2), and its operation is defined 
by

(
D(s2)(p)

)
(x, y, z) = Ex′,y′,z′

(
K(s2)((x, z), (x′, z′))p(x′, y′, z′)

)
(33)

where K(s2) is

K(s2)((x, z), (x′, z′)) = 1
ω(s2)(x′, z′)

e−‖h(x,z)−h(x′,z′)‖2/ε, (34)

and

ω(s2)(x′, z′) = Ex′′,y′′,z′′

(
e−‖h(x′′,z′′)−h(x′,z′)‖2/ε

)
. (35)

We note that the variable y appears on the left side of (33), but does not appear on the right side of the 
equation, because the measurement from Sensor 2 is independent of Y given X; the significance is discussed 
in Lemma 2 below.

For a function p0 : X ×Y ×Z → R, we define the sequence of observable propagated functions {pt}∞t=0 by

pt+1(x, y, z) =

⎧⎨
⎩
(
D(s1)(pt)

)
(x, y, z), ∀t = 2m(

D(s2)(pt)
)
(x, y, z), ∀t = 2m + 1

(36)

where m ≥ 0 is a nonnegative integer.
We note that the subsequence of the odd steps takes the form of standard diffusion:

p2m+3(x, y, z) = (D(p2m+1)) (x, y, z), (37)

where D is the product of the standard diffusion operators D(s1) and D(s2)

D = D(s1) ◦D(s2). (38)

Let ‖ · ‖π denote the observable norm of functions on X ×Y ×Z; for a function p : X ×Y ×Z → R, the 
norm ‖ · ‖π is defined by

‖p‖π =
(
Ex,y,z

(
p2(x, y, z)

))1/2 (39)

For t > 0, we define the observable diffusion distance d(π)
t between (xi, yi, zi) and (xj , yj , zj) by

d
(π)
t ((xi, yi, zi), (xj , yj , zj)) = ‖pt − qt‖π, (40)

where p0 is a delta function at (xi, yi, zi) and q0 is a delta function at (xj , yj , zj), and {pt}∞t=0 and {pt}∞t=0
are the sequences of propagated functions from p0 and q0, respectively. d(π)

t is approximated by dt, defined 
in (24)

d
(π)
t ((xi, yi, zi), (xj , yj , zj)) ≈ C · dt(i, j). (41)
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4.2. Properties of the diffusion operators D(s1) and D(s2) and propagated functions

In this subsection we present some of the properties of the diffusion operators D(s1) and D(s2) that will 
be used to show the main results. We show these properties in the context of the sequence of functions 
pt(x, y, z), t = 1, 2, . . . propagated from p0(x, y, z) by (36).

As an intermediate step towards the definition of the effective functions on X, we define the hidden 
intermediate functions p

(i1)
t (x, y) on X × Y and p(i2)

t (x, z) on X × Z by

p
(i1)
t (x, y) = Ez|x,y (pt(x, y, z)) , (42)

and

p
(i2)
t (x, z) = Ey|x,z (pt(x, y, z)) . (43)

Given X, the random variables Y and Z are independent, therefore,

p
(i1)
t (x, y) = Ez|x (pt(x, y, z)) , (44)

and

p
(i2)
t (x, z) = Ey|x (pt(x, y, z)) . (45)

In the remainder of this subsection, m ≥ 0 denotes a nonnegative integer.

Lemma 1 (Properties of the image of D(s1)). For every odd step t = 2m +1, and for all z ∈ Z, the propagated 
function p2m+1(x, y, z) =

(
D(s1) (p2m)

)
(x, y, z) satisfies

p2m+1(x, y, z) = p
(i1)
2m+1(x, y) (46)

where p(i1)
2m+1(x, y) is the intermediate function of p2m+1 on X × Y, specified in (44).

Proof. By (36) and (30),

p2m+1(x, y, z) = Ex′,y′,z′

(
K(s1)((x, y), (x′, y′))p2m(x′, y′, z′)

)
. (47)

Since z does not appear in the right side of (47), p2m+1(x, y, z) does not depend on the value of z. Therefore, 
by (42), we have

p2m+1(x, y, z) = Ez′|x,y (p2m+1(x, y, z′)) = p
(i1)
2m+1(x, y). � (48)

Intuitively, Lemma 1 states that the operator D(s1) uses only the information available at Sensor 1, i.e. 
g(X, Y ), and it has no information on the variable Z. Therefore, it assigns equal values to the propagated 
function p2m+1 at any two points (x, y, z) and (x, y, ζ), regardless of the values of z and ζ.

The following lemma repeats the statements in Lemma 1 for the even steps. The proof is analogous to 
the proof of Lemma 1 and therefore it is omitted for the sake of brevity.

Lemma 2 (Properties of the image of D(s2)). For every even step t = 2m + 2, and for all y ∈ Y, the 
propagated function p2m+2(x, y, z) =

(
D(s2) (p2m+1)

)
(x, y, z) satisfies
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p2m+2(x, y, z) = p
(i2)
2m+2(x, z) (49)

where p(i2)
2m+2(x, z) is the intermediate function of p2m+2 on X × Z, specified in (45).

4.3. The hidden effective propagated functions p(e)
j (x)

We introduce the hidden effective function p
(e)
t (x) : X → R, which is defined by

p
(e)
t (x) = Ey,z|x (pt(x, y, z)) , (50)

where pt(x, y, z) is a function in a sequence of propagated functions {pt(x, y, z)}∞t=1, defined in (36).
We remark that by (42), (43) and (50), the intermediate functions p(i1)

t (x, y) and p(i2)
t (x, z) defined in 

(42) and (43) are related to the effective functions via:

p
(e)
t (x) = Ey|x

(
p
(i1)
t (x, y)

)
(51)

= Ez|x

(
p
(i2)
t (x, z)

)
(52)

We introduce two hidden effective diffusion operators, D(e1) and D(e2), defined by(
D(e1)(p(e))

)
(x) = Ex′

(
K(e1) (x, x′) p(e)(x′)

)
, (53)

and (
D(e2)(p(e))

)
(x) = Ex′

(
K(e2) (x, x′) p(e)(x′)

)
, (54)

with the following effective kernels

K(e1)(x, x′) = Ey|x

(
Ey′|x′

(
K(s1)((x, y), (x′, y′))

))
, (55)

and

K(e2)(x, x′) = Ez|x

(
Ez′|x′

(
K(s2)((x, z), (x′, z′))

))
. (56)

Theorem 3. For every t ≥ 1, the effective function p(e)
t+1(x) (defined in (50)) is related to the preceding 

effective function p(e)
t (x) by the effective alternating-diffusion

p
(e)
t+1(x) =

⎧⎨
⎩
(
D(e1)

(
p
(e)
t

))
(x), t = 2m(

D(e2)
(
p
(e)
t

))
(x), t = 2m + 1

(57)

where D(e1) and D(e1) are defined in (53) and (54), respectively.

Proof. By (36) and (30),

p2m+1(x, y, z) = Ex′,y′,z′

(
K(s1) ((x, y), (x′, y′)) p2m(x′, y′, z′)

)
. (58)

By Lemma 2, for m > 0, the propagated function p2m(x′, y′, z′) does not depend on the variable y′, and
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p2m(x′, y′, z′) = p
(i2)
2m (x′, z′) (59)

where p(i2)
2m (x, z) is the intermediate function of p2m on X × Z, specified in (45).

Substituting (59) into (58), and rearranging the expression yields

p2m+1(x, y, z) = Ex′,y′

(
K(s1) ((x, y), (x′, y′))Ez′|x′

(
p
(i2)
2m (x′, z′)

))
. (60)

Since z′ does not appear in the kernel K(s1) ((x, y), (x′, y′)), it is simply integrated out, so that by (51),

p2m+1(x, y, z) = Ex′,y′

(
K(s1) ((x, y), (x′, y′)) p(e)

2m(x′)
)
. (61)

Taking the expected value given X over Y and Z yields,

Ey,z|x (p2m+1(x, y, z)) = Ey,z|x

(
Ex′,y′

(
K(s1) ((x, y), (x′, y′)) p(e)

2m(x′)
))

. (62)

But by (50), the left side of (62) is the effective function p(e)
2m+1(x),

p
(e)
2m+1(x) = Ey,z|x

(
Ex′,y′

(
K(s1) ((x, y), (x′, y′)) p(e)

2m(x′)
))

. (63)

Rearranging the right side of (63), and using the independence given X of Y and Z,

p
(e)
2m+1(x) = Ex′

(
Ey|x

(
Ey′|x′

(
K(s1) ((x, y), (x′, y′))

))
p
(e)
2m(x′)

)
, (64)

so that by (55),

p
(e)
2m+1(x) = Ex′

(
K(e1)(x, x′)p(e)

2m(x′)
)
. (65)

Equation (57), in the case t = 2m, is obtained from (65) using (53). The proof for the case t = 2m + 1 is 
analogous and is omitted for the sake of brevity. �

Finally, we combine the hidden effective diffusion operators and define the hidden effective alternating-
diffusion operator D(e) by

D(e) = D(e1) ◦D(e2). (66)

The following corollary is an immediate result from Theorem 3.

Corollary 4. The subsequence of effective propagated function p(e)
t (x) at odd steps t = 2m + 1, is given by

p
(e)
2m+3(x) =

(
D(e)(p(e)

2m+1)
)

(x), (67)

where m ≥ 0 is a nonnegative integer.

In other words, the subsequence of effective functions p(e)
2m+1(x) at odd steps is analogous to a standard 

diffusion propagation on the common hidden variable X as defined in (13):

p
(e)
2m+1(x) =

((
D(e)

)m

(p(e)
1 )

)
(x), (68)

where m is a nonnegative integer. Although the effective functions on X are not computed, the appropriate 
seminorm of the difference between effective functions can be computed, as we will show in Section 4.4.
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4.4. The hidden effective alternating-diffusion distance

Let ‖ · ‖M be the hidden seminorm of effective functions p(e)(x) on X , defined by

‖p(e)‖M =
√

Ex,x′
(
p(e)(x)M(x, x′)p(e)(x′)

)
(69)

where M(x, x′) is given by

M(x, x′) = Ex′′,z′′

(
Ez|x

(
K(s2) ((x′′, z′′), (x, z))

)
Ez′|x′

(
K(s2) ((x′′, z′′), (x′, z′))

))
(70)

and K(s2) is defined in (34). We note that z, z′, z′′ and x′′ appear in (70) only as dummy variables in 
integration.

The following theorem shows that the hidden seminorm of a difference between two hidden effective 
propagated functions p(e)

2m+1(x) and q(e)
2m+1(x) defined in (36) can be computed without explicitly using 

these functions on X , but rather via the corresponding observable propagated functions p2m+2(x, y, z) and 
q2m+2(x, y, z) on X × Y × Z.

Theorem 5. Suppose that {pt(x, y, z)}∞t=0 and {qt(x, y, z)}∞t=0 are two sequences of propagated functions as 
defined in (36), and that {p(e)

t (x)}∞t=1 and {q(e)
t (x)}∞t=1 are the corresponding sequences of effective propa-

gated functions as defined in (50). Then,

‖p(e)
2m+1(x) − q

(e)
2m+1(x)‖M = ‖p2m+2(x, y, z) − q2m+2(x, y, z)‖π, (71)

where ‖ · ‖M is defined in (69) and ‖ · ‖π is defined in (39).

Proof. We introduce the notation wt(x, y, z) to denote the difference

wt(x, y, z) = pt(x, y, z) − qt(x, y, z). (72)

Due to the linearity of the diffusion operators, the sequence wj can be expressed as a sequence of propagated 
functions, defined in (36):

wt+1(x, y, z) =
{(

D(s1)(wt)
)
(x, y, z), t = 2m(

D(s2)(wt)
)
(x, y, z), t = 2m + 1

. (73)

Similarly, let w(e)
t (x) be the difference w(e)

t (x) = p
(e)
t (x) −q

(e)
t (x). Then, due to linearity it is the effective 

function of wt(x, y, z) as defined in (50):

w
(e)
t (x) = Ey,z|x (wt(x, y, z)) . (74)

By a similar argument to (61) in the proof of Theorem 3,

w2m+2(x′′, y′′, z′′) = Ex′,z′

(
K(s2) ((x′′, z′′), (x′, z′))w(e)

2m+1(x′)
)
. (75)

Therefore, by (50),

(‖w2m+2‖π)2 = Ex′′,y′′,z′′

(
Ex,z

(
K(s2) ((x′′, z′′), (x, z))w(e)

2m+1(x)
)

· Ex′,z′

(
K(s2) ((x′′, z′′), (x′, z′))w(e)

2m+1(x′)
))

. (76)
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Due to the linearity of the operations, we have

(‖w2m+2‖π)2 = ExEx′

(
w

(e)
2m+1(x)w(e)

2m+1(x′)

· Ex′′,z′′

(
Ez|x

(
K(s2) ((x′′, z′′), (x, z))

)
· Ez′|x′

(
K(s2) ((x′′, z′′), (x′, z′))

)))
. (77)

Using (69) and (70), we obtain

‖w(e)
t ‖M = ‖wt+1‖π. � (78)

The importance of Theorem 5 is that the expression ‖p2m+2− q2m+2‖π has a discrete counterpart, and is 
approximated by the Euclidean norm of the difference between propagated discrete functions (see (27)). In 
other words, the theorem gives a method for approximating ‖p(e)

2m+1 − q
(e)
2m+1‖M based on the given sample 

set of measurements from the two sensors.
We define the hidden effective alternating-diffusion distance d

(e)
2m+1 by

d
(e)
2m+1 ((xi, yi, zi), (xj , yj , zj)) = ‖p(e)

2m+1(x′′) − q
(e)
2m+1(x′′)‖M , (79)

where {p(e)
t }∞t=1 and {p(e)

t }∞t=1 are sequences of effective functions defined in (50) associated with the se-
quences of propagated functions {pt}∞t=0 and {pt}∞t=0, respectively, where p0 and q0 are delta functions at 
(xi, yi, zi) and (xj , yj , zj), respectively.

It follows from Theorem 5, (40), (41) and (79) that the effective alternating-diffusion distance is approx-
imated by the distance d2m+2, computed by the algorithm:

d
(e)
2m+1 ((xi, yi, zi), (xj , yj , zj)) ≈ C · d2m+2(i, j), (80)

where C is a constant.
In conclusion, the distance computed by the algorithm approximates a diffusion distance corresponding 

to a diffusion operator on the common variable X.

5. Implementation

In this section, we briefly describe several modifications to the algorithm presented in the paper. Some 
of these modifications are common in the implementation of diffusion algorithms.

In our discussion and analysis we have required the normalized kernels, such as, K(s1) and K(s2) defined 
in (22), to be Markovian. This choice is convenient because it can be interpreted as a random process 
on a graph. We have also assumed a Gaussian form of the affinity matrix. However, we note that these 
assumptions can be relaxed and various “local” kernels, not necessarily Gaussian or Markovian, can be used. 
In particular, in diffusion geometry, row-stochastic matrices are often used rather than column-stochastic 
matrices.

In some datasets, where the scales of the distances between samples varies significantly, the graph specified 
by the affinity matrices (such as (21)) may have both highly connected vertices and vertices that are 
effectively isolated. This may imply that the constant kernel scaling ε is inadequate. Therefore, the expression 
for the affinity matrices is often replaced with

Wij = exp
(
−‖si − sj‖2

√
ε
√
ε

)
, (81)
i j
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Fig. 3. (Simulation I) The two sets of measurement samples lying on two tori. The samples are colored according to their common 
variable – the major angle parametrizes each of the tori. (a) s(1)

i , i = 1, . . . , 1000. (b) s(2)
i , i = 1, . . . , 1000.

where εi is a local scaling factor around the i point. Typically, √εi is taken to be in the order of the distance 
from si to some of its nearest neighbors (for example [35]).

In practice, the data samples often do not lie on the underlying manifold, but rather scattered around 
it. We note that according to the noise analysis presented in [36], setting the diagonal terms of the affinity 
matrix to zero makes the manifold learning in kernel-based methods more robust to noise.

6. Experimental results

6.1. Simulated data I

We simulate the three hidden variables (X, Y, Z) as three statistically independent uniform random 
variables, i.e.,

X ∼ πx(X) = U [0, 1], Y ∼ πy(Y ) = U [0, 1], Z ∼ πz(Z) = U [0, 1] (82)

We generate n = 1000 samples (xi, yi, zi) of (X, Y, Z), and define two sets of simulated samples in R3 by

s
(1)
i =

⎛
⎝(R + r(1) cos(2πyi)) cos(2πxi)

(R + r(1) cos(2πyi)) sin(2πxi)
r(1) sin(2πyi)

⎞
⎠ (83)

and

s
(2)
i =

⎛
⎝(R + r(2) cos(2πzi)) cos(2πxi)

(R + r(2) cos(2πzi)) sin(2πxi)
r(2) sin(2πzi)

⎞
⎠ (84)

where R = 10, r(1) = 4 and r(2) = 2, for i = 1, . . . , n. Thus, each set of measurements lies on a different 
2-dimensional torus embedded in R3, where the “major angle” X is common and the respective “minor 
angle”, Y or Z, is different. In other words, s(1)

i and s(2)
i are two samples in R3 on two different tori, 

where their major angle parametrization the two tori is common, and their respective minor angles are 
independent. See Fig. 3 for illustration.

We apply Algorithm 1 to the two sets 
{
s
(1)
i , s

(2)
i

}1000

i=1
and obtain a corresponding diffusion maps embed-

ding {x̃i}1000 based on the diffusion distances from (24) (for details about diffusion maps see Appendix A). 
i=1
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Fig. 4. (Simulation I) A 2-dimensional parametrization of the common variable obtained by Algorithm 1 applied to the two mea-
surement sets 

{
s
(1)
i , s

(2)
i

}1000

i=1
of samples lying on two tori. The parametrized samples are colored according to the true value of 

the common variable.

Fig. 5. (Simulation I) The parametrization of the common variable extracted from the two measurement sets 
{
s
(1)
i , s

(2)
i

}1000

i=1
. The 

parametrized samples are colored according to the true value of the common variable. (a) The samples s(1)
i projected on the first 

two common components obtained by CCA. (b) The samples s(2)
i projected on the first two common components obtained by 

CCA.

Fig. 4 presents a scatter plot of the 2-dimensional embedding. The embedded samples are colored according 
to the ground truth/common variable X – the “major angle”. We observe that the two new coordinates x̃i =
(x̃i,1, ̃xi,2) parametrize the common variable, approximately via (x̃i,1, ̃xi,2) ≈ (a cos(2πxi+c), a sin(2πxi+c)), 
where a and c are some constants.

To demonstrate the challenges stemming from the nonlinearity in this example, we apply CCA to {
s
(1)
i , s

(2)
i

}1000

i=1
. Fig. 5 depicts the first two common components obtained by CCA. We observe that the CCA 

parametrization merely projects the samples onto the first two coordinates of the measurements, without 
extracting the “major angle” (the true common variable) nor without suppressing the “minor angle”.

To illustrate the alternating-diffusion procedure, we plot in Fig. 6 a propagated function after 10
alternating-diffusion steps initialized at an arbitrary sample (marked in green). The color represents the 
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Fig. 6. (Simulation I) The propagation of functions. (a) The initial sample in the space of the measurement set 
{
s
(1)
i

}
marked in 

green. (b) The initial sample in the space of the measurement set 
{
s
(2)
i

}
marked in green. (c) The propagated function after 10

alternating-diffusion steps in the space of the measurement set 
{
s
(1)
i

}
. (b) The propagated function after 10 alternating-diffusion 

steps in the space of the measurement set 
{
s
(2)
i

}
. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)

value of the propagated function on each point, where red denotes large values and blue denotes small val-
ues. Fig. 6 demonstrates that after 10 alternating-diffusion steps, the propagated function “covers” the entire 
range of the minor angle, but only a small neighborhood of the major angle is covered. To further demon-
strate the alternating-diffusion, in Fig. 7, we map the tori back to the hidden variable (X, Y ) and (X, Z).

6.2. Simulated data II

We repeat the experiment with “twisted” tori. Now, the measurement samples are given by

s
(1)
i =

⎛
⎝(R + r(1)(1 + ρ cos(2πxi))) cos(2π(xi + θyi)) cos(2πyi)

(R + r(1)(1 + ρ cos(2πxi))) cos(2π(xi + θyi)) sin(2πyi)
r(1)(1 + ρ cos(2πxi)) sin(2π(xi + θyi))

⎞
⎠ (85)

and

s
(2)
i =

⎛
⎝(R + r(2) cos(2π(xi − 2zi))) cos(2πzi)

(R + r(2) cos(2π(xi − 2zi))) sin(2πzi)
(2)

⎞
⎠ (86)
r sin(2π(xi − 2zi)))
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Fig. 7. (Simulation I) The propagated distribution after 10 alternating-diffusion steps. (a) The alternating-diffusion in (X, Y ). 
(b) The alternating-diffusion in (X, Z).

Fig. 8. (Simulation II) The two sets of measurement samples lying on two “twisted” tori. The samples are colored according to their 
common variable. (a) s

(1)
i , i = 1, . . . , 1000. (b) s(2)

i , i = 1, . . . , 1000.

where θ = 4 and ρ = 0.25, for i = 1, . . . , n.
We generate n = 1000 samples of X, Y , and Z and their corresponding measurements S(1) and S(2) in 

R
3. The new sets of measurements are presented in Fig. 8.
Fig. 9 presents the 2-dimensional embedding of the sets obtained by Algorithm 1 and diffusion maps. 

Similarly to the previous experiment, the obtained new coordinates x̃i = (x̃i,1, ̃xi,2) parametrize the common 
variable. Fig. 10 presents the results obtained by CCA in this case. As expected, the linear CCA does not 
extract the common variable in these nonlinear settings.

6.3. Toy problem

We now revisit the toy problem from Section 1.1 and describe it in more detail. Yoda’s platform rotates 
clockwise and completes approximately 310 cycles in the duration of the experiment, the bulldog’s plat-
form rotates counterclockwise and approximately completes 450 cycles, and the bunny’s platform rotates 
counterclockwise and approximately completes 270 cycles. See Fig. 1 for the setup illustration.
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Fig. 9. (Simulation II) A 2-dimensional parametrization of the common variable obtained by Algorithm 1 applied to the two 
measurement sets 

{
s
(1)
i , s

(2)
i

}1000

i=1
of samples lying on the “twisted” tori. The parametrized samples are colored according to the 

true value of the common variable.

Fig. 10. (Simulation II) The parametrization of the common variable extracted from the two measurement sets 
{
s
(1)
i , s

(2)
i

}1000

i=1
on 

the “twisted” tori. The parametrized samples are colored according to the true value of the common variable. (a) The samples 
s
(1)
i projected on the first two common components obtained by CCA. (b) The samples s(2)

i projected on the first two common 
components obtained by CCA.

The sample set of n = 4000 pairs of synchronous image snapshots (measurements) taken at the same 
time by Camera 1 and Camera 2 is denoted by {s(1)

i , s(2)
i }ni=1. In other words, s(1)

i is an image taken by 
Camera 1, and s(2)

i an image taken at the same time by Camera 2.
We apply Algorithm 1 to the two sets of images {s(1)

i , s(2)
i }i. We note that the chronological order is not 

taken into account, although the images are collected in a sequence. For comparison, we also use diffusion 
maps (see Appendix A) to analyze each set separately.

Fig. 11 presents 2-D scatter plots of two separate diffusion maps embeddings, i.e., x̃i = (x̃i,1, ̃xi,2), created 
for the snapshots taken by Camera 1 and the snapshots taken by Camera 2. We observe that these diffusion 
maps are torus-like. Figs. 12 and 13 present the embedding generated by Algorithm 1.

To demonstrate the notion of the “intrinsic” distance implied by the embedding, we inset snapshots 
corresponding to several embedded points. In Fig. 11, we observe that close embedded points correspond 
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Fig. 11. (Toy example) Scatter plots of the diffusion maps embeddings x̃i = (x̃i,1, ̃xi,2). A diffusion map of the snapshots taken by 
Camera 1 is presented on the left, and a diffusion map of the snapshots taken by Camera 2 is presented on the right. In each row 
in the middle, we present a pair of snapshots taken by Camera 1 and Camera 2 at the same time. The arrows point to the place 
on the diffusion map where each snapshot was embedded. The bulldog is approximately in the same position in all the snapshots 
presented here.

to similar snapshots, and that remote points can correspond to snapshots where the bulldog is in the same 
rotation angle. This suggests that the distance in the embedding does not respect the common variable in 
this experiment – the rotation angle of the bulldog. In Figs. 12 and 13, we observe that distance in the 
embedding does respect the rotation angle of the bulldog: close (remote) embedded points correspond to 
snapshots where the bulldog is in the same (different) rotation angle.

Figs. 14(a–c) show the absolute value of the discrete Fourier transform of the principal component x̃i,1
obtained from the diffusion maps applications to the data from Camera 1, Camera 2, and from Algorithm 1. 
Fig. 14(a) shows a sharp peak centered at 310. This suggests that the principal component obtained based 
on snapshots taken by Camera 1 mainly captures the frequency corresponding to the rotation angle of Yoda. 
In Fig. 14(b), a sharp peak is obtained at 270 and suggests that the diffusion maps embedding based on the 
snapshots taken by Camera 2 captures the rotation angle of the bunny. Fig. 14(c) shows that the diffusion 
maps embedding obtained by Algorithm 1 captures the rotation angle of the bulldog, the common source 
of variability, as we obtain a sharp peak at 450.

The results from Figs. 11, 12, 13 and 14 imply a successful extraction of the common variable by the 
alternating-diffusion algorithm. The separate analyses of each set suggest that Yoda and the bunny are 
the dominant objects in the snapshots acquired by Camera 1 and Camera 2, respectively. Nevertheless, the 
alternating-diffusion is able to extract the “weaker,” but common, bulldog.

6.4. Toy problem with random projections

The toy problem from Section 1.1 was designed to be easy to interpret; the objects are spatially decoupled, 
and the common object can be recovered by simply truncating the images. Our method applies to the more 
general case of observation functions g and h (defined in (2)–(3)), where the common variable and the 
sensor-specific variables are entangled and do not necessarily appear in disjoint subsets of coordinates. To 
demonstrate the more general case, we apply the algorithm to random projections of the data. For each 
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Fig. 12. (Toy example) Scatter plot of the diffusion map embeddings x̃i = (x̃i,1, ̃xi,2) generated by Algorithm 1. The same pair of 
images presented in Fig. 11 are presented here, each pair is mapped to a point in the scatter plot. Since the bulldog was in the 
same position in all the snapshots, all the pairs are mapped to the same point.

Fig. 13. (Toy example) Scatter plot of the diffusion map embeddings x̃i = (x̃i,1, ̃xi,2) generated by Algorithm 1. Sample snapshots 
from Camera 1 are presented to illustrate the embedding where the bulldog is in different rotation angles.

measurement modality (the two cameras), we generate 64 Gaussian random vectors of length equal to the 
number of pixels in each snapshot. Then, each snapshot is linearly projected onto the 64 vectors, creating 
a new 64 dimensional representation of each image, as illustrated in Fig. 15. Each coordinate in the new 
representation is a mixture of all the pixels in the original image, and thus a function of both the common 
variable and sensor-specific variables. We apply Algorithm 1 to the two new sets of “scrambled images”. 
The parametrization of the common variable obtained by the algorithm is presented in Fig. 16.

The new input of the algorithm is now a set of “scrambled images,” in which the objects and underlying 
variables are not visible. Yet, the algorithm recovers a similar parametrization of the common variable. 
Indeed, the incorporation of random projections modifies the observable variables (i.e., different g and h
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Fig. 14. (Toy example) The absolute value of the discrete Fourier transform of the principal component x̃i,1 obtained from the 
diffusion maps applications to the snapshots taken by Camera 1 (a), Camera 2 (b), and from Algorithm 1 (c).
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Fig. 15. (Random projections) Sample snapshots taken by Camera 1 (a) and Camera 2 (b), and their corresponding random 
projections to 64 dimensions (c) and (d). For the purpose of visualization, the 64 dimensional vectors are presented as 8 × 8
“images,” where the value of each coordinate is represented by a the color of one of the “pixels”.

Fig. 16. (Random projections) Scatter plot of the diffusion map embeddings x̃i = (x̃i,1, ̃xi,2) generated by Algorithm 1. Each point 
is assigned a color based on the true value of the common hidden variable (the rotation angle of the bulldog when the snapshot 
was taken).

functions), and the algorithm depends on these functions only through local distances, which are approxi-
mately maintained according to Johnson–Lindenstrauss lemma [37].

7. Conclusions

An alternating-diffusion method has been presented for the extraction of the common source of variability 
from measurements in multiple sensors. The method uses diffusion operators which are computed for each 
sensor separately from its measurements. The information from the multiple sensors is combined by creating 
a new alternating-diffusion operator, which is the product of the separate operators. We have shown that 
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this alternating-diffusion operator is, in effect, a diffusion operator computed from data where the common 
source of variability is the only source of variability.

The method has been demonstrated on simulated data and on an image-processing toy problem. 
Alternating-diffusion is a data-driven method that does not require strong assumptions on the nature of the 
sensors, as demonstrated in experiments with random projections of measurements. Therefore, this method 
is not restricted to computer-vision and image processing applications, nor to multi-view problems, and 
it applies to multimodal problems, where the sensors are not necessarily of the same type. Moreover, the 
method is not restricted to physical measurements, and the different “sensors” can be replaced by different 
processing pipelines. Such applications have been demonstrated in separate work.
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Appendix A. Diffusion maps

In this appendix we present a brief description of the diffusion maps algorithm (Algorithm 2), adapted 
from [38].

Algorithm 2 Diffusion maps.
Input: Samples {si}n

i=1 and a corresponding distance metric d(i, j).
Output: Embedding {s̃i}n

i=1 and diffusion distances d̃t(i, j).

1. Compute the affinity matrix W as follows:

Wij = exp
(
−

‖si − sj‖2

ε

)
, ∀i, j = 1, . . . , n.

2. Compute the diagonal normalization matrix Qii =
(∑n

j=1 Wij

)−1
.

3. Normalize the kernel K̃ = QWQ.
4. Compute the second diagonal normalization matrix Q̃ii =

(∑n
j=1 K̃ij

)−1/2
.

5. Normalize the kernel K = Q̃K̃Q̃ for the second time.
6. Compute the n eigenvectors u0, u1, . . . , un−1 and eigenvalues λ0, λ1, . . . , λn−1 of K.
7. Create the n − 1 weighted vectors ϕ1, ϕ2, . . . , ϕn−1 by ϕi(j) = ui(j)

u0(j)
.

8. Build the d-dimensional embedding for t ≥ 0 of each point i = 1, . . . , n by s̃i =
(
λt

1ϕ1(i), λt
2ϕ2(i), . . . , λt

n−1ϕn−1(i)
)T .

9. Define the diffusion distance between each two points i, j by d̃t(i, j) = ‖s̃i − s̃j‖.
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