User Tools

Site Tools


trans_learn:reading_group_2023

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
trans_learn:reading_group_2023 [2023/09/04 04:53] wuyrtrans_learn:reading_group_2023 [2023/10/23 10:47] (current) wuyr
Line 2: Line 2:
 A biweekly reading group to discuss recent or classical papers on transfer learning methodologies and their applications on medical tasks. Other interesting theory topics are also welcomed. A biweekly reading group to discuss recent or classical papers on transfer learning methodologies and their applications on medical tasks. Other interesting theory topics are also welcomed.
    
-**Time:  Wednesday 8:30 p.m. (GMT+8)**+**Time:  Monday 10:30 a.m. (GMT+8)**
  
 ----------------------------- -----------------------------
  
-===04/11/2023===+===04/12/2023===
   * Presenter: Wu Yanru   * Presenter: Wu Yanru
-  * Paper: Auxiliary Task Reweighting for Minimum-data Learning (Shi, 2020)+  * Paper: Auxiliary Task Reweighting for Minimum-data Learning (Shi, NeurIPS 2020)
   * Slides: {{ :trans_learn:auxiliary_task_reweighting.pptx |}}   * Slides: {{ :trans_learn:auxiliary_task_reweighting.pptx |}}
  
-===10/22/2021=== +===04/26/2023=== 
-  * Presenter: Liu Hanbing +  * Presenter: Duan Shutong 
-  * Paper: Optimal Transport for Domain Adaptation (Courty, 2016) +  * A Brief Research in Semantic Segmentation with Multisource 
-  * Slides:{{ :trans_learn:adversarial_discriminative_domain_adaptation.pptx |}}+  * Slides:{{ :trans_learn:brief_literature_review.pptx |}}
  
  
-===10/29/2021=== +===05/10/2023=== 
-  * Presenter: Tong Xinyi +  * Presenter: Zhao Zixi 
-  * Paper: A Mathematical Framework for Quantifying Transferability in Multi-source Transfer Learning (Tong2021+  * Paper: Test-time Adaptation in the Dynamic World with Compound Domain Knowledge Management (SongIEEE Robotics and Automation Letters 2022
-  * Slides: {{ :trans_learn:slides_xinyi1029.pdf |}}+  * Slides: {{ :trans_learn:5.10_pre.pptx |}}
  
-===11/12/2021=== +===05/24/2023=== 
-  * Presenter: Wu Zhiyuan +  * Presenter: Lai Jiahao 
-  * Paper: Recasting gradient-based meta-learning as hierarchical bayes (Grant, 2018) +  * Paper: Variational Continual Learning (NguyenICLR 2018) 
-  * Slides: {{ :trans_learn:zhiyuan_bayes_ml.pdf |}}+  * Slides: {{ :trans_learn:5.24组会.pdf |}}
  
-===11/19/2021===+===06/21/2023===
   * Presenter: Wu Yanru   * Presenter: Wu Yanru
-  * Paper: CDOT: Continuous Domain Adaptation using Optimal Transport (Guillermo2019+  * Paper: A Geometric Analysis of Neural Collapse with Unconstrained Features (Zhu and DingNeurIPS 2021
-  * Slides: {{ :trans_learn:continuous_ot.pptx |}}+  * Slides: {{ :trans_learn:a_geometric_analysis_of_neural_collapse_with.pptx |}}
  
----------------------------+===07/05/2023=== 
 +  * Presenter: Zhao Zixi 
 +  * Paper: Mad Max: Affine Spline Insights into Deep Learning (Balestriero, expanded from ICML 2018) 
 +  * Slides: {{ :trans_learn: 7.5_pre.pptx |}} 
 + 
 +===07/19/2023=== 
 +  * Presenter: Dong Caixia 
 +  * Paper: High-quality coronary artery segmentation via fuzzy logic modeling coupled with dynamic graph convolutional network 
 +  * Slides: {{ :trans_learn: 冠脉分割20230802dcx.pdf |}} 
 + 
 +===08/02/2023=== 
 +  * Presenter: Duan Shutong; Zhang Enming 
 +  * Paper: Discriminability and Transferability Estimation: A Bayesian Source Importance Estimation Approach for Multi-Source-Free Domain Adaptation (Han, AAAI 2023) 
 +  * Slides: {{ :trans_learn: date.pptx |}} 
 + 
 +===08/16/2023=== 
 +  * Presenter 1: Wang Jingge 
 +  * Paper: TR-GAN: Multi-Session Future MRI Prediction With Temporal Recurrent Generative Adversarial Network (Fan, IEEE Transactions on Medical Imaging 2022) 
 +  * Slides: {{ :trans_learn: tr-gan_multi-session_future_mri_prediction_with_temporal_recurrent_generative_adversarial_network.pptx |}} 
 + 
 +  * Presenter 2: Zhao Zixi 
 +  * Paper: Max-Affine Spline Insights Into Deep Network Pruning (You and Balestriero, Transactions on Machine Learning Research 2022) 
 +  * Slides: {{ :trans_learn: 8.16_pre.pptx |}} 
 + 
 +===08/30/2023=== 
 +  * Presenter 1: Yang Jingyun 
 +  * Paper: Pick the Best Pre-trained Model: Towards Transferability Estimation for Medical Image Segmentation (Yang, MICCAI 2023) 
 +  * Slides: {{ :trans_learn: rd.pdf |}} 
 + 
 +  * Presenter 2: Chen Xuechao 
 +  * Paper: Task-customized Masked Autoencoder via Mixture of Cluster-conditional Experts (Liu, ICLR 2023) 
 +  * Slides: {{ :trans_learn: paperreading20230830.pptx |}} 
 + 
 +===09/18/2023=== 
 +  * Presenter 1: Xiangyu Chen 
 +  * Paper: Graph Neural Networks can Recover the Hidden Features Solely from the Graph Structure (Sato, ICML 2023) 
 +  * Slides: {{ :trans_learn: graph_recover.pptx |}} 
 + 
 +  * Presenter 2: Yanru Wu 
 +  * Paper: MATE: Plugging in Model Awareness to Task Embedding for Meta Learning (Chen and Wang, NeurIPS 2020) 
 +  * Slides: {{ :trans_learn: MATE.pptx |}} 
 + 
 +===10/11/2023=== 
 +  * Presenter 1: Hanbing Liu 
 +  * Paper: Active Gradual Domain Adaptation: Dataset and Approach (Zhou, IEEE Transactions on Multimedia 2022) 
 +  * Slides: {{ :trans_learn: o |}} 
 + 
 +  * Presenter 2: Jiahao Lai 
 +  * Paper: Hypergraph Neural Networks (Feng, AAAI 2019) 
 +  * Slides: {{ :trans_learn: hypergnn.pdf |}} 
 + 
 +===10/23/2023=== 
 +  * Presenter: Haohua Wang 
 +  * Paper: Fine-Tuning Language Models with Advantage-Induced Policy Alignment (Zhu, arXiv:2306.02231) 
 +  * Slides: {{ :trans_learn: fine-tuning_language_models_with_advantage-induced_policy_alignment_2_.pptx |}} 
 +-----------------------------
trans_learn/reading_group_2023.1693817624.txt.gz · Last modified: 2023/09/04 04:53 by wuyr