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Appendix. I - Proofs and Derivations
Proof of Definition 1

Let X and Y denote the input and output space respectively.
Denote the transferred feature representation by f : X →
Rk. For a classification task, let hf : X × Y → [0, 1]|Y| be
a predictor function with the log-loss function L(f(x), y)
for a given (x, y) sample. The traditional machine learn-
ing approach uses stochastic gradient descent to minimize
L(h) = EX,Y [L(f(x), y)]. We will show that the optimal
log loss when f is given can be characterized analytically
using concepts in information theory and statistics.
Definition 1. The Divergence Transition Matrix (DTM) of
discrete random variables X and Y is a |Y|× |X | matrix B̂
with entries:

B̂y,x =
PXY (x, y)√

PX(x)
√
PY (y)

−
√
PY (y)

√
PX(x)

for all x ∈ X and y ∈ Y .
Given m training examples {(x(i), y(i))}mi=1, the loss

L(f, θ) is:

L(f, θ) = − 1

m

m∑
i=1

|Y|∑
k=1

⊮{y(i) = k} log

(
e−θT

k f(x(i))∑|Y|
j=1 e

−θT
j f(x(i))

)
Using concepts in Euclidean information geometry, it is
shown in (Huang et al. 2019) that under a local assumption,
for a given feature dimension k:

argminf,θ = argminΨ∈R|X|×k,Φ∈R|Y|×k

1

2
∥B̃−ΨΦT∥2F+o(ϵ2)

(1)
By defining ϕ(x) =

√
PX(x)f(x), the optimal Ψ∗ is:

Ψ∗ = B̃Φ(ΦTΦ)−1 (2)

Substituting (2) into (1), the log loss has a closed-form solu-
tion:

∥B̃∥2F − ∥B̃Φ(ΦTΦ)−
1
2 ∥2F (3)

Let X , x, X and PX represent a random variable, a value,
the alphabet and the probability distribution respectively.√
PX denotes the vector with entries

√
PX(x) and [

√
PX ] ∈

R|X |×|X| denotes the diagonal matrix of
√
PX . For joint dis-

tribution PY X , PY X ∈ R|Y|×|X| represents the probability

matrix. Given k feature functions fi : X → R, i = 1, . . . , k,
let f(x) = [f1(x), . . . , fk(x)] ∈ Rk be the feature vector
of x, and F = [f(x1)

⊤, . . . , f(x|X |)
⊤]⊤ ∈ R|X |×k be the

feature matrix over all elements in X . We can further rewrite
||B̃Φ(ΦTΦ)−

1
2 ||2F as follows.

∥B̃Φ(ΦTΦ)−
1
2 ∥2F = tr

(
(ΦTΦ)−

1
2ΦTB̃TB̃Φ(ΦTΦ)−

1
2

)
= tr

(
(ΦTΦ)−1ΦTB̃TB̃Φ

)
(4)

Since any feature function can be centered by subtracting the
mean, without the loss of generality, we assume E[f(X)] =
0. Using the one-to-one correspondence between Φ and F ,
i.e. Φ = [

√
PX ]F ∈ R|X |×k, we have:

ΦTΦ =
(
[
√
PX ]F

)T (
[
√
PX ]F

)
= E[f(X)Tf(X)]

= cov(f(X))

(5)

The DTM matrix B̃ introduced in Definition 1 can be writ-
ten in matrix notation:B̃ =

[√
PY

]−1
PY X

[√
PX

]−1 −
√
PY

√
PX

T
Then we have:

B̃Φ =

([√
PY

]−1

PY X

[√
PX

]−1

−
√

PY

√
PX

T
)

[√
PX

]
F

=
[√

PY

] (
[PY ]

−1PY XF − 1 · E[f(X)]T
)
,

(6)
where 1 is a column vector with all entries 1 and length |Y|.
It follows that:

ΦTB̃TB̃Φ =
(
[PY ]

−1PY XF − 1 · E[f(X)]T
)T

[PY ]
(
[PY ]

−1PY XF − 1 · E[f(X)]T
)

= EPY

[ (
E[f(X)|Y ]− 1 · E[f(X)]T

)
·
(
E[f(X)|Y ]− 1 · E[f(X)]T

) ]
= cov (E[f(X)|Y ])

(7)

By substituting (7) and (5) into (4), we have:

∥B̃Φ(ΦTΦ)−
1
2 ∥2F = tr

(
cov(f(X))−1cov(E[f(X)|Y ])

)
(8)



Proof of Theorem 1

H(f) = H

(
n∑

i=1

αi · f i

)

= tr

(
cov

(
EPX|Y

[
n∑

i=1

αi · f i(X)
∣∣∣Y ]))

= tr

(
EPY

[
n,n∑

i=1,j=1

αiαj ·

EPX|Y [f i(X)|Y ] · EPX|Y [f j(X)|Y ]T

])

=

n,n∑
i=1,j=1

αiαj · tr
(
EPY

[
EPX|Y [f i(X)|Y ]

· EPX|Y [f j(X)|Y ]T
])

=

n,n∑
i=1,j=1

αiαj ·
d∑

k=1

(
EPY

[
EPX|Y [f

(k)
i (X)|Y ]

· EPX|Y [f
(k)
j (X)|Y ]

])

(9)

We then denote this quadratic form as αTFα and prove that
it is positive semi-definite. Firstly, we have F =

∑d
k=1 F k,

where k denotes feature dimension and {F k}i,j =

EPY
[EPX|Y [f

(k)
i (X)|Y ] · EPX|Y [f

(k)
j (X)|Y ]].

For all k, consider ∀b ∈ Rn, we have:

bTF kb =

n,n∑
i=1,j=1

biEPY

[
EPX|Y [f

(k)
i (X)|Y ]

· EPX|Y [f
(k)
j (X)|Y ]

]
bj

= EPY

[(
n∑

j=1

( n∑
i=1

biEPX|Y [f
(k)
i (X)|Y ]

)

· EPX|Y [f
(k)
j (X)|Y ]bj

)]

= EPY

[(
n∑

i=1

bi · EPX|Y [f
(k)
i (X)|Y ]

)2]
≥ 0

(10)
Hence, F k is positive semi-definite, and F =

∑d
k=1 F k

is a sum of positive semi-definite matrix is also positive
semi-definite. Therefore, H(f) = αTFα is a convex
quadratic form.

Proof of Theorem 2
Assumption 1. We make the quadratic bowl assumption
around the local minima θ∗ on all domains: ∀e ∈ E ,

Re(θ) = Re (θ
∗) +

1

2
(θ − θ∗)

⊤
He (θ − θ∗) , (11)

where He is positive definite of eigenvalues λe
1 ≥ · · · ≥

λe
h > 0.

Remark 1. Assumption 1 is milder on N ϵ
e,θ∗ for low ϵ.

Indeed, when ϵ → 0, then maxθ∈Nϵ
e,θ∗

∥θ − θ∗∥22 → 0

and the quadratic approximation coincides with the second-
order Taylor expansion around θ∗. Moreover, this approxi-
mation is common in optimization (Schaul, Zhang, and Le-
Cun 2013; Jastrzebski et al. 2017).

Proposition 1. Let ϵ > 0, weights θ∗. ∀(A,B) ∈ E2, with
N ϵ

A,θ∗ the largest path-connected region of weights space
where the risk RA remains in an ϵ interval around RA(θ

∗),
we note:

Iϵ(A,B) = max
θ∈Nϵ

A,θ∗
|RB(θ)−RA (θ∗)| ,

R(A,B) = RB (θ∗)−RA (θ∗) ,

Hϵ(A,B) = max
1
2 (θ−θ∗)⊤HA(θ−θ∗)≤ϵ

1

2
(θ − θ∗)

⊤
HB (θ − θ∗) .

(12)
If ∀(A,B) ∈ E2 such as R(A,B) < 0, we have:

ϵ ≤ −R(A,B)× λA
h

λB
1

, (13)

then under previous Assumption 1,

max
(A,B)∈E2

T ϵ(A,B) = max
(A,B)∈E2

(R(A,B) +Hϵ(A,B))

(14)

Proof. We first prove that, under quadratic Assumption 1,
∀A ∈ E , N ϵ

A,θ∗ = {θ| |RA(θ)−RA (θ∗)| ≤ ϵ}. Indeed, the
former is always included in the latter by definition. Recipro-
cally, be given θ in the latter, {λθ∗ + (1− λ)θ | λ ∈ [0, 1]}
linearly connects θ∗ to θ in parameter space with the risk
RA remaining in an ϵ interval around RA (θ∗) because
∀µ ∈ [0, 1] we have |RA (µθ∗ + (1− µ)θ)−RA (θ∗)| =
(1− µ)2 |RA(θ)−RA (θ∗)| ≤ (1− µ)2ϵ ≤ ϵ.

Therefore ∀(A,B) ∈ E2:

Iϵ(A,B) = max
|RA(θ)−RA(θ∗)|≤ϵ

|RB(θ)−RA(θ
∗)|

= max
1
2 (θ−θ∗)⊤HA

(θ−θ∗)≤ϵ

∣∣∣∣R(A,B) +
1

2
(θ − θ∗)⊤HB(θ − θ∗)

∣∣∣∣
(15)

As the Hessians are positive, Hϵ(A,B) > 0. We now
need to split the analysis based on the sign of R(A,B).

Case R(A,B) ≥ 0

Both R(A,B) and Hϵ(A,B) are non-negative. Removing
the absolute value from the RHS of Eq. 15 gives:

Iϵ(A,B) = R(A,B) +Hϵ(A,B). (16)

Taking the maximum over (A,B) ∈ E2 where R(A,B) ≥ 0
gives:

max
(A,B)∈E2

R(A,B)≥0

Iϵ(A,B) = max
(A,B)∈E2

R(A,B)≥0

(
R(A,B) +Hϵ(A,B)

)
.

(17)



Case R(A,B) < 0

Leveraging λB
1 the largest eigenvalue from HB and λA

h the
lowest eigenvalue from HA, we upper bound:

Hϵ(A,B) ≤ max
λA
h
2 ∥θ−θ∗∥2

2≤ϵ

λB
1

2
∥θ − θ∗∥22 = ϵ× λB

1

λA
h

. (18)

Then Eq. 13 gives Hϵ(A,B) < −R(A,B). Thus the
number inside the absolute value from the RHS of Eq. 15 is
negative. This leads to: Iϵ(A,B) = −R(A,B)−Hϵ(A,B)
< −R(A,B) = R(B,A) < Iϵ(B,A). Thus the max over
E2 of function (A,B) → Iϵ(A,B) cannot be achieved for
(A,B) with R(A,B) < 0. We obtain:

max
(A,B)∈E2

Iϵ(A,B) = max
(A,B)∈E2|R(A,B)≥0

Iϵ(A,B). (19)

Similarly, R(A,B) + Hϵ(A,B) ≤ 0 < R(B,A) +
Hϵ(B,A). Thus the max over E2 of function (A,B) →
(R(A,B) +Hϵ(A,B)) cannot be achieved for (A,B) with
R(A,B) < 0. We obtain:

max
(A,B)∈E2

(R(A,B) +Hϵ(A,B))

= max
(A,B)∈E2

R(A,B)≥0

(R(A,B) +Hϵ(A,B)) (20)

Combining Eq. 17, Eq. 19 and Eq. 20, we conclude the
proof.

Lalign matches the domain-level Hessians
The Hessian matrix H =

∑n
i=1 ∇2

θℓ
(
fθ
(
xi
)
,yi
)

is of
key importance in deep learning. Yet, H cannot be com-
puted efficiently in general. In contrast, we use the fact that
the diagonal of H is approximated by the gradient variance
∇Var(G).

The Hessian and the ‘true’ Fisher Informa-
tion Matrix (FIM). The ‘true’ FIM F =∑n

i=1 Eŷ∼Pθ(·|xi)

[
∇θ log pθ(ŷ | xi)∇θ log pθ(ŷ | xi)⊤

]
approximates the Hessian H .

The ‘true’ FIM and the ‘empirical’ FIM. Yet, F
remains costly as it demands one backpropagation per
class. That’s why most empirical works (e.g., (Dan-
gel, Tatzel, and Hennig 2021)) approximate the ‘true’
FIM F with the ‘empirical’ FIM F̃ = G⊤

e Ge =∑n
i=1 ∇θ log pθ(y

i|xi)∇θ log pθ(y
i|xi)⊤ (Martens 2020)

where pθ(·|x) is the density predicted by fθ on input x.
While F uses the model distribution Pθ(·|X), F̃ uses the
data distribution P (Y |X). Despite this key difference, F̃
and F were shown to share the same structure and to be
similar up to a scalar factor (Thomas et al. 2020).

The ‘empirical’ FIM and the gradient covariance. Crit-
ically, F̃ is nothing else than the unnormalized un-
centered covariance matrix when ℓ is the negative log-
likelihood. Thus, the gradient covariance matrix C =
1

n−1

(
G⊤G− 1

n

(
1⊤G

)⊤ (
1⊤G

))
of size |θ| × |θ| and F̃

are equivalent (up to the multiplicative constant n) at any
first-order stationary point: C ∝ F̃ . Overall, this suggests
that C and H are closely related (Jastrzebski et al. 2017).

Critically, our regularization operates on the gradient vari-
ance Var(G), which corresponds to the diagonal elements of
the gradient covariance matrix C. Let a = (θ, p)⊤ denote
the compound parameter vector, where θ represents fixed
model parameters and p corresponds to trainable prompt em-
beddings. The gradient covariance matrix is defined as:

C =

[
Cθθ Cθp

Cpθ Cpp

]
=

[
Var (∇θf) Cov (∇θf,∇pf)

Cov (∇pf,∇θf) Var (∇pf)

]
.

(21)
Under the constraint that θ is fixed, this matrix simplifies to:

C =

[
0 0
0 Cpp

]
=

[
0 0
0 Var (∇pf)

]
, (22)

since Var (∇θf) = 0 and all covariance terms vanish due
to the constancy of θ-gradients. The trace of this covariance
matrix therefore reduces to:

tr (C) = tr (Var (∇pf)) . (23)

This simplification demonstrates that gradient alignment
in the original composite parameter space (θ, p) reduces
precisely to considering gradient variance in the lower-
dimensional prompt embedding space p, significantly de-
creasing optimization complexity. By explicitly aligning
these diagonal components across tasks, we implicitly en-
force consistency in the Hessian diagonal of the optimiza-
tion landscape near local optima.

Appendix. II - Experimental Results
Ablation Study
The extended ablation results across other datasets are pro-
vided in the Tab. 1. Both components individually improve
upon the baseline in every task domain. The combined ap-
proach maintains its superiority in all cases.

Evaluation on Prompt Weights
Supplementary results across other task domains confirm
the patterns observed in Fig. 1. Our weight calculation
method maintains superior Spearman correlation compared
to PANDA and SPoT in most tested domains. These compre-
hensive results validate our method’s robustness in capturing
genuine task affinities across diverse domains.

Performance Scaling with Source Prompts Number
Results of most target domains demonstrate the scaling pat-
tern in Fig. 2, with our method maintaining performance
advantages over PANDA and SPOT. The efficiency ceiling
varies by domain, and notably, more complex tasks exhibit
significantly greater performance gains as the number of
prompts increases – indicating enhanced knowledge trans-
fer from pretrained source prompts. Crucially, our approach
consistently achieves saturation at considerably higher accu-
racy levels than baseline methods across most tested scenar-
ios.



Table 1: Ablation Study on Framework Components.

H(α) Lalign Flo SVHN DML sNO-A sNO-E dS-L dS-O Cle-C Cle-D Avg
× × 97.0 66.5 34.3 16.1 20.8 63.4 35.7 38.2 48.5 46.7
✓ × 97.9 68.5 35.7 18.6 23.1 66.3 36.2 42.8 50.9 48.9
× ✓ 97.5 67.1 36.9 17.2 22.8 65.9 35.8 42.1 50.3 48.4
✓ ✓ 98.1 71.0 38.1 20.3 24.9 68.1 40.4 49.3 53.5 51.5

Figure 1: Prompt Weights analysis for 12 source prompts. Bar plots represent single-source transfer accuracy (left axis), while
line plots indicate prompt weights (right axis).

Parameter Analysis
The full sensitivity analysis is provided in the Tab. 2. We
analyze how the objective balancing influences results, with
implementation noting that instead of the formulation in Eq.
10, we maintain proportional equivalence between objec-
tives due to their differing scales. Performance trends reveal
optimal outcomes when λ = 1, indicating mutual reinforce-
ment between feature transferability and gradient alignment.

Appendix. III - Visualization of Datasets
CIFAR-100 The CIFAR-100 dataset shown in Fig. 3 con-
tains 100 classes of common objects organized into 20
superclasses, featuring diverse categories such as aquatic
mammals (beaver, dolphin, otter, seal, whale), fish species
(aquarium fish, flatfish, ray, shark, trout), flowers (orchids,
poppies, roses, sunflowers, tulips), food containers (bottles,
bowls, cans, cups, plates), and various vehicles (bicycle, bus,
motorcycle, train).

DTD The Describable Textures Dataset shown in Fig. 4
comprises 5,640 texture images categorized into 47 human-
perceived texture attributes. This collection captures a wide

Table 2: Regularization coefficient performance.

Dataset Regularization coefficient λ
0.1 0.2 0.5 1.0 2.0 5.0 10.0

Cifar100 72.1 74.0 75.8 75.9 75.8 75.5 74.2
DTD 63.0 64.0 63.5 64.2 63.1 63.0 62.9
Flowers102 94.5 96.0 97.3 98.1 97.6 96.4 95.5
Pets 87.3 86.9 86.3 87.4 87.7 87.1 84.7
SVHN 67.5 70.5 70.2 71.0 70.9 70.8 69.3
EuroSAT 89.5 91.9 91.4 92.6 92.3 91.0 88.5
DMLab 34.6 36.5 37.8 38.1 37.6 36.7 37.4
sNORB-Azim 19.2 20.0 19.6 20.3 19.7 19.7 17.2
sNORB-Ele 22.5 24.2 24.5 24.9 24.0 23.1 22.3
dSpr-Loc 66.6 67.4 67.3 68.1 67.4 66.9 65.8
dSpr-Ori 39.1 38.8 39.3 40.4 40.1 40.1 36.7
Clevr-Count 48.4 48.0 48.4 49.3 48.3 49.0 49.0
Clevr-Dist 53.8 51.4 53.1 53.5 52.8 53.2 51.5



Figure 2: Performance scaling with increasing source prompts.

Figure 3: Representative images from CIFAR-100 showing
diverse object categories.

spectrum of visual textures in natural environments, provid-
ing a challenging benchmark for material recognition tasks.

Flowers102 Developed by the University of Oxford, the
Flowers102 dataset shown in Fig. 5 contains 8,189 images
across 102 flower species, providing a comprehensive col-
lection for fine-grained visual categorization of botanical
specimens under varying photographic conditions.

Pets The Pets dataset shown in Fig. 6 features 7,349 im-
ages across 37 distinct cat and dog breeds, offering a chal-
lenging benchmark for fine-grained breed recognition with
significant intra-class variation in animal appearance, pose,

Figure 4: Representative samples from DTD.

Figure 5: Varieties of floral specimens in the Flowers102
dataset.

and imaging conditions.

SVHN Collected from Google Street View imagery, the
SVHN dataset shown in Fig. 7 contains over 600,000 digit
images for number recognition tasks, available in both full-
digit and cropped 32×32 formats, capturing digits in diverse
real-world contexts with complex backgrounds.

EuroSAT Based on Sentinel-2 satellite imagery, EuroSAT
shown in Fig. 8 provides 27,000 high-resolution (10m) im-
ages across 10 land cover categories including agricultural
areas, forests, grasslands, and urban zones, covering diverse
geographical regions throughout Europe.



Figure 6: Representative cat and dog breeds from the
Oxford-IIIT Pets dataset.

Figure 7: Naturalistic digit images from the SVHN dataset.

CLEVR CLEVR shown in Fig. 9 is a synthetic visual
reasoning dataset featuring procedurally generated scenes
with geometric objects and associated compositional ques-
tions, with specialized VTAB tasks including object count-
ing (CLEVR Count: 3-10 objects) and depth estimation
(CLEVR Distance: 6 distance intervals).

DMLab The DeepMind Lab environment shown in Fig.
10 provides 3D navigation frames annotated with distance
relationships to objects, featuring six interaction categories
based on proximity to fruits (apples, melons, lemons) at
three distance levels: nearby, far, and very far.

dSprites dSprites shown in Fig. 11 is a 2D shape dataset
with 737,280 binary images generated from six disentangled
factors (color, shape, scale, rotation, position), with VTAB
tasks focusing on location prediction (16 horizontal position
bins) and orientation estimation (16 rotation bins).

SmallNORB SmallNORB shown in Fig. 12 contains
48,600 stereo images of 50 toys across 5 categories, captured
under controlled variations including 6 lighting conditions,
9 elevation angles (30-70°), and 18 azimuth angles (0-340°),
with VTAB tasks for azimuth prediction (18 categories) and
elevation estimation (9 categories).
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Figure 10: First-person perspective in DMLab’s 3D environ-
ment.

Figure 11: Shape variations in dSprites demonstrating dis-
entangled factors.

Figure 12: Object variations under different poses in Small-
NORB.


