User Tools

Site Tools


trans_learn:reading_group_2023

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
trans_learn:reading_group_2023 [2023/09/04 05:49] wuyrtrans_learn:reading_group_2023 [2023/10/23 10:47] (current) wuyr
Line 2: Line 2:
 A biweekly reading group to discuss recent or classical papers on transfer learning methodologies and their applications on medical tasks. Other interesting theory topics are also welcomed. A biweekly reading group to discuss recent or classical papers on transfer learning methodologies and their applications on medical tasks. Other interesting theory topics are also welcomed.
    
-**Time:  Wednesday 8:30 p.m. (GMT+8)**+**Time:  Monday 10:30 a.m. (GMT+8)**
  
 ----------------------------- -----------------------------
Line 20: Line 20:
   * Presenter: Zhao Zixi   * Presenter: Zhao Zixi
   * Paper: Test-time Adaptation in the Dynamic World with Compound Domain Knowledge Management (Song, IEEE Robotics and Automation Letters 2022)   * Paper: Test-time Adaptation in the Dynamic World with Compound Domain Knowledge Management (Song, IEEE Robotics and Automation Letters 2022)
-  * Slides: {{ :trans_learn:slides_xinyi1029.pdf |}}+  * Slides: {{ :trans_learn:5.10_pre.pptx |}}
  
 ===05/24/2023=== ===05/24/2023===
   * Presenter: Lai Jiahao   * Presenter: Lai Jiahao
   * Paper: Variational Continual Learning (Nguyen, ICLR 2018)   * Paper: Variational Continual Learning (Nguyen, ICLR 2018)
-  * Slides: {{ :trans_learn:zhiyuan_bayes_ml.pdf |}}+  * Slides: {{ :trans_learn:5.24组会.pdf |}}
  
 ===06/21/2023=== ===06/21/2023===
Line 39: Line 39:
 ===07/19/2023=== ===07/19/2023===
   * Presenter: Dong Caixia   * Presenter: Dong Caixia
-  * High-quality coronary artery segmentation via fuzzy logic modeling coupled with dynamic graph convolutional network+  * Paper: High-quality coronary artery segmentation via fuzzy logic modeling coupled with dynamic graph convolutional network 
 +  * Slides: {{ :trans_learn: 冠脉分割20230802dcx.pdf |}}
  
 ===08/02/2023=== ===08/02/2023===
Line 53: Line 54:
   * Presenter 2: Zhao Zixi   * Presenter 2: Zhao Zixi
   * Paper: Max-Affine Spline Insights Into Deep Network Pruning (You and Balestriero, Transactions on Machine Learning Research 2022)   * Paper: Max-Affine Spline Insights Into Deep Network Pruning (You and Balestriero, Transactions on Machine Learning Research 2022)
-  * Slides: {{ :trans_learn: paperreading20230830.pptx |}}+  * Slides: {{ :trans_learn: 8.16_pre.pptx |}}
  
 ===08/30/2023=== ===08/30/2023===
   * Presenter 1: Yang Jingyun   * Presenter 1: Yang Jingyun
-  * Paper: TR-GANMulti-Session Future MRI Prediction With Temporal Recurrent Generative Adversarial Network (FanIEEE Transactions on Medical Imaging 2022)+  * Paper: Pick the Best Pre-trained ModelTowards Transferability Estimation for Medical Image Segmentation (YangMICCAI 2023)
   * Slides: {{ :trans_learn: rd.pdf |}}   * Slides: {{ :trans_learn: rd.pdf |}}
  
Line 64: Line 65:
   * Slides: {{ :trans_learn: paperreading20230830.pptx |}}   * Slides: {{ :trans_learn: paperreading20230830.pptx |}}
  
----------------------------+===09/18/2023=== 
 +  * Presenter 1: Xiangyu Chen 
 +  * Paper: Graph Neural Networks can Recover the Hidden Features Solely from the Graph Structure (Sato, ICML 2023) 
 +  * Slides: {{ :trans_learn: graph_recover.pptx |}} 
 + 
 +  * Presenter 2: Yanru Wu 
 +  * Paper: MATE: Plugging in Model Awareness to Task Embedding for Meta Learning (Chen and Wang, NeurIPS 2020) 
 +  * Slides: {{ :trans_learn: MATE.pptx |}} 
 + 
 +===10/11/2023=== 
 +  * Presenter 1: Hanbing Liu 
 +  * Paper: Active Gradual Domain Adaptation: Dataset and Approach (Zhou, IEEE Transactions on Multimedia 2022) 
 +  * Slides: {{ :trans_learn: o |}} 
 + 
 +  * Presenter 2: Jiahao Lai 
 +  * Paper: Hypergraph Neural Networks (Feng, AAAI 2019) 
 +  * Slides: {{ :trans_learn: hypergnn.pdf |}} 
 + 
 +===10/23/2023=== 
 +  * Presenter: Haohua Wang 
 +  * Paper: Fine-Tuning Language Models with Advantage-Induced Policy Alignment (Zhu, arXiv:2306.02231) 
 +  * Slides: {{ :trans_learn: fine-tuning_language_models_with_advantage-induced_policy_alignment_2_.pptx |}} 
 +-----------------------------
trans_learn/reading_group_2023.1693820972.txt.gz · Last modified: 2023/09/04 05:49 by wuyr