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Abstract

Prompt tuning has emerged as a lightweight strategy for
adapting foundation models to downstream tasks, particularly
for resource-constrained systems. As pre-trained prompts be-
come valuable assets, combining multiple source prompts of-
fers a promising approach to enhance generalization for new
tasks by leveraging complementary knowledge. However,
naive aggregation often overlooks different source prompts
have different contribution potential to the target task. To
address this, we propose HGPrompt, a dynamic framework
that learns optimal ensemble weights. These weights are op-
timized by jointly maximizing an information-theoretic met-
ric for transferability and minimizing gradient conflicts via a
novel regularization strategy. Specifically, we propose a dif-
ferentiable prompt transferability metric to captures the dis-
criminability of prompt-induced features on the target task.
Meanwhile, HGPrompt match the gradient variances with re-
spect to different source prompts based on Hessian and Fisher
Information, ensuring stable and coherent knowledge transfer
while suppressing gradient conflicts among them. Extensive
experiments on the large-scale VTAB benchmark demon-
strate the state-of-the-art performance of HGPrompt, validat-
ing its effectiveness in learning an optimal ensemble for ef-
fective multi-source prompt transfer.

Introduction

With the development of expanding datasets, novel architec-
tures, and improved training algorithms (Chen et al. 2020),
a significant number of vision foundation models have
been developed (Radford et al. 2021; Dosovitskiy 2020;
Liu et al. 2021). Transformer-based pre-trained vision mod-
els (PVMs) demonstrate exceptional efficacy across diverse
tasks, including image classification and semantic segmen-
tation. While these models exhibit impressive capability,
adapting them to downstream applications still presents no-
table challenges. Full model fine-tuning becomes impracti-
cal given the substantial parameter volumes and challenges
in low-data scenarios. This paradigm shift has made prompt
tuning (Huang, Qian, and Yu 2022; Lester, Al-Rfou, and
Constant 2021; Zhou et al. 2022) a key adaptation strategy.
By freezing PVMs and adding learnable prompt tokens, it
achieves competitive performance with only 0.4% parame-
ter updates, significantly fewer than full fine-tuning.

*Corresponding author. Email: yangli@sz.tsinghua.edu.cn
"Shenzhen Key Laboratory of Ubiquitous Data Enabling

Tsl - Frozen Model -
4]
Source T. Prompts
2> Frozen Model -
Tasks (4] . Ensemble
ng - A Frozen Model g
¢

Source Prompt Training

CLS Prompt Patch embedding Feature/Gradient
) —y

—= _
f ‘I ( ) Weight
: . — —INa, | = o
| : m U g_ — 2l
: 1 a N = “H
: 1 S > %2 o
1 : o A
I i 3
I : - & Target
: X as o Task
—> —

1
1
1 ! U —

-2

Figure 1: Multi-source prompt transfer framework. Task-
specific prompts are tuned via a frozen backbone and stat-
ically aggregated for target initialization. Our approach dy-
namically optimizes source weights through single forward-
backward propagation, learning prompt aggregation via an
optimization module.

The increasing sophistication of prompt learning has es-
tablished well-generalized prompts as valuable intellectual
assets (Schick and Schiitze 2021). This evolution has fos-
tered a practical ecosystem where users can access provider
task-specific prompts while maintaining data privacy and
model integrity. With the availability of multiple prompts
from the prompt pool, these prompts can be utilized in an
ensemble way by concurrently assembling them and trans-
ferring them to a single pre-trained model, as illustrated in
Fig. 1 (Sanh et al. 2021; Wang et al. 2023). However, sim-
ply concatenating or averaging source prompts often proves
suboptimal, as the knowledge encoded in different prompts
may contribute unevenly to the target task and can even lead
to representation collapse (Standley et al. 2020).

Effective multi-source transfer necessitates the assign-
ment of adaptive weights to each source prompt. However,
conventional methods (Vu et al. 2021; Asai et al. 2022;
Su et al. 2022; Zhong et al. 2024) predominantly eval-
uate the transferability of each prompt in isolation. This
approach fails to account for potential interdependencies
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when prompts are combined within an ensemble, overlook-
ing complementary effects that can significantly alter overall
transferability. Furthermore, existing techniques often rely
on heuristic methods, such as computing similarity between
prompts parameters (Vu et al. 2021), which typically lack a
rigorous theoretical foundation.

To overcome these limitations, we propose a lightweight
and theoretically reliable framework that dynamically learns
optimal prompt weights. Distinct from prior methods eval-
uating each prompt in isolation, our key innovation lies
in evaluating the transferability of feature ensemble in-
duced by the aggregated prompts. Specifically, we learn
the prompt weights by maximizing the H-score, a theo-
retically grounded, differentiable metric to quantify feature
transferability. Unlike conventional approaches relying on
heuristics, our method provides an explicit and interpretable
measure of each prompt’s contribution to the ensemble’s
transferability, rooted in information-theoretic and statisti-
cal principles (Xu et al. 2022).

Moreover, aggregating multiple prompts often introduces
detrimental interference between their gradients, which
leads to unstable optimization dynamics and suboptimal so-
lution. Building upon the theoretical insight that similar Hes-
sians and Fisher Information reduce inconsistencies in the
loss landscape (Parascandolo et al. 2020; Shi et al. 2021;
Rame, Dancette, and Cord 2022) , we introduce a simple yet
general gradient alignment regularization term in our opti-
mization framework. Specifically, this term match gradient
variance from the different source prompts. Minimizing this
term encourages consensus during optimization. By resolv-
ing these inherent gradient conflicts, our approach develops
a prompt ensemble with robust and consistent

Our method achieves state-of-the-art performance
through extensive evaluations on the large-scale VTAB
benchmark (Zhai et al. 2019), consistently outperforming
competitive strategies such as PANDA (Zhong et al. 2024),
SPoT, and ATTEMPT. Our approach establishes new bench-
marks for future research on multi-source visual prompt
transfer. The source code is available in the supplementary
material.

Related Work
Parameter-efficient Transfer Learning

Parameter-efficient transfer learning is crucial for adapting
large pre-trained models. In NLP, methods like adapters
(Houlsby et al. 2019a), BitFit (Ben Zaken, Goldberg, and
Ravfogel 2022), and LoRA (Hu et al. 2021) tune only 1-
5% of parameters. For vision, early work focused on Con-
vNets (e.g., residual adapters (Rebuffi, Bilen, and Vedaldi
2017)), but vision Transformers (Dosovitskiy 2020) intro-
duced new challenges. While some NLP techniques (e.g.,
adapters (Chen et al. 2022)) transfer directly, vision-specific
approaches like VPT (Jia et al. 2022) (learnable tokens) and
VP (Bahng et al. 2022) (pixel-level perturbations) achieve
high efficiency with minimal input-space modifications.

Transferability Estimation

Prompt transferability builds on task transferability re-
search (Zamir et al. 2018), as prompts guide frozen mod-
els (Feng 2023). Existing metrics for task transferability
(Ding et al. 2024; Tran, Nguyen, and Hassner 2019) can in-
form prompt evaluation. Information-theoretic approaches
like H-score (Bao et al. 2019; Ibrahim, Ponomareva, and
Mazumder 2022; Wu et al. 2024), LEEP (Nguyen et al.
2020; Agostinelli et al. 2022), and LogME (You et al. 2021)
assess feature discriminability and performance prediction.
Optimal transport methods like OTCE (Tan, Li, and Huang
2021; Tan et al. 2024) also measure domain-task differ-
ences. These foundations support prompt transferability un-
derstanding.

Multi-source Prompt Tuning

Prompt-tuning on smaller pre-trained models often under-
performs and is highly sensitive to prompt initialization,
as evidenced by prior studies (Huang, Qian, and Yu 2022;
Lester, Al-Rfou, and Constant 2021). To address these limi-
tations, Prompt Transfer (PoT) methods have been proposed
(Vu et al. 2021; Su et al. 2022), which leverage soft prompts
learned on source tasks to initialize prompts for target tasks,
thereby improving tuning efficiency and performance. SPOT
(Vu et al. 2021) explored the use of metrics to predict the
best source tasks for prompt transfer, and in parallel, (Su
et al. 2022) emphasized how prompt-induced neuron acti-
vations play a crucial role in transferability. In addition to
single-task transfer, PoT methods have been extended to
multi-task settings. For example, ATTEMPT (Asai et al.
2022) proposed mechanisms to aggregate knowledge from
multiple source tasks, using attention mechanisms strategies
to initialize target prompts. PANDA (Zhong et al. 2024) ex-
plicitly addresses the issue of prior knowledge forgetting by
distilling task-specific knowledge into the target prompt.

Preliminary
Visual Prompt Tuning

Visual Prompt Tuning (VPT) is a parameter-efficient trans-
fer learning paradigm that adapts pre-trained vision trans-
formers to downstream tasks by learning task-specific
prompt embeddings while keeping the original model pa-
rameters frozen. This approach introduces a small set of
learnable parameters in the form of prompt tokens, which
are prepended to the input sequence, enabling efficient adap-
tation to new tasks without modifying the underlying model
architecture. The key advantage of VPT lies in its ability to
leverage the rich representations learned by large-scale pre-
trained models while requiring significantly fewer trainable
parameters compared to full fine-tuning.

Formally, given a pre-trained Transformer with embed-
ding dimension d, we introduce m learnable prompt tokens
P = [p1,...,pm] € R™*? For an input image X with
patch embeddings E(X) € R"*4, the combined input se-
quence becomes [P; E(X)] € R+ x4 where m is the
prompt length and n is the number of image patches. The
model parameters € remain fixed during training, with gra-
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Figure 2: Overview of the framework Given an input image X, the system generates M distinct feature representations { f; } £,
and corresponding gradients {g*}}, through multiple source prompts These features and gradients are fused using learnable
weights a to produce the final combined feature f, and gradient g*. The Transferability term evaluates the fused feature
distribution against the target class label, and the Gradient Alignment Regularization aligns the prompt gradient variance.
The Weight Optimizer jointly optimizes these dual objectives to determine the optimal source weights c, which subsequently

initialize the target prompt.

dients only propagating through the prompt embeddings P.
The prediction probability for class Y is given by:

exp(fy ([P E(X)];0))
Sy exp(fil [P B(X));0))
(-

where C' denotes the number of classes, and fZ ) represents
the pre-trained model’s logit output for class ¢. This formu-
lation allows the model to adapt to new tasks by learning
task-specific context through the prompt tokens.

Pry(Y|X; P) = (D

Multi-Source Prompt Transfer

In many real-world scenarios, we often have access to mul-
tiple source prompts that can be utilized for the target task.
Multi-source prompt transfer aims to harness these related
prompts to enhance performance on the target task. Given s
source tasks S = {S;}%_, along with their corresponding
optimized prompts {P;}¥ ,, our goal is to construct a tar-
get prompt Pr for a new task 7" by optimally combining the
source prompts based on their relevance to the target task.
Let M < &k denote the number of selected source
prompts. We fix the hyperparameters @ = (a1,...,an)
satisfying Zf\il a; = 1 and o; > 0. Then we simultane-
ously optimizes both the header parameters 6 and the target
prompt Pr, where Pr is initialized by a convex combination

Pr = Zf\il a; P; of the frozen source prompts { P}, .

maxEq, )~p, [log Po(yl[z; Pr])] )
PT 79

This joint optimization learns both task-specific header pa-
rameters and target prompt formed by the weighted combi-
nation of source prompts. Crucially, the optimization land-
scape of Pr is highly sensitive to this initialization, making
the choice of « a critical factor in final performance. This
underscores why learning optimal combination weights is

paramount. The weights «; maintain interpretability by re-
flecting the relative importance of each source task to the tar-
get task. Our method mainly focuses on learning o, whose
optimized values not only improve transfer performance but
also can reveal task relationships and transferability insights.

Methodology

To dynamically learn optimal weights for source prompts,
we propose a lightweight framework that jointly maximizes
an information-theoretic transferability metric while match-
ing gradient variance through a novel regularization strategy,
as illustrated in Fig. 2. First, we present the mathematical
formulation of the H-score based transferability metric and
establish its theoretical reliability for optimization. Second,
we provide a detailed explanation of the gradient alignment
regularization, including its theoretical basis and intuition.
The framework is designed to be both lightweight and inter-
pretable, capable of serving as a plug-in module for multi-
source prompt transfer scenarios.

Measuring Prompt Ensemble Transferability

To overcome the limitations of previous heuristic prompt en-
semble strategies that treat prompts independently, we adopt
a transferability metric to quantify each prompt’s contribu-
tion to the combined ensemble. Specifically, we introduce an
information theoretic metric for feature transferability based
on H-score (Bao et al. 2019; Xu et al. 2022). Unlike con-
ventional assessments that assume transferability correlates
with parameter similarity, our proposed metric focuses on
the intrinsic informativeness of prompt-induced features, ex-
plicitly evaluating the effectiveness of prompt ensembles for
the target task. The mathematical formulation of H-score is
defined as follows:

Definition 1 With input data x, label y and feature extractor
f(x) (a zero-mean feature function). The one-sided H-score



of [ with regard to the task casting x to y is:

H(f)=tr (cov(f(X))_1 cov (]Eley [f(X)|Y])) . Q)

The full derivation is provided in the Appendix. This for-
mulation admits an intuitive interpretation: A high H-score
indicates larger inter-class discriminability, characterized by
cov (E[f(X)]Y]), and minimized feature redundancy, re-
flected in a small tr(cov(f(X))). Thus, elevated H-scores
signify that prompt successfully elicits transfer-effective fea-
tures from the model.

Given a frozen visual encoder fy and M source prompts
{P;}M, pre-trained on distinct tasks, for an input image
X € X, the i-th source prompt feature extraction is defined
as:

fr.(X) = fo ([z0; P E(X)]) € R" @)
where E(X) € R"™*? denotes image patch embeddings,
2o € R? the [CLS] token, and h the feature dimension. The
optimal combination weights « are determined by maximiz-
ing the H-score of the weighted feature sum, which yields
the most transferable prompted feature representation.

Definition 2 Given source-specific features { fp, }jj‘il, the

optimal feature weights o« = (aq,...,ap) € RM are
determined by:
M M
* fr— . P
a® = arg mng (Zj—l a; fp].) s.t. ijl aj =1

&)
We then verify the benign property of the proposed opti-
mization problem by proving that the optimal objective H-
score is a convex function of a.

Theorem 1 Given input data X, labels Y, and {fp,}?,
with 37", a; = 1, the H-score of the weighted feature is a
convex quadratic form:

n n

) - (5 ) =35

i=1 j—1 (6)
“tr (EPY []EPX\Y [fl(X)‘Y] ) ]EPX\Y [fJ(X)|Y]T])

With above theoretical guarantee, the optimization problem
can be reliably solved using gradient descent based methods,
as detailed in Algorithm 1. We provide the complete proof
of Theorem 1 in the Appendix.

Gradient Alignment Regularization

Each prompt encodes task-specific knowledge. However,
directly aggregating these prompts often leads to cross-
interference between prompts, where independent evalua-
tion fails to account for their synergistic or conflicting in-
teractions. To address these issues, we propose aligning the
gradient directions of all prompts, ensuring they collectively
guide the model toward a unified optimization trajectory.
Building upon the gradient agreement principles from
multi-task learning (Yu et al. 2020; Shi et al. 2021; Liu
et al. 2023; Rame, Dancette, and Cord 2022), we pro-
pose a novel gradient variance matching objective for multi-
source prompt transfer. Given M source tasks with opti-
mized prompts { P; }},, we compute the gradient of the loss

Algorithm 1: HGPrompt: Training Process

Input: Target data Dr = {(zy,v:)}X,, source prompts
{P;})L,. learning rate 7, hyperparameter A

Output: Optimal weights o

1: Initialize o = {1, g, . . ., apg } with Z]M=1 a; =1

2: for epoch=1to K do

3 pyla) =Exy[fa(X)Y =y
H(ex) = tr(cov(fa) " teov({1y}))
Compute gradient variance: {v; f\il via Eq.(8)
Evaluate gradient alignment regularization: Lajign(cx)
via Eq.(9)
7:  Compute total loss: L(a) = —H (o) + ALyjign (x)
8:  Update weights: o — o« — Vo L
9: end for

AN AN

with respect to each source prompt P; as:
9" = V. L(follzo; Pi; B(X)]), ). (7

For each source prompt P;, we compute its gradient vari-
ance:
1
v; = Var(G) = N_1 > (g) — 957, (8)
j=1

where g% = ﬁ Zi\il a;g* is the weighted mean of gradi-
ents, and G = [¢']M is the N x | P| prompt gradient matrix
and N is the batch size of samples used for gradient compu-
tation. We adapt the regularization to promote gradient vari-
ance alignment among source prompts:

1 M
Laign(@) = 72> [vi = o(a)l3, ©
=1

where the mean gradient variance is defined as 7(a) =

ﬁ Zf\il v;(ar). Balanced with a hyperparameter coefficient
A > 0, this regularization penalty complements the original
H-score objective,

L) = —H () + ALlyiign (). (10)

Theoretical Analysis Our gradient alignment regulariza-
tion Lajgn builds on established theoretical foundations in
domain-invariant learning (Parascandolo et al. 2020), which
seeks to identify invariant mechanisms in data by finding
model parameters that exhibit consistent behavior across dif-
ferent domains. To quantify the consistency of the loss land-
scape around the optimal parameter 8* across domains, the
inconsistency score is defined as follows:

Definition 3 Given a model parameter 0%, the inconsistency
score T¢(0%) is defined as:

IW)=gg9£§JRM®—RM9W (11)

where 0 € N ,. if there exists a continuous path in pa-

rameter space between 0 and 0* along which the risk R 4
remains within € of R 4(0*), for e > 0.
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Figure 3: Loss landscapes for a two-parameter model, show-
ing conflicting gradient variances { ggA) o4 and {gEB)}?:Bl
around 6*. This shows the case where a nearby solution
0 € N§ o maintains equivalent risk R4 () ~ Ra(6") in
domain A but exhibits higher risk in domain B.

This concept is illustrated in Figure 3, which demonstrates
that minima with low consistency fail to generalize to new
environments (Deutsch 2011). The inconsistency score Z in-
creases when the loss landscapes around 6* present conflict-
ing geometric structures across different domains.

Theorem 2 Let 0* be a simultaneous local minimum
across domains with positive definite Hessians. Under the
quadratic bowl assumption and for sufficiently small € > 0:

7(6°) = max (RB(a*)—RA(a*)|+ max

10T Ha0<e

(12)

We provide the complete proof of Theorem 2 in the Ap-
pendix. The first term captures the loss landscape mismatch
through domain-level risk differences. We will prove and
show that Lign forces this term to be small in Appendix. For
the second term, we employ a diagonal approximation of the
Hessians for analysis. In that case, H. = diag(\§,..., A7)
with Vi € {1,...,h},A¢ > 0, the curvature term can be
expressed as:

1 ~
max —0' Hgf = max G2\B /\A
30T Ha0<c 2 N |\9~||§S2€; deie (13)

— By A
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This result demonstrates that the second term diminishes
when H 4 and Hp have similar eigenvalues. Consequently,
enforcing Hy = Hp reduces inconsistencies in the loss
landscape, thereby enhancing generalization performance.
As we elaborate in the Appendix, our proposed Laign effec-
tively aligns domain-level Hessians through gradient vari-
ance matching, by leveraging the fundamental connections
between gradient variance, Fisher Information, and the Hes-
sian.

Experiments

We evaluate the proposed approach for a wide range of
downstream recognition tasks with pre-trained Transformer

;|9TH39|>.

backbones. We first describe our experimental setup, includ-
ing the pre-trained backbone and downstream tasks and a
brief introduction to other transfer learning methods.

Setup

Datasets. We experiment on a collection of 13 datasets
from V-tab-1k (Zhai et al. 2019). VTAB is a collection
of dieverse visual classification tasks, which encompasses
three distinct categories of tasks: Natural, featuring images
taken with conventional cameras; Specialized, containing
data acquired through specialized devices, such as satellite
sensors; and Structured, which demands spatial reasoning,
like counting objects. We provide more detailed descriptions
of the datasets in the Appendix.

Implementation Details. We implement all experiments
on NVIDIA A800-80GB GPUs. For a fair comparison, all
methods use a ViT-B/16 backbone pre-trained on ImageNet-
21k, and the number of prompt tokens is set to 50. We follow
the original configurations, eg. number of image patches di-
vided, existence of [CLS], etc. We train the prompt on all
the source tasks for 10 epochs for source prompt training.
We use 2000 samples from each source task for each target
task to compute the transferability loss and gradient align-
ment loss.

Baselines. = We compare our approach to eleven recent
methods, categorizing them as follows: (1) Methods that re-
train the classification head: PARTIAL-k (Zhang, Isola, and
Efros 2016) fine-tunes only the last k layers of the backbone
while freezing others; MLP-k utilizes a multilayer percep-
tron with k layers as the classification head instead of a lin-
ear layer. (2) Methods that update a subset of backbone pa-
rameters or add new trainable modules: Adapter (Houlsby
et al. 2019b) inserts new MLP modules with residual con-
nections into transformer layers; SIDETUNE (Zhang et al.
2020) trains a side network and linearly interpolates be-
tween pre-trained features and side-tuned features before
feeding them into the head; BIAS (Ben Zaken, Goldberg,
and Ravfogel 2022) fine-tunes only the bias terms of the pre-
trained backbone. (3) Prompt transfer methods: Average di-
rectly uses the mean of source prompt embeddings; Single-
Best selects the source prompt with optimal transfer per-
formance; Visual Prompt Tuning (VPT) (Jia et al. 2022)
initializes target prompt embeddings randomly; SPoT (Vu
et al. 2022) calculates similarity between source and target
prompt embeddings; ATTEMPT (Asai et al. 2022) mixes
pre-trained source and target prompts via an attention mech-
anism; PANDA (Zhong et al. 2024) measures cosine simi-
larity between task embeddings as a transferability proxy.

Main Results

Our experimental evaluation across 13 diverse vision tasks,
as detailed in Tab. 1, demonstrates HGPrompt’s superiority
over 13 baselines using a ViT-B/16 backbone pre-trained on
ImageNet-21k. The proposed method achieves state-of-the-
art performance with an average accuracy of 60.3%, sur-
passing prior multi-source prompt transfer approaches. HG-
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Linear 617 586 96.6 839 327 839 30.6 122 203 126 182 32.1 286|440
PARTIAL-1 644 603 97.5 860 363 87.8 325 165 21.8 313 392 413 321|498
MLP-2 393 430 885 763 280 804 297 125 203 245 308 31.5 295|411
MLP-3 419 462 905 784 303 839 307 141 215 259 33.1 338 302|431
MLP-5 38.1 44.1 908 79.1 28.8 812 305 139 204 225 332 330 29.1 | 419
MLP-9 38.6 461 92.1 812 280 842 31.0 147 229 197 332 390 283|430
Adapter 738 61.7 975 866 327 853 294 119 195 224 208 40.1 351|474
SIDETUNE 535 587 934 772 17.6 372 267 106 151 132 13.6 203 194 |35.1
BIAS 708 575 972 85.1 453 897 312 135 232 633 397 49.1 545|562
VPT 560 574 973 825 614 889 367 153 14.1 42.8 355 348 51.0] 518
Single-Best 639 602 97.0 834 632 895 361 183 189 S57.1 364 383 519|549
Average 648 618 961 842 644 906 363 172 21.1 595 341 37.5 508|552
SPoT 756 637 977 863 704 921 37.3 194 233 650 360 415 528 | 58.5
ATTEMPT 678 62.1 96.1 85.1 69.0 91.0 362 17.9 235 612 350 435 512|569
PANDA 741 613 965 862 712 90.8 37.8 194 240 677 373 428 539|587
HGPrompt 759 642 98.1 87.4 710 92.6 38.1 203 249 681 404 493 535 | 60.3

Table 1: Performance comparison across diverse vision tasks using a Vision Transformer (ViT-B/16) backbone pre-trained
on ImageNet-21k. The second-best results are underlined, while the best results are highlighted in bold. All reported values
represent the average accuracy obtained from three independent runs, with the highest average accuracy achieved by our method.

Table 2: Ablation Study on Framework Components

H(o) Luign | Cifar DTD Pets Euro Avg
X X 604 57.8 827 89.1 725
v X 746 623 859 912 785
X v 74.1 619 855 90.8 78.1
v v 759 642 874 926 80.0

Prompt excels in fine-grained recognition tasks, achieving
top results on Flowers102 and Oxford Pets. It also outper-
forms all baselines in texture analysis on DTD and main-
tains competitive performance on CIFAR100. Notably, the
method establishes new state-of-the-art results in geomet-
ric reasoning tasks, including SNORB-Azimuth and dSprite-
Orientation, with significant improvements in complex vi-
sual reasoning tasks like Clevr-Count. While PANDA re-
tains an advantage in SVHN, HGPrompt exhibits a more
balanced and robust performance across all task categories,
highlighting its effectiveness.

Ablation Study

The ablation study in Table 2 systematically evaluates each
component’s contribution in our framework. Additional
dataset results are provided in the Appendix. The baseline
method, which directly optimizes weights by minimizing
cross-entropy loss on the target task, achieves 72.5% average
accuracy. Using the H-score objective alone improves per-

formance to 78.5%, validating its effectiveness for feature
discriminability evaluation. Similarly, employing Lign as
the sole optimization objective yields 78.1% accuracy. Most
notably, combining both components produces the best per-
formance 80.2%, demonstrating their complementary roles
in achieving optimal transfer learning results.

Analysis and Discussion

Evaluation on Prompt Weights To demonstrate the ef-
fectiveness of our learnt Prompt Weights, we pretrained a set
of source prompts and evaluated their zero-shot transfer ac-
curacy, as shown in Fig. 4. We plotted the weights calculated
by SPoT, PANDA, and our proposed HGPrompt method.
Our approach more accurately reflects semantic task affini-
ties, indicating that our proposed metric can better distin-
guish different task relationships: similar tasks exhibit larger
prompt transferability. For example, tasks involving natu-
ral scenes—such as Flowers, Pets, and DTD—demonstrate
higher inter-task transferability, a pattern largely captured by
HGPrompt. To systematically validate this finding, we con-
ducted a quantitative analysis presented in Table 3. We com-
puted Spearman’s rank correlation between the predicted
weights and the actual zero-shot transfer accuracy, con-
firming that our metric achieves superior correlation com-
pared to existing approaches. In contrast, the results reveal
that SPoT and PANDA struggle to accurately evaluate task-
relevant semantic information, exhibiting significant fluctu-
ations. Complete results are provided in the appendix.
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Figure 4: Prompt Weights analysis for 12 source prompts.
Bar plots represent single-source transfer accuracy (left
axis), while line plots indicate prompt weights (right axis).

Table 3: Spearman’s p correlation scores.

Cifar C-di d-Lo DML SVHN/| Avg

SPoT 0.552 0.175 -0.168 0.112 -0.147 | 0.105
PANDA 0916 0.441 0.552 0.713 0.224 | 0.569
HGPrompt 0.944 0.664 0.853 0.727 0.853 | 0.808

Performance Scaling with Source Prompts Number As
shown in Fig.5, our method demonstrates progressively
stronger performance advantages over PANDA and SPOT
when using DTD as the target domain, particularly as the
number of source prompts increases from 3 to 11. Results
for other domains can be found in Appendix. This scal-
ing behavior highlights our approach’s superior capability in
effectively utilizing larger prompt collections. While abso-
lute accuracy shows consistent improvement with additional
source prompts, the system eventually approaches an inher-
ent efficiency ceiling.

Representation Space Visualization To analyze the ef-
fect of prompt ensemble on the learned representation of
the target test data, we present t-SNE visualizations of ViT
feature embeddings in four different prompt transfer meth-
pds in Fig.6. As shown in Fig.6.d, our method shows better
class discriminability than other baselines. Instead of scat-
tered clusters, objects from the same category form tightly
grouped regions with clear separation boundaries. The vi-
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Figure 5: Performance scaling with increasing source
prompts on Clever-Count target domain.
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Figure 6: t-SNE Visualization of representations on Eu-
roSAT (10 Classes). Each color corresponds to a distinct
class.

sualization underscores the effectiveness of our method in
constructing a coherent and well-structured feature space for
transfer learning.

Parameter Analysis We analyze how the regularization
coefficient A influences our results. Performance trends
across benchmarks reveal optimal outcomes when both ob-
jectives contribute comparably, indicating mutual reinforce-
ment between feature transferability and gradient alignment.
The full results are provided in the appendix.

Discussion While our current work has demonstrated the
effectiveness of visual prompting within transformer archi-
tectures, we acknowledge its limitations in terms of archi-
tectural specificity and modality constraints. Future work
in these directions may require novel approaches to prompt
design and adaptation, potentially drawing inspiration from
recent advances in multimodal learning and architecture-
agnostic representation techniques. The ultimate goal would
be to establish prompting as a truly universal interface for
model adaptation and control, transcending specific archi-
tectural choices or modality limitations.

Conclusion

In this work, we introduce HGPrompt, a novel frame-
work for multi-source prompt transfer that explicitly opti-
mizes the prompt ensemble. Our methodology determines
optimal source weights by maximizing the H-score while
matching gradient variance, thereby effectively quantifying
the transferability of the source prompt ensemble. By dy-
namically balancing feature discriminability with general-
ization, HGPrompt leverages complementary information
across prompts while simultaneously suppressing interfer-
ence. Our contributions establish a solid foundation for ad-



vancing multi-source prompt transfer, offering both theo-
retical and practical insights to enhance foundation model
adaptability.
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