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Abstract

In large online volunteer systems, inefficiency and low volunteer retention are existing chal-
lenges that compromise the success of online communities particularly given the uncertainty
in volunteer participation behavior. A strategy that matches volunteers to a host of fields will
alleviate these challenges, yet creating an all-in-one volunteer recommendation system is an
unexplored but promising area. We propose VolRec, a session-based recommendation for
large volunteer networks that employs temporal dynamics to capture uncertainty caused by
the changing structure of volunteers’ participation behaviour. To optimize the recommenda-
tions, we construct a probabilistic volunteer network graph that denotes co-participation in
an activity. We then model individual and inferred neighbours’ preferences as dynamic and
context-aware sessions. VolRec can be adapted to recommend volunteers to organizers, tasks,
groups and communities, creating a comprehensive and efficient recommendation system.
Experiments using Pioneers data, a mobile based app launched in the wake of Covid-19 to
mobilize volunteers and record their participation activities demonstrate the efficacy of this
approach.

Keywords Session-based recommendation - Volunteer - Graph neural networks -
Temporal dynamics

1 Introduction

In recent years particularly in the wake of Covid-19 pandemic, governments turned to online
volunteer platforms to coordinate volunteer efforts. As countries grappled with the over-
whelming demand for help, crowdsourcing volunteer platforms became pivotal in mobilizing
volunteers to effectively control the pandemic (Marston et al., 2020). However, when the
crowdsourcing platform is not properly designed, volunteers spend a lot of time searching
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for active organizers, tasks and communities to participate in. This negative experience leads
to dissatisfaction and results in exodus of both organizers and volunteers from the platform,
plummet volunteers’ retention rate and trigger the ultimate collapse of the system, (Locke
et al., 2003). To improve the efficiency of crowdsourcing systems, it is crucial to understand
volunteer participation behavior and learn their representation to recommend volunteers to
a host of possible fields. Our study is motivated by the growing adoption of crowd source
volunteer platforms, where individual volunteers collaborate to achieve rapid mobilisation
toward emergent community demands.

Yet there has been fundamental challenges in designing optimal recommendation systems
due to uncertainty in user behaviors. Given user-item interaction matrix, existing collabo-
rative filtering methods such as [temKNN and Matrix factorization use this matrix to learn
embeddings and rely on similarity to compute predictions. This approach is problematic
since it does not accommodate the sequential order of users’ consumption of items as well
as their social network relations which could be very informative in predicting the next item.
A recent study by Lei et al. (2022) utilizes sequential user-item interactions but ignores
social relationships when making recommendations. These limitations create sub-optimal
recommendations and this concern motivates our work.

To address the above limitations, we utilize temporal-dynamic information to create
sequences of volunteer participation. To guarantee optimality, we segment these sequences
into sessions using an entropy based method. Additionally, we incorporate social relation-
ships by creating a probabilistic volunteer network graph based on users’ co-participation
history. To capture the dynamic relationships in the volunteer network, we employ Graph
Neural Networks (GNNs) and propagate the influence of each neighbour for a target vol-
unteer agent using an attention mechanism. As we will show, dynamic volunteers’ task
participation can be modeled as session embeddings, and including volunteer network infor-
mation significantly improves the recommendation accuracy by ~ 26% as partly displayed in
Fig. 1.

We study online crowdsourcing volunteer systems because they are less explored, yet
seeing a rebound in use since Covid-19 pandemic (Marston et al., 2020). For instance, when
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Fig. 1 Visualization of results for VolRec compared against existing baselines. We evaluate the models on
volunteer-organizer recommendation using the log of Recall@ 10 and compare their performance under dif-
ferent scenarios. Our model outperforms the baselines both when all data is used, and on structural break point
intervals, BP1-5, computed at district level
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an organizer-volunteer recommendation system is set up effectively, on one hand volunteers
spend less time finding tasks, and on the other hand, organizers are assured to get the right
volunteers for their tasks. From a policy perspective, the ability to predict volunteer participa-
tion particularly as sessions is vital for local authorities and community leaders to determine
and allocate the precise number of resources required for each task. Using data collected
from a large-scale mobile volunteer platform (Zhang et al., 2022) in Shenzhen, China, we
learn the volunteer-organizer relationships in a decentralized setting where a volunteer can
also be an organizer.

This study makes the following contributions: 1) We proposed VolRec, a sequential rec-
ommendation algorithm as a strategy to deal with uncertainty and inefficiency in large
crowdsourcing volunteer platforms. 2) To optimize the recommendations, we construct a
probabilistic volunteer network graph from users’ participation history and further segment
volunteer interactions with organizers, tasks and communities into context aware sessions,
which consist of ordered sequences that are learned and propagated using an attention mech-
anism. 3) We adopted GNNss to capture high order structural data in large volunteer networks.
4) We conduct extensive experiments using real world volunteer data. Experimental results
demonstrate the effectiveness of our session-based recommendation with temporal dynamics
over existing baselines. Moreover, this study is the first to propose a recommendation system
as a strategy to improve efficiency of large volunteer networks.

The rest of the paper is organized as follows: Section 2 recaps related work in recom-
mender systems. Section 3 describes the methodology for VolRec while Section 4 discusses
experiments and subsequent results. We conclude in Section 5.

2 Related work
2.1 Recommendation systems

Recommendation systems have important applications in a range of areas including social
networks (Wang et al., 2014); online purchases (Linden et al., 2003); movies, online book-
marking and restaurants (Lei et al., 2022; He et al., 2022; Song et al., 2019); music streaming
(Choi et al., 2022; Guo et al., 2019); web browsing (Xu et al., 2018) and news (Liu et al.,
2010).

A significant body of scholarship has proposed several recommendation systems in liter-
ature. Generally, recommender systems fall into three categories namely shallow, neural and
GNNs models, (Gao et al., 2022). Shallow models include Matrix factorization algorithms
(Koren et al., 2009; Rendle et al., 2010), Item-based collaborative filtering methods (Lin-
den et al., 2003; Sarwar et al., 2001) and Personal Ranking methods (Rendle et al., 2012).
While this class of models are easy to compute, they have severe shortcomings. For instance,
ItemKNN treats user-item interactions as static over time and does not consider complex
user behaviors. More importantly, Matrix Factorization (MF) methods model user and item
features by computing the inner product between the latent features of users and items. Neu-
ral network models such as Neural Collaborative Filtering (NCF) (He et al., 2017) improved
the shallow models by replacing the inner product with multi-layer perceptrons (MLP) that
learn the user-item interaction function. Neural models achieved superior performance due
to the use of deeper layers and their ability to learn non-linear relationships. However, these
methods are limited since they do not capture the high-order structural information in data,
(Gao et al., 2022). For instance, NFC recommends items by optimizing the prediction of
items that the user has interacted with, while ignoring neighbourhood information.
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2.2 Session-based recommendation

Previous studies have introduced a number of cutting edge technologies in sequential rec-
ommender systems. Session-based recommendation is a form of sequential modeling that
seeks to model a user’s temporal behaviour by capturing the user’s successive sequential
consumption of a basket of items. The differences between session-based recommendation
and sequential recommendation are formally outlined in a survey by Wang et al. (2022).
Prior research on sequential recommendation has used powerful methods based on Recur-
rent Neural Networks (RNN) and its variants, Long Short-Term Memory (LSTM) (An et al.,
2019; Li et al., 2017) and Gated Recurrent Unit (GRU) (Hidasi et al., 2016; Donkers et al.,
2017). Besides, other studies have used Markov Decision Processes (MDP) (Shani et al.,
2005) and random walk (Choi et al., 2022) to model the sequential order of user-item
interactions.

Additionally, state-of-the-art models such as NARM (Li et al., 2017) and STAMP (Liu
et al., 2018) have also achieved significant results. NARM utilizes global and local encoders
to capture user’s sequential behaviour while STAMP applies a simple MLP and attentive net
to model general and current interests of the user. SR-GNN (Wu et al., 2019) models session
sequences, represented by a combination of global and local preferences as session graphs
and use GNN to capture the item transitions. Recommender systems have also been adapted
to specific scenarios. For instance, Guo et al. (2019) proposed SSRM, which integrates MF
techniques with session-based recommendation to model user behaviour in online music
streaming. Despite demonstrating high levels of performance, these models neglect latent
relationships between users. Incorporating implicit social network data in user modelling
is still an emerging area of interest in recommender systems (Song et al., 2021). A recent
survey by Gao et al. (2023) provides an overview of deep learning methods tailored to various
contexts including social recommendation. Several conventional methods such as Popularity
Predictor (POP), ItemKNN (Linden et al., 2003) and BPR-MF (Rendle et al., 2012) are
established baselines with cutting-edge performance in recommender systems.

2.3 Recommendation on social networks

Studies have shown that people’s networks are homogenous, and a user is similar to or
influenced by the people around him/her, (McPherson etal.,2001). In addition, recent research
in recommender systems has exploited social relations and dependency connections and
recorded significant improvements, (Fan et al., 2019). While previous studies suggest that
incorporating social network information enhances learning and representation of a user’s
latent space, little work has been done to derive and extract meaningful neighbourhood
features where they are not initially given. On another front, Eagle et al. (2008) explored
observable behaviors such as proximity between people to infer friendship and found a
correlation between physical proximity and the probability of friendship.

2.4 Graph attention networks

GNNs have achieved state-of-the art in many applications mainly because of their graph
structure that allows the propagation of high-order neighbourhood information. Several vari-
ations of GNNs have been proposed. For instance, Kipf and Welling (2016) introduced
Graph-Convolutional Networks (GCN) for semi-supervised graph classification where node
representations are updated by aggregating the current node’s representations and that of its
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neighbours. Consequently, network architectures based on GCN, for example, GraphSage
(Hamilton et al., 2017) attributes a static weight to each neighbour when updating node
representations. Although GCNs captures dependencies among nodes, the influence of each
neighbour on the current node is not always identical and deterministic. To address this
challenge, Velickovi¢ et al. (2017) proposed Graph Attention Networks, an architecture that
adopts an attention mechanism to weigh the influence of neighbours differently.

2.5 Online volunteer systems

Online crowdsourcing volunteer systems are less explored in literature. The most recent work
in this field is by Zhang et al. (2022) who investigated how self-organizing emerged during the
Covid-19 pandemic response and its effectiveness in crowdsourcing volunteer organizations.
Our study builds on the inspiring work of Song et al. (2019) and Wu et al. (2019) on sequential
recommendation. The authors extract features from predefined social relationships without
employing techniques to optimize the network for better performance. With the complexity
of online crowdsourcing data, it is increasingly important to learn the latent structure of the
relationships within data when building online recommendation systems.

3 Methodology

In this section we begin by introducing the probabilistic volunteer network graph and show
the subsequent neighboring effect of volunteers. Next, we present the architecture for our
proposed framework. Last, we describe the modeling of volunteers and their neighbours’
long and short term preferences and the propagation strategy used in learning these features
in the neural network.

3.1 Volunteer network

We construct the volunteer network graph, G = (V, £) where nodes V indicate target volun-
teers and their neighbours; and edges £ correspond to their friendship. We build the graph in
two steps. First, we compute a ‘bag of activity’ Q(v, o) denoting volunteer-organizer inter-
action to record the frequencies of volunteers’ v participation in organizers tasks. Q(v, o) is
a V x O matrix, where O is the total number of organizers. We further express Q(v, 0) as a
probability matrix consisting of P(v | 0). In the second step, for each volunteer v € V, we
define cosine similarity as follows:

Z?:l qviqvj
\/Z:'lzl ql%,-\/Z;;l ‘15,

S(qv,'7QUj): s Qu; 7&‘]“1‘ (1)

S(qu;, qv;) represents the similarity between volunteer v; and v;’s task participation
behaviour, where ¢,, and g, ; are denoted as Q(v;, .) and Q(v;, .), respectively. We build
the adjacency matrix by sorting all nodes v with respect to S(qu,;, gv;) such that:

A _ ] ifS(‘Iv,-»ij) >= S(CIU,-, szk)
0 otherwise.
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where g, is vi’s bag of activity embedding and vy is the k—th most similar node measured
by S with respect to v;. For example, we fix the number of v;’s neighbours empirically to
n = 10. The adjacency matrix is a V x 10 matrix consisting of V volunteers and their
corresponding top 10 neighbours.

The findings of Eagle et al. (2008) and Wang et al. (2014) on friend recommendation
inspired our approach to use volunteers’ task participation history to infer social relationships
and the use of cosine similarity allows us to capture the latent relationships such as proximity
of volunteers and shared task preferences. The probabilistic rendering of volunteer network
yields embeddings that are more representative of our volunteers’ task participation behaviour
given an organizer.

Each node in the graph utilizes its respective volunteer’s representations as features. We
utilize this graph to propagate the influence of each neighbour in the network towards a
target volunteer. We note that this approach is a special case as it differs from the main-
stream session-based recommendation systems that base their recommendations solely on
pre-existing social networks (Song et al., 2019). To our knowledge, session-based recommen-
dation previously has not been applied in this fashion to online volunteer platforms although
it has seen applications in social networks (Wu et al., 2019; Fan et al., 2019). In this study,
we model volunteer participation as a sequence of organiser tasks consumed’ in a session
and predict the list of ranked top K organisers. We define the neighbouring effect on a target
volunteer’s choice and our motivation for building the volunteer network graph as depicted
in Fig. 2.

In order to fully utilize a volunteer’s information to improve the recommendation, we
incorporate volunteer network data into the recommendation. For instance, Fig. 2 illustrates
that in Session 1, Alice participates in two tasks under two different organizers. However,
Alice’s next choice may be influenced by her neighbours’ interests, Wang, Pam and Bob. In
Session 2, Alice’s preferences on task participation changes, and so does her neighbourhood’s
preferences. Suppose that Alice’s most recent participation is organized by Susan, (who leads
Covid-19 related tasks) and that Wang is the only one with long term interest of working with
Susan. Since none of the other neighbours has participated in Susan’s tasks, it would be more
plausible for Alice to be influenced more by Wang in Session 2. Therefore, Alice’s choices are

Wang’s long term

Alice’s next choice is interests Alice’s next choice is

1
1
1
influenced by all her : PN more likely to be
neighbours ] st influenced by Wang
'
| A=A | i B
' =
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. ® n Alice
@ [ ] ., Wang
e = i 1 -
1
[l
Pam @ 1 [ 4
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2 ® p.p i . -
- ! /
1
— 5

— ﬁ,—» —»& E
: .

Session 1 ! Session 2

Fig. 2 Tllustration of the neighboring effect on a target volunteer’s organizer choice. The icons in each box
correspond to the sequence of organizers for each task that the volunteer has taken part in. The left side shows
that Alice’s task participation preferences are influenced by the behavior of Wang, Pam and Bob in Session 1.
On the right side in Session 2, neighbours’ and target volunteers’ preferences change, and Alice’s choices are
most likely to be influenced by Wang’s long term interests but barely influenced by Pam and Bob
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Fig. 3 The architecture for VolRec. We construct the volunteer network graph and extract neighbourhood
features by modeling their interests separately as long and short-term sessions. The final node representation
is obtained by concatenating the neighbourhood and target node’s features using a fully connected network

influenced by both the long and short-term interests of her neighbours. We account for these
changes in dynamic volunteer interests by modeling individual and neighbours’ preferences
separately.

3.2 Overview of the framework

Figure 3 shows the architecture of our proposed approach. One of our main contributions
is the construction of a probabilistic volunteer network to determine the neighbours. We
then separate the neighbour’s preferences into short and long term sessions. The short-term
interests are modeled using LSTM, and we obtain the neighbour’s node features for each
layer by concatenating the preferences using a non-linear transformation. Individual volunteer
interests are represented by short-term sessions that are modeled using LSTM to obtain target
volunteer features, which are then passed together with neighbours’ features as inputs to the
attention-based GCN. In the following section, we formally introduce the approach used to
model individual and neighbours’ interests.

3.3 Individual interests

We define a session as :
ST ={S{..... St} 2)

and each session
St = {0;‘,1, R O;l»Nu,t} 3)

is a sequence of volunteer behaviors where N, is the total number of organizers in that session.
Figure 4 illustrates volunteer behaviour as sessions. In essence, a session S for volunteer u is
a set of organizers o, that the volunteer has participated under. of , denotes the pth organizer
of volunteer u at time ¢, represented as follows:

s )1 ifQ(v,0) > Oattimet
|0 otherwise.

u
or

In addition, we separate sessions into long and short term sessions.

The goal of session-based recommendation is to predict the next session given a set
of Alice’s current session and social network. We express Alice’s organizer-interactions as
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Fig.4 Each session is a sequence of volunteer participation behavior

short-term dynamic interests modeled using RNN, represented by her latest or current session.
However, a volunteer’s long term preferences are expressed as the time insensitive average
interests that include all historical organizer interactions. RNN infers a user’s current session:
741 = for IERTREE o 112> Dy recursively combining representations of all previous

tokens with the latest token:
h = f (O iy ) @)

where 4, represents the user’s interests and f(.,.) is a non-linear function (LSTM). The
initial input features are represented by 4,,.

3.4 Neighbours interests

We categorize neighbours’ interests into long and short term interests. We model short term
interests of a neighbour using RNN. Furthermore, given a target volunteer u with a current
session ST+1 = {0’}4_17 R 0L%+l,n}, the neighbour’s short term session is represented as the
most recent session just before time (7 + 1). Precisely, we denote the short-term interests of
neighbour k for a target volunteer u as:

suk {oT e 0'}]§va} (5)

where the subscript s represents short-term interest while each token corresponds to the
neighbour’s task participation, and finally Ny is the total number of tasks in the session.
Meanwhile, long-term neighbours’ preferences are represented as time insensitive average
embeddings since they reflect average interests. Sl”’k is the neighbour’s long-term preference
which corresponds to the k-th row of the user embedding matrix M,,. We formally define
neighbour’s long term preferences as follows:

S = My (k), 6)

We obtain the final representation of a neighbour by concatenating the short and long-term
preferences using a non-linear transformation

§“K — ReLU(W ([S"*, $i“F]) (7

where W is the transformation matrix and ReLU(x) = max(0, 1).

3.5 Graph attention network

Graph Attention Networks (GAT) have proven to have several advantages over other network
architectures. For instance, while GraphSage (Hamilton et al., 2017) assumes neighbours’
contributions to target node are identical and deterministic, GAT adopts attention mechanism
to learn the relative weights between connected nodes (Wu et al., 2019). We adopt GAT and
features of each node are propagated using an attention mechanism as shown in Fig. 5.
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Fig.5 Single convolutional layer showing the propagation of volunteer network information using an attention
mechanism

Figure 5 shows that a target user’s behavior depends on his/her individual preference
and social influence from neighbours. Therefore, a unified representation of a volunteer’s
preference is obtained by using an attention mechanism to determine the weights. The dotted
lines denote the level of influence of a neighbour towards a given target node, in this case,
Alice. Formally,

od — exp(/ (hi. 1)

uk — (8)
ZjEN(u)Uu eXp(f(h,(j), hy)))

T
where f (h,(f), h,((l)) = h,(,l) h,((l) is the similarity between target volunteer and all aggregated

neighbours’ preferences and a,(jk) represents the weight of neighbour k on target volunteer
u. Moreover, to preserve a volunteer’s revealed interest, a self-connecting edge, (xf,l) , 1s

also included. The neighbours influence and the target volunteer’s self-connection edge are

combined as follows: 5 b
Bo= 30 gl ©)

keN (u)Uu)

where /;54 is the the mixture of a target volunteer’s neighbours at layer /. To obtain the target
user’s node representation for the next layer / + 1, hi is aggregated with learned weights at
current layer / using a non linear transformation,

hTD = ReLU(WDR!) (10)

We stack each node L times to obtain the final target user node representation, hE . This
design preserves volunteer’s individual preference 4, while harnessing the impact of each
neighbour /.

The dynamic feature graph G is constructed such that the nodes correspond to the volunteer
and her neighbours, that is, for target user u, with | Nx | neighbours, the graph consists of
| Nk | +1 nodes. The attention mechanism is used to determine the weight of neighbour £ on
target volunteer u that is propagated along the edges of the network. The initial representation
of target volunteer 4, is used as node features for layer 0, denoted as h,(lo). Similarly, a
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neighbour’s node features h,(co) are given by the combined representation of the short and long-
term interests "%, While the features of the target volunteer changes whenever the volunteer
participates in a new task, the neighbour’s features remain unchanged for the duration of
the timestep (7" + 1). After computing weights for all layers, the final representation of a
volunteer is obtained by combining the volunteer network and the volunteer’s most recent
task participation using a fully connected network. Formally:

hy = Di[hn; h(P] (11

D is a linear transformation matrix and fz” is the final representation of the volunteer’s
current preference. Softmax is used to compute the probability of the next organizer for a
volunteer and provide recommendations.

4 Experiments and results
4.1 Dataset

We use data collected from “Anti-Pandemic Pioneers” project (a.k.a. Pioneers) (Zhang et al.,
2022), a mobile-based platform used for mobilizing volunteers and recording their participa-
tion activities in Shenzhen, China. The platform was initially launched to coordinate volunteer
efforts at the start of Covid-19 epidemic in February 2020, and it has since been expanded
to include other volunteer tasks. On Pioneers, users can organize short-term group activities
and perform micro-tasks within small communities. Moreover, Pioneers is a decentralized
platform such that each user can either select an existing task or list a new task that other
users can participate in. We categorically treat the former as the volunteer and the latter as
the organizer, even though these roles can be used interchangeably, that is, a volunteer can
also be an organizer, and vice-versa.

When computing session-based recommendations, optimizing session segmentation is an
important task that has been overlooked in previous studies. For example, Song et al. (2019)
segmented the data into sessions based on empirical frequency of users’ consumption of
items. On the contrary, we used the Shannon Entropy (Shannon, 1948) to characterize the
randomness and uncertainty of session data. We define session segmentation, S as follows:

1 N
S=—Y HX; 12
Y ; (Xi) (12)
H(X;)=—Y_ p(x)log(x)Vi € D (13)
xeX

Thus, to determine the most suitable time window, we computed the entropy for D =
[1,7,14,21,28]-day segments and selected session segmentation corresponding to average
entropy. Our goal was to create sessions that are not too short and easy to predict but also not
too long and complex for the network to train. As a result, we segmented the data based on
7 day long sessions ordered by timestamps, from February 2020 to January 2021. Moreover,
sessions of length 1 were filtered from the data (Hidasi et al., 2016). To avoid outliers, we
set maximum session length empirically to 30. Table 1 shows the descriptive statistics for
Pioneers data.
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Table 1 Summary Statistics for

Pioneers Data Before Processing Description Stats
Total users 80 043
# of Total organisers 7391
Total # of Events 2 539 609
Total # users in volunteer network 72 141
Total Edges 800 430
Average # of friends 10
Average # of events per user 31.73

4.2 Parameter settings

The model was implemented in TensorFlow, a popular python library for machine learning.
To maintain the order of sessions in training and validation, we reserved the last d days for
validation. We set d to 14 and randomly separated the validation sessions into two halves. The
first half was used as validation set to tune the hyper-parameters and the second half as testing
set. We used Adam for optimization due to its effectiveness (Kingma and Ba, 2014), and set
the learning rate to 0.001, 81 = 0.9, B> = 0.999 and e=1e-07 as suggested in Tensorflow.
The decay rate was set to 0.98 for every 400 steps. The sample size for the neighbourhood
was set to 10 and 5 in the first and second convolutional layers respectively. Furthermore,
the LSTM hidden units were empirically set to 100, and the dimensions of the volunteer and
organiser for the model were also set to 100, following Hidasi et al. (2016). We use ReLU
as the activation function and to avoid overfitting, a dropout rate of 0.2 was used. The early
stopping strategy was adopted to end training when there is no longer improvement in the
validation accuracy. Training consists of 10 epochs with 1 500 iterations in each epoch. We
conducted 5-fold cross validation on all data to obtain the overall accuracy and standard error
of our proposed method. After preprocessing, Table 2 shows the final data used for training,
validation and testing.

This study uses recall to evaluate the performance of the model. Recall measures the
proportion of relevant items found in the top K recommendations. We set K = 3, 5 and 10.
We compare the results against four state of the art recommendation baselines.

o GRU4Rec is a sequence-based method proposed by Hidasi et al. (2016). The algorithm
takes the actual state of a session as input and uses a Gated Recurrent Unit (GRU) to
update the hidden state and output vector. In our volunteer data, we construct sessions
by segmenting each volunteer’s total task participation history using a one week rolling
window. To maintain consistency, we also remove sessions of length 1 from the training
and test sets. We leave the last week for testing.

Table 2 Summary Statistics for

Pioneers Data After Processing Description Training Validation Testing
Events 1286 051 53 586 54 523
Sessions 350 096 14 274 14 417
Organisers 2354 864 876
Avg. length 3.67 3.75 3.78
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e ItemKNN is a collaborative filtering technique that analyzes user-item matrix to discover
the relationships between items, and indirectly compute recommendations based on these
relationships (Sarwaret al., 2001). We use cosine similarity between vectors of organizers,
and recommend organizers to volunteers in the setting “volunteers who participated under
this organizer also participated under these organizers”.

e BPR-MF proposed by Rendle et al. (2012) is a matrix factorization method that uses
pairwise ranking loss via stochastic gradient descent. Since matrix factorization can not
be used directly for session-based recommendation, we improvise by letting a new session
be represented by average latent factors of items that have occurred in the session so far.
We then compute the recommendation score as the average of similarities between latent
factors of a candidate item and the items in the session so far.

e POP recommends the most popular items in the training set (Li et al., 2017; Hidasi et al.,
2016). We set the number of popular items to 100. Despite its simplicity, this approach
often serves as a robust baseline in specific domains.

4.3 Results and discussion

The results in Table 3 shows the best performing models. We compare the results when
all data is used against break point intervals implemented on Futian district. Details on moti-
vation and construction of structural breaks are in Subsection 4.4. Our proposed method
demonstrates substantial gain over baselines across all data sets except in BP 2. Our analysis
show that VolRec outperforms the second-best model by approximately 27% on all data.
Furthermore, using Recall@10 the 5-fold cross validation results have a standard error of
0.00095. The low standard error indicates the robustness of our method and underscores
the reliability and performance consistency of VolRec. The results suggests that the net-
work architecture’s ability to incorporate neighbourhood information allows it to propagate
important information that improves recommendation accuracy and ultimately outperform
the baselines. More importantly, using temporal dynamics to model sequential user interac-
tions as session embeddings helps to express the changing structure of volunteer participation.
GRU4Rec performs better than other baselines both on district data and when all data is used.
This indicates that GRU4Rec is a strong baseline on longer sessions.

When compared against break point intervals which have shorter sessions, BPR-MF is
very competitive and achieves the best performance in BP 2. It is interesting to note that
increasing the value of K seems to benefit BPR-MF and POP the most, in both long and short
sessions. ItemKNN shows good performance when all data is used but the accuracy gradually
declines in small samples. This is expected since ItemKNN does not consider temporal
information and only depends on item similarity to make recommendations. When sessions
are shorter or sparse, GRU4Rec performs poorly than most baselines since it only relies on
volunteer’s own sessions to learn the embeddings and make recommendations. However, our
proposed method overcomes this challenge by utilising neighbourhood information in the
volunteer network. The strategy to construct a probabilistic volunteer network in the absence
of a predefined social network data is crucial in capturing volunteers’ implicit relationships
and subsequent dynamic preferences. Additionally, the use of an attention mechanism to
learn relative weights between connected nodes underscores the significance of neighbour’s
influence for each target volunteer.
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Table 3 We show Recall@K for baseline models and VolRec on different data sets

All data Futian District Data
Model Recall@3 Recall@5 Recall@10 Recall@3 Recall@5 Recall@10
GRU4Rec 0.77195 0.7767 0.7852 0.6702 0.6781 0.6784
Item-KNN 0.6702 0.6753 0.6813 0.5028 0.5142 0.5206
BPR-MF 0.2848 0.5127 0.7348 0.1699 0.3633 0.5693
POP 0.1951 0.2618 0.3451 0.0690 0.1166 0.1458
VolRec 0.9835 0.9931 0.9946 0.9666 0.9815 0.9851
BP 1 BP 2
GRU4Rec 0.3601 0.6865 0.8574 0.1117 0.1117 0.1210
Item-KNN 0.5021 0.5037 0.5108 0.5041 0.5110 0.5151
BPR-MF 0.3119 0.6013 0.6506 0.5493 0.9628 0.9926
POP 0.3028 0.3773 0.5295 0.4283 0.4544 0.5624
VolRec 0.9286 0.9591 0.9916 0.9566 0.9916 0.9923
BP 3 BP 4
GRU4Rec 0.1171 0.1518 0.2021 0.3336 0.3449 0.3569
Item-KNN 0.5058 0.5163 0.5218 0.5088 0.5166 0.5288
BPR-MF 0.2458 0.4466 0.6469 0.1894 0.2628 0.3838
POP 0.1131 0.1825 0.2240 0.0618 0.1019 0.1604
VolRec 0.9214 0.9264 0.9207 0.8963 0.9790 0.9781
BP 5
GRU4Rec 0.1171 0.2690 0.2821
Item-KNN 0.5044 0.5144 0.5223
BPR-MF 0.1274 0.2899 0.4150
POP 0.0705 0.1930 0.2492
VolRec 0.9401 0.9790 0.9781

‘We also compare the organizer-volunteer recommendation performance of the models on 5 break point intervals
discovered on Futian District Data, BP 1-5. Our proposed VolRec model consistently outperforms the
baselines

Bold denotes the best result and underline denotes the second best result

4.4 Change-point detection

To gather more insights and justify the architecture of our proposed method, we study the
performance of this approach under different settings. We believe that the behavior of volun-
teers differed across task labels. For instance, since the data predominantly covers Covid-19
pandemic period, preliminary analysis shows that major policy changes were implemented
by the government which impacted volunteer participation behavior. We observed peaks and
gradual declines in volunteer task participation that corresponded to the time of major policy
announcements.

Meanwhile, the number of daily volunteers’ task participation could be indicative of the
shiftin focus and priorities towards different task categories. Therefore, it is essential to exam-
ine whether the distribution of task types impacted the overall performance of the model. To
achieve this, we first learn topics from task descriptions using Latent Dirichlet Allocation
(Blei et al., 2003). We discovered six distinctive task labels namely (1) public transportation,
(2) community volunteering, (3) business reopening, (4) public health education, (5) envi-
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Fig.6 We show that the behaviour of volunteers and organizers varied significantly across time. We discovered
4 structural break dates, separating data into 5 break point intervals

ronmental protection, and (6) Covid-19 response. We eliminated smaller topics, (task label
0) that could not be identified with these task labels.

In the second step, we chose to focus on Futian district in Shenzhen. Our choice to
evaluate the model at district level is motivated by McPherson et al. (2001) who showed that
volunteers in the same region tend to have similar behavioral patterns. Moreover, policies
were also implemented at district level, which prompts us to consider volunteer participation
at that level.

Third, we use volunteers daily data to analyze their task preferences and participation
behaviour. We also tried daily organizer data and other signals and the results were similar.
Given the data in Fig. 6, it is clear that certain periods experienced high and active volun-
teer participation while others did not. For example, the total number of daily volunteers
barely reached 500 a day since February 2021, but spiked to over 2 000 in September 2021.
We observed a similar pattern in organizer task issuance data. This phenomenon is closely
related to Covid-19 policy changes at government level, which in turn impacted volunteer
participation behaviour.

As aresult, we study these different periods separately. Precisely, we implement change
point detection (Truong et al., 2020), a popular technique in signal processing to detect
structural breaks in data. Four break dates were identified which reflect periods of significant
deviation in volunteer behaviour pattern as shown in Fig. 6. In Figs. 7 - 11 we present the
break point intervals separately and their respective distribution of task labels.

4.5 Impact of volunteers task preference

In the first part of our exploration, we trained the model using all task labels in each break
point interval. Next, we compute the inference for each break point interval and the results
are reported in Table 3. It is interesting to note that using our method, on average, the second
break point interval (BP 2) achieves the highest recall while interval four (BP 4) has the
lowest score.

We note that since the behavior of volunteers and organizers varied significantly across
time (Fig. 6), it also reflects changes in priority towards certain task types within a given
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interval as shown in Fig. 7-11. Previous studies such as Hidasi et al. (2016) fail to address
temporal changes in user preferences which is informative when analyzing model’s perfor-
mance. To gain further insights, we hypothesize that volunteer task preference, t, affects the
model’s accuracy in each break point interval. We separate the testing data for each sample
based on task labels to determine their impact on model performance. The results are quite
striking. Figure 12 reports the performance of task types t, and their corresponding break
point intervals. We observe that task types 3 and 1 have the highest recall while 2 and 5
display the worst performance.

We further analyze the level of uncertainty embedded in daily volunteer task participation
by evaluating both the entropy and standard deviation of each task type within a break point
interval. The results of entropy and standard deviation exhibit a similar pattern, and we only
report results of entropy in Fig. 13 .
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Fig. 8 Distribution of task labels for break point interval 2
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We observe that where the accuracy is high, the entropy is generally low and vice-versa.
This inverse relationship is a common phenomenon in machine learning, where it is difficult
to learn and predict data with high randomness. In our case, the uncertainty in the structure
of daily volunteer participation increased the level of difficulty in getting accurate predicted
outcomes. We also analyzed task issuance by organizers and arrived at the same conclusion.
These results demonstrate the strong impact of task preference, as indicative of volunteer’s
dynamic behaviour in determining accuracy. This study is the first to explore in detail the
relationship between changes in volunteer’s task preference and prediction accuracy.
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Fig. 10 Distribution of task labels for break point interval 4
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4.6 Volunteer group recommendation

VolRec is a comprehensive session-based model which can be adapted to predict group partic-
ipation for volunteers. Modeling volunteer group participation is essential in understanding
volunteer communities and their dynamic structures. For instance, if a volunteer i participates
in a task with n other volunteers, our objective is to determine the most likely volunteers that
i will co-participate with in the next sessions. We construct volunteer-to-volunteer network
graph and utilize temporal dynamics to create sessions. For this analysis we empirically set
session length to 1 day and leave the last 10 days for testing. We conduct experiments on the
break points discovered in Subsection 4.4 and the results are shown in Table 4 below.

1.00
‘N.
»,
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Fig. 12 Visualization of task label performance for different break points. Results show that the performance
of task types, 7, differed significantly across break point intervals
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Fig. 13 The entropy of volunteers’ daily task participation for each break point interval

Overall, group volunteer recommendation accuracy is lower than organizer-volunteer rec-
ommendation’s. This is expected since the number of organizers is less than that of volunteers
and consequently more difficult to predict as the number of predicted outcomes is large. How-
ever, break point intervals 2 and 4 have the highest recall while 1 and 3 achieve the lowest.
Our model is able to learn structural relationships of group participants and recommend
volunteers to co-participate with in the next sessions with reasonable accuracy.

Moreover, we tested VolRec on volunteer-task type prediction and we achieved a perfect
recall on all break point intervals. Besides, VolReck can be adapted to model and predict
communities for volunteers.

4.7 Ablation study
4.7.1 Individual vs neighbourhood influence

In the second phase of our exploration, we conduct an ablation study to justify the influence of
neighbourhood on the recommendations. In our previous experiments, we fixed the volunteer
neighbourhood to 10 (refer Subsection 3.3). We now use individual features only without
neighbourhood information. The model without neighbourhood information is similar to
GRU4Rec and the results are reproduced in Table 3. When we use neighbourhood informa-
tion, the performance significantly improves from 0.785 to 0.989 using Recall@ 10 when all
data is used. These results express the importance of utilizing neighbourhood information
to obtain good recommendations in online volunteer platforms. It is therefore important to
model individual and neighbours’ interests to achieve higher recommendation performance.

Table 4 Results of Volunteers’  poi 4
Group Recommendation. We Break points BP1 BP2 BP 3 BP BP5

show that VolRec is able to learn ~ Recall@10 0.4828 0.5599 0.5105 0.5644 0.5200
implicit group relationships and
make recommendations with
reasonable accuracy
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Fig. 14 The impact of the number of neighbors on model performance. We show experimentally that the
optimal number of neighbours is 5

4.7.2 Influence of neighbours

The context of our problem is slightly different from the general online recommendations in
that our online volunteer data does not come with pre-defined neighbours. As noted earlier,
we constructed volunteer network from the existing volunteer data that we already had,
(refer Subsection 3.1). To understand the influence of neighbours in detail, it is important
to determine the optimal number of neighbours for each volunteer, which in turn improves
efficiency of the algorithm. We tested the model by incrementing the number of neighbours
from 1 to 10. In Fig. 14, we compare the recommendation performance for a given number
of neighbours.

Results clearly show that the optimal number of neighbours for our volunteer network is
5. While adding neighbourhood information increases recommendation performance, further
analysis indicates that continuously adding neighbours after 1 does not significantly improve
the results. This is expected since our construction of the volunteer network is based on
co-participation, a feature that is shared by all other neighbours. Therefore, increasing the
number of neighbours does not necessarily bring new valuable information. We also noted
slight improvement in the efficiency of the algorithm when only one neighbour node is used
for each target volunteer.

5 Conclusions and future work

In this paper we proposed VolRec, a session-based recommendation for large online volunteer
networks. We found that volunteer’s dynamic interests can be represented as a combination of
their most recent sessions and the long and short-term sessions of their neighbours. We apply
graph neural networks and propagate the weights using an attention mechanism. We show
that VolRec outperforms several baselines in recommending organizers to volunteers due to
its ability to capture dynamic users and neighbours’ interests. We investigate the performance
of VolRec on break point intervals that represent structural changes in volunteer behavior.
The performance of our model varied across different break points. To gain further insight,
we evaluated VolRec on task types discovered in each break point interval separately. We
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found that the distribution of task types in the intervals impacted the model’s performance.
Additionally, we characterised the uncertainty in volunteers’ daily task participation using
entropy and discovered an inverse relationship between task type performance and entropy.
This phenomenon is a common paradox in machine learning where it is difficult to predict
data with a high degree of randomness. We conducted an ablation study to determine the
influence of neighbours and the optimal number of neighbours. Results demonstrate that
including neighbourhood information increased the recommendation accuracy by ~ 26%.
While the optimal number of neighbours is 5, we note that increasing the neighbours after 1
did not significantly improve the results since the construction of our volunteer network is
based on co-participation, a feature that is shared by all other neighbours. Furthermore, we
conducted experiments to show that VolRec can be adapted to recommend volunteers to task
types and communities. In future research, it would be interesting to expand the application of
our proposed method to various other online platforms, such as Wikipedia or Stack Overflow.
This would allow us to recommend the next articles to edit or questions to answer, and conduct
further analyses to gain deeper insights into the complex latent relationships in online data. In
other future direction, we aim to address the lower performance observed when the entropy
of task types is high.
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