=====Medical Meta Transfer Learning Reading Group===== A biweekly reading group to discuss recent or classical papers on transfer learning methodologies and their applications on medical tasks. Other interesting theory topics are also welcomed. **Time: Monday 10:30 a.m. (GMT+8)** ----------------------------- ===04/12/2023=== * Presenter: Wu Yanru * Paper: Auxiliary Task Reweighting for Minimum-data Learning (Shi, NeurIPS 2020) * Slides: {{ :trans_learn:auxiliary_task_reweighting.pptx |}} ===04/26/2023=== * Presenter: Duan Shutong * A Brief Research in Semantic Segmentation with Multisource * Slides:{{ :trans_learn:brief_literature_review.pptx |}} ===05/10/2023=== * Presenter: Zhao Zixi * Paper: Test-time Adaptation in the Dynamic World with Compound Domain Knowledge Management (Song, IEEE Robotics and Automation Letters 2022) * Slides: {{ :trans_learn:5.10_pre.pptx |}} ===05/24/2023=== * Presenter: Lai Jiahao * Paper: Variational Continual Learning (Nguyen, ICLR 2018) * Slides: {{ :trans_learn:5.24组会.pdf |}} ===06/21/2023=== * Presenter: Wu Yanru * Paper: A Geometric Analysis of Neural Collapse with Unconstrained Features (Zhu and Ding, NeurIPS 2021) * Slides: {{ :trans_learn:a_geometric_analysis_of_neural_collapse_with.pptx |}} ===07/05/2023=== * Presenter: Zhao Zixi * Paper: Mad Max: Affine Spline Insights into Deep Learning (Balestriero, expanded from ICML 2018) * Slides: {{ :trans_learn: 7.5_pre.pptx |}} ===07/19/2023=== * Presenter: Dong Caixia * Paper: High-quality coronary artery segmentation via fuzzy logic modeling coupled with dynamic graph convolutional network * Slides: {{ :trans_learn: 冠脉分割20230802dcx.pdf |}} ===08/02/2023=== * Presenter: Duan Shutong; Zhang Enming * Paper: Discriminability and Transferability Estimation: A Bayesian Source Importance Estimation Approach for Multi-Source-Free Domain Adaptation (Han, AAAI 2023) * Slides: {{ :trans_learn: date.pptx |}} ===08/16/2023=== * Presenter 1: Wang Jingge * Paper: TR-GAN: Multi-Session Future MRI Prediction With Temporal Recurrent Generative Adversarial Network (Fan, IEEE Transactions on Medical Imaging 2022) * Slides: {{ :trans_learn: tr-gan_multi-session_future_mri_prediction_with_temporal_recurrent_generative_adversarial_network.pptx |}} * Presenter 2: Zhao Zixi * Paper: Max-Affine Spline Insights Into Deep Network Pruning (You and Balestriero, Transactions on Machine Learning Research 2022) * Slides: {{ :trans_learn: 8.16_pre.pptx |}} ===08/30/2023=== * Presenter 1: Yang Jingyun * Paper: Pick the Best Pre-trained Model: Towards Transferability Estimation for Medical Image Segmentation (Yang, MICCAI 2023) * Slides: {{ :trans_learn: rd.pdf |}} * Presenter 2: Chen Xuechao * Paper: Task-customized Masked Autoencoder via Mixture of Cluster-conditional Experts (Liu, ICLR 2023) * Slides: {{ :trans_learn: paperreading20230830.pptx |}} ===09/18/2023=== * Presenter 1: Xiangyu Chen * Paper: Graph Neural Networks can Recover the Hidden Features Solely from the Graph Structure (Sato, ICML 2023) * Slides: {{ :trans_learn: graph_recover.pptx |}} * Presenter 2: Yanru Wu * Paper: MATE: Plugging in Model Awareness to Task Embedding for Meta Learning (Chen and Wang, NeurIPS 2020) * Slides: {{ :trans_learn: MATE.pptx |}} ===10/11/2023=== * Presenter 1: Hanbing Liu * Paper: Active Gradual Domain Adaptation: Dataset and Approach (Zhou, IEEE Transactions on Multimedia 2022) * Slides: {{ :trans_learn: o |}} * Presenter 2: Jiahao Lai * Paper: Hypergraph Neural Networks (Feng, AAAI 2019) * Slides: {{ :trans_learn: hypergnn.pdf |}} ===10/23/2023=== * Presenter: Haohua Wang * Paper: Fine-Tuning Language Models with Advantage-Induced Policy Alignment (Zhu, arXiv:2306.02231) * Slides: {{ :trans_learn: fine-tuning_language_models_with_advantage-induced_policy_alignment_2_.pptx |}} -----------------------------