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Abstract—How to mitigate negative transfer in transfer learn-
ing is a long-standing and challenging issue, especially in the
application of medical image segmentation. Existing methods for
reducing negative transfer focuses on classification or regression
tasks, ignoring the non-uniform negative transfer risk in different
image regions. In this work, we propose a simple yet effective
weighted fine-tuning method that directs the model’s attention
towards regions with significant transfer risk for medical se-
mantic segmentation. Specifically, we compute a transferability-
guided transfer risk map to quantify the transfer hardness
for each pixel and the potential risks of negative transfer.
During the fine-tuning phase, we introduce a map-weighted
loss function, normalized with image foreground size to counter
class imbalance. Extensive experiments on brain segmentation
datasets show our method significantly improves the target task
performance, with gains of 4.37% on FeTS2021 and 1.81% on
iSeg-2019, avoiding negative transfer across modalities and tasks.
Meanwhile, a 2.9% gain under a few-shot scenario validates the
robustness of our approach.

Index Terms—Medical Image Segmentation, Transfer Learn-
ing, Transferability Estimation, Negative Transfer, Model Fine-
tuning

I. INTRODUCTION

For medical segmentation tasks, acquiring ground-truth la-
bels is challenging because detailed annotation of large 3D im-
ages is both time-consuming and requires expert input [1], [2].
To compensate the lack of labeled training samples, transfer
learning has become a common approach for medical semantic
segmentation [3], [4], leveraging the knowledge from a high
resource domain to improve the performance on low-resource
tasks [5]. However, the effectiveness of transfer learning is
not guaranteed: low task and domain correlation can impair
the target domain performance. This phenomenon is known
as negative transfer [6]. Due to the inherent heterogeneity in
medical images, including differences in imaging modalities,
contrast variations, and patient-specific anatomy [3], [7], neg-
ative transfer is common in medical image segmentation [8].

Most existing works address negative transfer by selecting
more relevant source domain [9], [10], reweighting the source
samples [6], [11], and aligning distributions in the feature
space [12]. The principle idea in these works lies in the
notion of domain similarity [13]–[15] or some transferability
metric across different tasks [16]–[20] to quantify transfer
performance. As these approaches have originated from a
classification or regression context, they ignore the complex
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output structures in image-output tasks such as semantic
segmentation. In segmentation, the risk of negative transfer
of a given model does not uniformly distribute over the whole
image. For example, some textures such as the white matter
or the grey matter in the brain are shared across multiple
domains, while some are unique to a specific domains such
as the cortical protrusions and depressions across individual
brains. This observation necessitates the need for a fine-
grained transfer learning approach that could adapt to variable
negative transfer risk at different image regions.

Recently, a few natural image segmentation works have
incorporated the category-level and pixel-level transferabil-
ity into loss function by propagating the global category-
wise transferability calculated by entropy criterion [21], or
weighting the loss function by transferability score during fine-
tuning phase [22]. However, they don’t work effectively on
medical segmentation tasks due to fewer semantic categories,
tiny segmentation foreground, and severed class imbalance of
medical images, compared to natural images [23].

To solve the aforementioned challenges, we propose a
simple yet effective weighted fine-tuning approach that directs
the model’s attention towards regions with significant transfer
risk, tailored to the medical semantic segmentation problem
(Fig. 1). Specifically, we introduce a pixel-level transfer risk
map, which quantifies the transfer hardness for each pixel and
the potential risks of negative transfer associated with them.
Here we adopt LEEP (Log Expected Empirical Prediction)
[18] metric as our transferability method for its high compu-
tational efficiency, simplicity, and superior performance [22].
And to alleviate the adverse effects of class imbalance during
the fine-tuning phase, we calculate loss values across all pixels
but average them exclusively over the foreground pixels. Such
a method effectively reduces the impact that a large amount
of well-learned background pixels might have on biasing the
loss value, which in turn expedites the refinement of model
parameters.

Extensive experiments on brain tumor and brain matter
segmentation datasets demonstrate that our proposed fine-
tuning method achieves significantly enhanced performance
when transferring knowledge between distinct modalities and
tasks, with a 4. 37% gain in FeTS2021 and a 1. 81% gain
in iSeg-2019, indicating that it indeed avoids negative transfer
from diverse modalities and tasks while learning beneficial
knowledge for segmentation across multiple modalities and



Fig. 1: Illustration of the proposed transfer risk map guided
weighted fine-tuning framework. The strategy consists of: 1)
a transferability-based pixel-level transfer risk map, which
quantifies the potential risks of negative transfer for each pixel,
2) a transfer risk map weighted fine-tuning process, which
allows the model’s attention towards regions with significant
transfer hardness.

tasks. A gain of 2.9% in a few-shot scenario validates the
robustness of our approach.

II. METHODOLOGY

A. Problem Definition

In a typical source free transfer learning setting, We transfer
the domain knowledge with only a pre-trained source model
θS and without access to source data. Specifically, we are given
a pre-trained model θS corresponding to a source task S with
NS labeled samples {xi

s, y
i
s}

NS
i=1 where xi

s ∈ XS , y
i
s ∈ YS ,

and also a target task T with NT labeled samples {xi
t, y

i
t}

NT
i=1

where xi
t ∈ XT , y

i
t ∈ YT . XS , XT represent the input image

and YS , YT represent their corresponding labels. The problem
goal is to transfer the knowledge learned from the source
to target that mitigate the negative transfer and improve the
performance within the target domain.

Transferability reveals how easy it is to transfer knowledge
learned from a source task to a target task. We can obtain the
transferability from the source task to the target task by using
the testing data of the target task (XT ,YT ) to calculate the
expected log-likelihood of the source pretrained model θS :

Trs(θS ,XT ,YT ) = E
xi,yi∈XT×YT

[logP (yi | xi; θS)] (1)

B. Transferability Estimation on Segmentation Task

LEEP score is a more general metric for classification
task, which is defined by the average log-likelihood of the
expected empirical predictor, which predicts the dummy label
distributions for target data in source label space and then
computes the empirical conditional distribution of target label
given the dummy source label. We select LEEP for our
transferability estimation metric due to its high computational

efficiency, simplicity and superior performance. We define the
LEEP method as follows:

LEEP(θS ,D) =
1

n

n∑
i=1

log(
∑
z∈Z

P̂ (yi | z)θS(xi)) (2)

where θS and D = {(x1, y1), · · · , (xn, yn)} denote the source
model and target dataset, respectively. Z denotes the dummy
source label, P̂ (·|·) denotes the empirical conditional distribu-
tion.

Then we adapt the LEEP score to work on medical seg-
mentation task. The global feature vector extracted by source
pretrained model can be precisely decomposed into distinct
pixel-wise feature, each indexed according to its specific pixel
coordinates. Subsequently, classification will be conducted
on each pixel in input image, and output label will also
be obtained at pixel-level, and transferability scores can be
computed over the pixel-wise features treating each pixel as
an instance of classifying. Now, pixel-level LEEP score for
segmentation task can be defined as,

LEEP(θS ,D) = 1
n

n∑
i=1

[log

W∏
j=1

H∏
k=1

∑
z∈Z

P̂ (yj,ki | zj,k)θS(xj,k
i )]

(3)
where xi ∈ RW×H×1, yi ∈ {0, 1}W×H×Ct . Here W , H
denote the width and height of image, and Ct represent the
number of categories of the target task.

C. Transferability Guided Transfer Risk Weighted Fine-tuning
After adapting the transferability metric to medical segmen-

tation task, we can obtain pixel-level transferability, which
characterizes the hardness of transferring knowledge at a local,
granular level. Based on pixel-level transferability, we compute
a transfer risk map that quantifies the potential risks of negative
transfer associated with them. Furthermore, we propose a
novel weighted fine-tuning approach guided by the transfer
risk map.

In particular, we define a pixel-level transferability map t ∈
RW×H , and tj,k represents the transferability score at a pixel
coordinate (j, k), where j ∈ [1,W ], k ∈ [1, H]. Formally,

tj,k = LEEP(θS , {xj,k
i , yj,ki }Ni=1). (4)

Subsequently, we adjust the transferability map to scale within
the interval of [0, 1], with values approaching 1 representing
pixels of higher transfer hardness and values near 0 denoting
pixels with lesser transfer hardness. To further augment the
model’s emphasis on regions with increased transfer difficulty,
we implement an exponential scaling with a base of 10 to in-
troduce some nonlinearity. The transfer risk map w ∈ RW×H

is defined as

tj,ks =
tj,k −min(t)

max(t)−min(t)
(5)

wj,k = 10t
j,k
s . (6)

Then, we can define the transfer risk weighted loss, where

L =

∑N
i=1

∑W
j=1

∑H
k=1 w

j,kloss(θS(x
j,k
i , yj,ki ))∑N

i=1

∑W
j=1

∑H
k=1 1{y

j,k
i ̸= 0}

. (7)



It is important to highlight that we calculate loss values across
all pixels but average them exclusively over the foreground
pixels to alleviate the adverse effects of class imbalance during
the fine-tuning phase. Such a method effectively tempers the
impact that a multitude of well-learned background pixels
might have on diluting the loss value.

III. EXPERIMENTS AND RESULTS

A. Datasets

We perform experiments on two publicly available brain
MRI segmentation datasets: FeTS 2021 [24]–[26] for brain
tumor segmentation and iSeg-2019 [27] for brain matter
segmentation. For each sample in FeTS 2021, volumes of 3
modalities are used, including T1-weighted (T1), T2-weighted
(T2) and Fluid-Attenuated Inversion Recovery (FLAIR). The
volume size is 240 × 240 × 155. Corresponding labels of
edematous tissue (ED), enhancing tumor (ET), and necrotic
tumor core (NCR) are manually segmented by clinical experts.
This dataset is further split into 22 partitions by the provider,
according to different institutions and information extracted
from images. Thus, each partition can be seen as an individual
domain. For each sample in iSeg-2019 dataset, volumes of 2
modalities are available, including T1 and T2. The volume
size is 144× 192× 256. Corresponding labels of white matter
(WM), gray matter (GM), and cerebrospinal fluid (CSF) are
manually segmented by clinicians.

To provide sufficient tasks for experimental analysis, we
reorganize the iSeg-2019 dataset into a collection of binary
segmentation tasks on every available modality. We perform
cross-modality and cross-center four-category segmentation
on the FeTS 2021 dataset, and cross-modality and cross-task
binary segmentation on the iSeg-2019 dataset.

B. Training Details

Since the goal of this work is to demonstrate the effective-
ness of transferability-guided transfer risk map on mitigating
the potential local negative transfer during the fine-tuning
process rather than striving for cutting-edge performance on
medical image segmentation tasks, we employ the same model
architecture for all experiments presented in this paper, a
classic 2D U-Net [28]. For a fair comparison with all methods,
we use the same input size, pre-processing strategy, and
training loss for all methods. We adopt an Adam optimizer
with a learning rate of 0.0001 to fine-tune the source model
on the target data for 5k iterations. As for the transfer learning
strategy, we follow the most common way which is pre-
training the model on a source task and fine-tuning it on a
target task. During the fine-tuning stage, the encoder is frozen
and only the parameters of the decoder are updated.

C. Evaluation on Medical Image Segmentation Task

We apply our transferability-guided transfer risk weighted
fine-tuning method on medical image segmentation tasks and
compare the proposed method with the commonly used vanilla
fine-tuning, class weighted fine-tuning [29], and transferability
map weighted fine-tuning [22].

TABLE I: Dice score of vanilla fine-tuning, class weighted
fine-tuning [29], transferability map weighted fine-tuning [22]
and our transfer risk weighted fine-tuning on the iSeg-2019
dataset. Bold number: best score.

Target
Task Method Source Task Average

Dice
CSF-T1 GM-T1 WM-T1 CSF-T2 GM-T2 WM-T2

CSF-T1

vanilla

\
0.9473 0.9406 0.9399 0.9354 0.9334 0.9393

class weight 0.9493 0.9487 0.9398 0.9352 0.9415 0.9429
Trs map 0.9477 0.9410 0.9411 0.9355 0.9334 0.9397

ours 0.9520 0.9502 0.9446 0.9432 0.9462 0.9472

GM-T1

vanilla 0.8972

\
0.9010 0.8739 0.8858 0.8807 0.8877

class weight 0.8970 0.9006 0.8883 0.8979 0.8997 0.8967
Trs map 0.8977 0.9010 0.8761 0.8848 0.8808 0.8881

ours 0.9125 0.9107 0.9018 0.9001 0.9026 0.9055

WM-T1

vanilla 0.8787 0.8867

\
0.8612 0.8560 0.8588 0.8683

class weight 0.8831 0.8892 0.8707 0.8624 0.8642 0.8739
Trs map 0.8787 0.8870 0.8604 0.8563 0.8596 0.8684

ours 0.8896 0.8926 0.8755 0.8703 0.8782 0.8812

CSF-T2

vanilla 0.9229 0.9179 0.9143

\
0.9210 0.9149 0.9182

class weight 0.9260 0.9193 0.9133 0.9234 0.9145 0.9193
Trs map 0.9233 0.9208 0.9163 0.9205 0.9150 0.9192

ours 0.9319 0.9315 0.9321 0.9312 0.9329 0.9319

GM-T2

vanilla 0.8743 0.8641 0.8609 0.8674

\
0.8810 0.8695

class weight 0.8774 0.8686 0.8686 0.8716 0.8829 0.8738
Trs map 0.8766 0.8695 0.8612 0.8674 0.8815 0.8712

ours 0.8881 0.8846 0.8815 0.8851 0.8925 0.8864

WM-T2

vanilla 0.8486 0.8243 0.8243 0.8391 0.8389

\
0.8350

class weight 0.8361 0.8098 0.8298 0.8494 0.8511 0.8352
Trs map 0.8497 0.8251 0.8279 0.8410 0.8471 0.8382

ours 0.8630 0.8592 0.8582 0.8595 0.8676 0.8615

The iSeg-2019 dataset for brain matter segmentation closely
resembles natural image segmentation tasks, exhibiting larger
and more contiguous segmented regions, which demand the
model’s coarse-grained capability for object shape recognition.
The FeTS 2021 dataset for brain tumor segmentation encom-
passes three distinct pathological labels that are characterized
by small, discontinuous regions with hierarchical containment
relationships. This demands a model endowed with a height-
ened fine-granularity for discerning local textures.

For iSeg-2019 dataset, quantitative comparisons shown in
Table I demonstrate that our proposed fine-tuning consistently
outperforms the vanilla fine-tuning, class weighted fine-tuning
and transferability map weighted fine-tuning in all transfer
experiments. This approach can result in a notable increase
in the Dice coefficient, reaching up to 3.49%, with an average
enhancement of 1.6% and an overall gain of 1.81%.

For FeTS 2021 dataset, as shown in Table II, our pro-
posed fine-tuning method surpasses vanilla fine-tuning, class
weighted fine-tuning and transferability map weighted fine-
tuning across a spectrum of transfer experiments. It achieves a
remarkable maximum increase of 8.3% in the Dice coefficient,
with an average enhancement of 2% and an overall gain of
4.37%.

D. Study on Few- shot Scenarios

We conducted experiments under few-shot scenarios on the
iSeg-2019 dataset, testing the performance of our proposed
method when the target task had only 400, 100, and 50
annotated 2d slice images, respectively. As demonstrated in
the Table III, employing one task as the source model, we
conducted transfer fine-tuning on the remaining five tasks.



TABLE II: Dice score of vanilla fine-tuning, class weighted
fine-tuning [29], transferability map weighted fine-tuning [22]
and our transfer risk weighted fine-tuning on the FeTS2021
dataset. Bold number: best score.

Target
Task Method Source Task Average

Dice
13-T1 14-T1 14-T2 14-FLAIR 17-T2 18-FLAIR

13-T1

vanilla

\
0.422 0.304 0.352 0.317 0.303 0.340

class weight 0.427 0.303 0.357 0.315 0.303 0.341
Trs map 0.420 0.307 0.355 0.316 0.309 0.341

ours 0.426 0.315 0.364 0.319 0.318 0.348

14-T1

vanilla 0.491

\
0.457 0.364 0.410 0.451 0.435

class weight 0.503 0.471 0.383 0.396 0.456 0.442
Trs map 0.498 0.459 0.366 0.408 0.454 0.437

ours 0.524 0.488 0.398 0.443 0.473 0.465

14-T2

vanilla 0.413 0.464

\
0.464 0.508 0.520 0.474

class weight 0.411 0.477 0.468 0.508 0.525 0.478
Trs map 0.417 0.473 0.471 0.509 0.515 0.477

ours 0.431 0.505 0.482 0.519 0.521 0.492

14-FLAIR

vanilla 0.484 0.521 0.582

\
0.535 0.578 0.540

class weight 0.479 0.529 0.588 0.532 0.586 0.543
Trs map 0.487 0.522 0.586 0.533 0.578 0.541

ours 0.504 0.559 0.590 0.536 0.588 0.555

17-T2

vanilla 0.313 0.365 0.393 0.313

\
0.353 0.347

class weight 0.316 0.366 0.389 0.327 0.352 0.350
Trs map 0.315 0.368 0.392 0.315 0.356 0.349

ours 0.320 0.384 0.408 0.396 0.365 0.375

18-FLAIR

vanilla 0.421 0.432 0.473 0.496 0.483

\
0.461

class weight 0.417 0.433 0.473 0.509 0.482 0.463
Trs map 0.419 0.438 0.477 0.506 0.475 0.463

ours 0.426 0.451 0.483 0.530 0.483 0.475

TABLE III: Dice score of transferability based transfer risk
weighted fine-tuning and vanilla fine-tuning on the iSeg-2019
dataset under few-shot scenario. Bold number: best score.

Sample
Nums Method Target Task Average

Dice
GM-T1 WM-T1 CSF-T2 GM-T2 WM-T2

400 vanilla 0.8915 0.8608 0.9175 0.8592 0.8228 0.8704
ours 0.9072 0.8750 0.9299 0.8858 0.8498 0.8895

100 vanilla 0.8706 0.8480 0.9041 0.8443 0.8027 0.8539
ours 0.8925 0.8599 0.9223 0.8582 0.8273 0.8720

50 vanilla 0.8572 0.8488 0.8951 0.8170 0.7913 0.8419
ours 0.8927 0.8533 0.9113 0.8584 0.8139 0.8659

Irrespective of the quantity of target images, our method con-
sistently outperformed vanilla fine-tuning. Remarkably, even
with a minimal training slice sample size of 50, our method
still achieved a 2.4% improvement and a 2.9% gain in Dice
score in average. These experimental findings validate the
robustness of our approach in a few-shot context.

E. Effectiveness of Negative Transfer Mitigation

To investigate the actual impact of local transfer risk on
the fine-tuning phase, we visualized the transfer risk maps
before and after applying our fine-tuning method between the
source model and the target data. As shown in Fig. 2, it shows
the transfer risk maps before and after the fine-tuning phase
between the pre-trained source model and the target tasks in
the iSeg-2019 and FeTS 2021 dataset. Darker colors indicate
lower transfer risk, while brighter colors signify higher transfer
risk. It is evident that our fine-tuning approach has effectively
condensed the extensive regions of high transfer risk into well-

CSF-T2 WMH-T2

18-T2 14-T2

Before After

Before After

Before After

Before After

Fig. 2: The pixel-level transfer risk maps before and after
applying our fine-tuning method between the source model
and the target data. The first row shows the results on iSeg-
2019 with CSF-T1 as the source task, while the second row
displays results on FeTS 2021 with 14-T1 as the source task.

defined, smaller segments, concurrently reducing the transfer
hardness. Additionally, we observed that regions exhibiting
the most significant transfer hardness have undergone a trans-
formation, from resembling segmentation contours of source
task to the precise segmentation patterns of target tasks. The
comparison of transfer risk maps pre- and post-fine-tuning
validates the efficacy of our proposed approach in mitigating
the risk of potential negative transfer. The simple weighting
procedure not only reduces the overall transfer hardness but
also refines the scope of potential negative transfer risk regions
during model training, effectively redirecting the model’s
attention towards pertinent features.

IV. CONCLUSION

In this work, we propose a simple yet effective weighted
fine-tuning approach that directs the model’s attention towards
regions with significant transfer risk, tailored to the medical
semantic segmentation problem. Specifically, we introduce
a pixel-level transferability-guided transfer risk map, which
quantifies the transfer hardness for each pixel and the potential
risks of negative transfer associated with them. During the
fine-tuning phase, we calculate weighted loss values across
all pixels and average them exclusively over the foreground
pixels. Extensive experiments demonstrate that our proposed
fine-tuning method achieves significantly enhanced perfor-
mance when transferring knowledge between distinct modali-
ties and tasks, indicating that it indeed avoids negative transfer
from diverse modalities and tasks while learning beneficial
knowledge for segmentation across multiple modalities and
tasks. The simplicity of the proposed method also makes it
easy to integrate into more advanced architectures such as
vision transformer, and more sophisticated transfer learning
paradigms.
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