User Tools

Site Tools


trans_learn:2021projects

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
trans_learn:2021projects [2021/10/14 06:08] – [Meeting Notes] wuyrtrans_learn:2021projects [2022/01/05 21:59] (current) yang
Line 1: Line 1:
 ====== 2021 Project Page ====== ====== 2021 Project Page ======
 +===== Transfer learning for battery parameter estimation =====
 ==== Meeting Notes ==== ==== Meeting Notes ====
  
Line 6: Line 6:
   * Attendee: Hanbing, Yanru, Yang   * Attendee: Hanbing, Yanru, Yang
   * Meeting summary:    * Meeting summary: 
-        Yanru: on reading: Unsupervised Domain Adaptation for Semantic Segmentation via CBST +        Yanru: on reading: Unsupervised Domain Adaptation for Semantic Segmentation via CBST 
-               TODO: make a plan of future work;  +        * Hanbing 
-                     deeper understanding of papers/ better presentation of work+          * research: optimal transport and domain adaptation problem 
 +          * reading: Joint distribution optimal transportation for domain adaptation; Few-Shot Cross Domain Battery Capacity Estimation 
 +          * slides: {{ :trans_learn:optimal_transport_and_domain_adaptation.pptx |optimal transport and domain adaptation}} 
 +   
 +  * TODO:  
 +        * Yanru: make a plan of future work; deeper understanding of papers/ better presentation of work 
 +        * Hanbing: do some research on the application of adversarial network to domain adaptation problem
                                            
  
Line 14: Line 20:
    
   * Attendee: Hanbing, Yanru, Yang   * Attendee: Hanbing, Yanru, Yang
-  * Meeting summary: +  * Meeting summary: 
 +        * Yanru:  
 +          * reading: transferable semi-supervised semantic segmentation; Adversarial Examples for Semantic Segmentation and Object Detection 
 +          * experiment: tried MIoU metric for H-score evaluation; on coding new dataset 
 +        * Hanbing: 
 +          * reading: Adversarial Discriminative Domain Adaptation 
 +          * research: Adversarial network in Domain Adaptation 
 +          * slides: {{ :trans_learn:adversarial_domain_adaptation.pptx |adversarial domain adaptation}} 
 +  * TODO: 
 +        * Yanru:  
 +          * more relative reading on transfer learning & U-net (also maybe some survey on semantic segmentation & related area);  
 +          * experiment redesign  
 +            * target and source setting (H-score more suitable for task transfer) 
 +            * dataset with fewer noise & lower difficulty 
 +            * new calculate method for H-score (devision depending on label instead of pixel location) 
 +        * Hanbing: 
 +          * deeper reading ADDA to find its advantage over other adversarial domain adaptation works 
 +          * modify the ADDA model to deal with battery features 
 + 
 +== 2021/10/20 == 
 + 
 +  * Attendee: Hanbing, Yanru, Yang 
 +  * Meeting summary: 
 +        * Yanru:  
 +          * experiment: H-score trial on task transfer using ADE20K  -- especially good results for 'sky' task 
 +        * Hanbing: 
 +          * experiment: ADDA using battery pulse data  
 +          * slides:{{ :trans_learn:adda_test.pptx |}} 
 +  * TODO: 
 +        * Yanru: 
 +          * recode the experiment with pytorch 
 +          * cityscape dataset preprocessing 
 +          * change of target data size 
 +          * reading 
 +        * Hanbing: 
 +          * change convolution layer to fully connect or conv1D 
 +          * transform battery data into frequency domain 
 + 
 +== 2021/11/10 == 
 + 
 +  * Attendee: Hanbing, Yang 
 +  * Meeting summary: 
 +    * Hanbing: 
 +      * experiment: unsupervised fully connection ADDA using battery pulse data 
 +  * TODO: 
 +    * Hanbing: 
 +      * experiment: 
 +        - source only: divide source dataset into training set and testing set to see if model is overfitting 
 +        - target only: using only target data to get target baseline model 
 +        - transfer learning: finetuning target feature extractor and source classifier useing a few target label 
 + 
 +== 2021/11/14 == 
 +  * Attendee: Yanru, Yang 
 +  * Meeting summary: 
 +    - A brief review of several papers related to spatial-temporal data analyses ({{ :trans_learn:project_reading.pdf |}}) 
 +    - Notes: {{:trans_learn:notes1114.png?linkonly|}} 
 +  * TODO: write background part of project plan  
 + 
 +== 2021/11/17 == 
 +  * Attendee: Hanbing, Yang 
 +  * Meeting summary: 
 +    * Hanbing: 
 +      * experiment: 
 +        - source only and target only on original net and simplified net   
 +        - add penalty term on target model 
 +  * TODO: 
 +    * Hanbing: 
 +      * experiment: 
 +        - finetunning target model useing a few target label 
 +        - change visual form of result 
trans_learn/2021projects.1634206109.txt.gz · Last modified: 2021/10/14 06:08 by wuyr