=====Meeting Schedule===== [[image_embedding:top | < Back to Embedding Project Home]] ----------------------- ===2019/09/03=== * S. Chopra, R. Hadsell and Y. [[http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1467314&isnumber=31472 | LeCun, Learning a similarity metric discriminatively, with application to face verification]]," 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), San Diego, CA, USA, 2005, pp. 539-546 vol. * Presenter: Shi Lu Abstract: Early version of contrastive loss and Smilarity metric ===2019/09/11=== * Wu C Y , Manmatha R , Smola A J , et al. [[https://arxiv.org/abs/1706.07567v1 | Sampling Matters in Deep Embedding Learning]]. 2017. * Presenter: Yicong Abstract: distance weighted sampling,different version of triplet loss ===2019/09/17=== * David Qiu, [[https://dspace.mit.edu/handle/1721.1/108977 | Embedding and latent variable models using maximal correlation]], 2016 * Presenter: Jiarong ===2019/09/28=== * Monath, N., Zaheer, M., Silva, D., McCallum, A., & Ahmed, A. (2019, July). [[https://dl.acm.org/citation.cfm?id=3330997 | Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space]]. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 714-722). ACM. * Presenter: Runpeng * Wang, L., Wu, J., Huang, S. L., Zheng, L., Xu, X., Zhang, L., & Huang, J. (2019, July). [[https://aaai.org/ojs/index.php/AAAI/article/view/4464 | An efficient approach to informative feature extraction from multimodal data]]. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, pp. 5281-5288). * Presenter: Calvin ===2019/10/13=== * Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, Richard Zemel. [[https://arxiv.org/abs/1511.00830 | The Variational Fair Autoencoder]]. * Presenter: Shi Lu ===2019/10/17=== * Narayanaswamy, S., Paige, T. B., Van de Meent, J. W., Desmaison, A., Goodman, N., Kohli, P., ... & Torr, P. (2017). [[http://papers.nips.cc/paper/7174-learning-disentangled-representations-with-semi-supervised-deep-generative-models | Learning disentangled representations with semi-supervised deep generative models]]. In Advances in Neural Information Processing Systems (pp. 5925-5935). * Presenter: Shi Lu ===2019/10/24=== * Diederik P Kingma, Max Welling. [[https://arxiv.org/abs/1312.6114 | Auto-Encoding Variational Bayes]]. * Presenter: Yicong Li ===2019/11/5=== * Yao Xu, Xueshuang Xiang, Meiyu Huang. [[https://www.aaai.org/ojs/index.php/AAAI/article/view/4499 | Task-Driven Common Representation Learning via Bridge Neural Network]], AAAI 2019 * Presenter: Mingyang Li ===2019/11/20=== * Sun, Q., Liu, Y., Chua, T. S., & Schiele, B. (2019). [[http://openaccess.thecvf.com/content_CVPR_2019/html/Sun_Meta-Transfer_Learning_for_Few-Shot_Learning_CVPR_2019_paper.html | Meta-transfer learning for few-shot learning]]. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 403-412). * Presenter: Yang Tan ===2019/11/28=== * Li, A., Luo, T., Lu, Z., Xiang, T., & Wang, L. (2019). [[http://openaccess.thecvf.com/content_CVPR_2019/html/Li_Large-Scale_Few-Shot_Learning_Knowledge_Transfer_With_Class_Hierarchy_CVPR_2019_paper.html | Large-Scale Few-Shot Learning: Knowledge Transfer With Class Hierarchy]]. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 7212-7220). * Presenter: Yicong Li ===2019/12/6=== * Joshua Lee, Prasanna Sattigeri, Gregory Wornell, [[https://papers.nips.cc/paper/8688-learning-new-tricks-from-old-dogs-multi-source-transfer-learning-from-pre-trained-networks | Learning New Tricks From Old Dogs: Multi-Source Transfer Learning From Pre-Trained Networks]], NIPS 2019 * Presenter: Jingge Wang ===2019/12/13=== * Pandhre, S., Mittal, H., Gupta, M., & Balasubramanian, V. N. (2018). [[https://arxiv.org/abs/1711.04150 | STWalk: Learning trajectory representations in temporal graphs]]. ACM International Conference Proceeding Series, 210–219. * Presenter: Calvin Chan [[image_embedding:top | < Back to Embedding Project Home]]