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Abstract— We propose two novel transferability metrics fast
optimal transport-based conditional entropy (F-OTCE) and joint
correspondence OTCE (JC-OTCE) to evaluate how much the
source model (task) can benefit the learning of the target task
and to learn more generalizable representations for cross-domain
cross-task transfer learning. Unlike the original OTCE metric
that requires evaluating the empirical transferability on auxiliary
tasks, our metrics are auxiliary-free such that they can be
computed much more efficiently. Specifically, F-OTCE estimates
transferability by first solving an optimal transport (OT) problem
between source and target distributions and then uses the optimal
coupling to compute the negative conditional entropy (NCE)
between the source and target labels. It can also serve as an
objective function to enhance downstream transfer learning tasks
including model finetuning and domain generalization (DG).
Meanwhile, JC-OTCE improves the transferability accuracy of
F-OTCE by including label distances in the OT problem, though
it incurs additional computation costs. Extensive experiments
demonstrate that F-OTCE and JC-OTCE outperform state-of-
the-art auxiliary-free metrics by 21.1% and 25.8%, respectively,
in correlation coefficient with the ground-truth transfer accuracy.
By eliminating the training cost of auxiliary tasks, the two metrics
reduce the total computation time of the previous method from
43 min to 9.32 and 10.78 s, respectively, for a pair of tasks. When
applied in the model finetuning and DG tasks, F-OTCE shows
significant improvements in the transfer accuracy in few-shot
classification experiments, with up to 4.41% and 2.34% accuracy
gains, respectively.

Index Terms— Cross-domain, cross-task, few-shot learning,
source selection, task relatedness, transfer learning, transferabil-
ity estimation.

I. INTRODUCTION

TRANSFER learning is an effective learning paradigm to
enhance the performance on target tasks via leveraging

prior knowledge from the related source tasks (or source
models), especially when there are only a few labeled data for
supervision [1], [2], [3], [4]. However, the success of transfer
learning is not always guaranteed. If the source and target
tasks are unrelated or if the transferred representation does
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Fig. 1. Illustration of three different transfer learning settings, i.e., transduc-
tive domain adaptation [6], cross-task transfer [7], and cross-domain cross-task
transfer we investigating.

not carry sufficient information about the target task, transfer
learning will not obtain a notable gain on the target task
performance and may even experience negative transfer, i.e.,
the performance becomes worse than that of training from
scratch on the target task [5]. Therefore, understanding when
and what to transfer between tasks is crucial to the success of
transfer learning.

The “when to transfer” problem was traditionally studied
theoretically through the derivation of generalization bounds
of transfer learning across tasks [8], [9] and across domains
(also known as the domain adaptation problem) [10], [11],
[12], [13], [14], [15]. Such studies bound the target task gener-
alization error by a function that depends on certain divergence
between the source and target domain or the complexity of the
hypothesis class for the source and target tasks. In practice,
however, these bounds are difficult to compute from data, and
they tend to rely on strict assumptions that cannot be verified.
In recent years, the notion of task transferability was proposed
to address the “when to transfer” problem in the context of
deep transfer learning [7], [16], [17], [18], [19], [20], [21],
[22], [23]. The transferability problem aims to quantitatively
evaluate how much the source task or source model could
benefit the learning of the target task. It can be used to directly
select the most “transferable” source model from a model zoo
for a target task, rather than exhaustively trying each source
model on the target data. In addition, transferability can help
prioritize different tasks for joint training [16] and multisource
feature fusion [22].

As empirical transferability studies [16], [17], [18], [19],
[24] incur heavy computational burdens in retraining the
transfer learning model on the target training data, a new
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trend of transferability research aims to efficiently estimate
the transfer performance a priori with little or no training of
the transfer model. Several efficient transferability metrics are
proposed, including negative conditional entropy (NCE) [20],
H -score [7], log expected empirical prediction (LEEP) [21],
and LogME [23]. Despite being evidently more efficient
in computing from practical data than empirical methods,
they are also prone to strict data assumptions [7], [20] and
insufficient performance [21], [23], while task complexities are
similar. Moreover, the aforementioned metrics are solely used
for determining when to transfer between a pair of source and
target tasks, but they do not contribute to solving the “what
to transfer” problem, i.e., how to obtain more generalizable
feature representations across domains and tasks.

Recently, a novel transferability metric optimal
transport-based CE (OTCE) [22] is proposed to effectively
estimate the transferability under the challenging cross-
domain cross-task transfer setting, as shown in Fig. 1. Unlike
the transferability metrics mentioned earlier, OTCE adopts
a more analytical disentanglement approach. It explicitly
assesses the domain difference (measured by the Wasserstein
distance) and the task difference (determined by the CE)
between tasks, and then integrates them via a linear model to
quantify transferability. This technically sound design yields
substantial accuracy improvement over the aforementioned
metrics. Nevertheless, a major limitation of OTCE is
its dependency on auxiliary tasks with known transfer
performance to determine the intrinsic parameters of the
linear model. On one hand, the availability of sufficient labeled
data for creating auxiliary tasks is not always guaranteed.
On the other hand, assessing the transfer performance of
such auxiliary tasks necessitates retraining the source model,
incurring additional computational costs. As a result, the
reliance on auxiliary tasks makes OTCE relatively inefficient
and less applicable in general practical scenarios.

In this article, we aim to broaden the applicability of
the OTCE framework and investigate the potential uses of
transferability in downstream transfer learning tasks. We pro-
pose two auxiliary-free transferability metrics, namely, fast
OTCE (F-OTCE) and joint correspondence OTCE (JC-OTCE),
which eliminate the need for auxiliary tasks and substantially
enhance the efficiency without compromising accuracy. For
classification problems, the F-OTCE metric solves the optimal
transport (OT) problem [25], [26] to estimate a probabilistic
coupling between the unpaired samples from the source and
target datasets. Then, the optimal coupling enables us to derive
the negative CE between the source and target task labels for
representing transferability, which measures the label uncer-
tainty of a target sample given the labels of corresponding
source samples. While the F-OTCE metric does not explicitly
evaluate the domain difference, the estimated probabilistic
coupling between the source and target data implicitly cap-
tures the domain difference to some extent in this unified
framework.

Then, we propose the JC-OTCE metric to further improve
the accuracy of the F-OTCE metric in diverse transfer configu-
rations. Our motivation is that F-OTCE only considers the joint
probability distribution of input samples when determining

data correspondences between the source and target domains.
However, this approach is limited because the definition (label
annotations) of the source task can also affect model gen-
eralization. To address this limitation, we incorporate label
distance into the ground cost of the OT problem, allowing
for the computation of correspondences in both sample and
label spaces. By including additional label information, JC-
OTCE produces improved data correspondences that partially
compensate for the lack of explicit domain difference consider-
ation. JC-OTCE achieves comparable transferability accuracy
to the original OTCE metric but requires additional compu-
tation compared with F-OTCE, which remains preferable for
efficiency purposes.

Moreover, we investigate the application of our trans-
ferability metric in two downstream transfer learning tasks
including model finetuning and DG, offering a solution to the
“what to transfer” problem. Specifically, to enhance the model
finetuning performance, we propose an OTCE-based finetune
algorithm that optimizes the pretrained source model to learn
more transferable feature representation via maximizing the
F-OTCE score between the source and target tasks. The
optimized model is then finetuned on target training data using
the classification loss function.

We also demonstrate that incorporating the F-OTCE metric
into a novel DG method universal representation learning
(URL) [27] can further improve its generalizability on unseen
domains. Our motivation is to view distilling knowledge from
domain-specific models to the universal model as maximiz-
ing the transferability between them. Therefore, we replace
the knowledge distillation function in URL with our F-
OTCE score, resulting in significant accuracy improvements
in few-shot classification tasks on unseen domains.

This work is an extension of our previous conference
paper [22], and the additional contributions are summarized
as follows.

1) Expanding the Applicability of OTCE Framework: Our
proposed F-OTCE and JC-OTCE metrics eliminate
the need for auxiliary tasks and achieve comparable
transferability accuracy to OTCE. They also out-
perform previous auxiliary-free transferability metrics
in terms of accuracy while maintaining comparable
efficiency.

2) Investigating the Potential Uses of Transferability: We
illustrate the effectiveness of using F-OTCE as an opti-
mization objective in improving the performance of
downstream tasks, such as model finetuning and DG.
We consider F-OTCE to be a general tool that can
be easily integrated into various algorithms for transfer
learning and other related applications.

In our experiments using several multidomain classification
datasets, we show that our proposed two metrics significantly
outperform existing auxiliary-free metrics with 25.8% corre-
lation gain on average, while cutting more than 99% of the
computation time in the original OTCE. We also show that,
when served as a loss function, F-OTCE leads to notable
classification accuracy gains on the model finetuning and DG
tasks, with up to 4.41% and 2.34%. The rest of this article is
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organized as follows. Section II introduces the formulation
of transferability. Section III provides a preliminary anal-
ysis of OTCE. Section IV presents our two auxiliary-free
transferability metrics. Section V illustrates our proposed
transferability-guided model finetuning and DG algorithms.
Section VI provides all the experimental results and analyses.
Finally, we draw the conclusion in Section VII.

II. TRANSFERABILITY FORMULATION

Here, we introduce the formal definition of transferability.
Suppose we have source data Ds = {(x i

s, yi
s)}

m
i=1 ∼ Ps(x, y)

and target data Dt = {(x i
t , yi

t )}
n
i=1 ∼ Pt (x, y), where x

represents the input instance and y represents the label.
We have x i

s and x i
t from the input space X , and yi

s from the
source label space Ys , and yi

t from the target label space Yt .
Meanwhile, P(xs) ̸= P(xt ) and Ys ̸= Yt indicate different
domains and tasks, respectively. In addition, we are given a
source model (θs, hs) pretrained on source data Ds , in which
θs : X → Rd represents a feature extractor producing d-
dimensional features and hs : Rd

→ P(Ys) is the head
classifier predicting the final probability distribution of labels,
where P(Ys) is the space of all probability distributions over
Ys . Note that the notation θ and h can also represent model
parameters.

In this article, we mainly investigate the transferability
estimation problem with two representative transfer paradigms
for neural networks [5], i.e., Retrain head and Finetune. The
Retrain head method keeps the parameters of the source
feature extractor θs frozen and retrains a new head classifier
ht . However, the Finetune method updates the source feature
extractor and the head classifier simultaneously to obtain
new (θt , ht ). Compared with Retrain head, Finetune trade-offs
transfer efficiency for better transfer accuracy, and it requires
more target data to avoid overfitting [22].

To obtain the empirical transferability, we need to retrain
the source model via Retrain head or Finetune on target data
and then evaluate the expected log-likelihood on its testing set.
Formally, the empirical transferability is defined as follows.

Definition 1: The empirical transferability from the source
task S to the target task T is measured by the expected
log-likelihood of the retrained (θs, ht ) or (θt , ht ) on the testing
set of target task

Trf(S → T ) =

{
E

[
log P(yt |xt ; θs, ht )

]
(Retrain head)

E
[
log P(yt |xt ; θt , ht )

]
(Finetune)

(1)

which indicates how good the transfer performance is on the
target task. In practice, we usually take the testing accuracy
as an approximation of the log-likelihood [20], [22].

Although empirical transferability can be the golden stan-
dard of describing how easy it is to transfer the knowledge
learned from a source task to a target task, it is computationally
expensive to obtain. The efficient transferability metric is a
function of the source and target data that approximates the
empirical transferability, i.e., the ground truth of the transfer
performance on target tasks. It is, therefore, imperative to find
efficient transferability metrics that can accurately estimate
empirical transferability.

III. PRELIMINARY ANALYSIS OF OTCE

OTCE is an analytical transferability metric proposed for the
cross-domain cross-task transfer learning setting. As illustrated
in Fig. 2 (upper part), OTCE quantifies transferability as
a linear model of the domain difference WD (measured by
Wasserstein distance) and task difference WT (determined by
CE), which is denoted as follows:

OTCE = λ1WD + λ2WT + b. (2)

However, a major limitation of OTCE is its dependency on
auxiliary tasks with known transfer accuracy to determine the
intrinsic parameters of the linear model. In practice, we are not
always able to access sufficient labeled data from the target
domain for constructing auxiliary tasks. Meanwhile, obtaining
the transfer performance of auxiliary tasks needs retraining the
source model, which incurs additional computational costs.
As a result, the reliance on auxiliary tasks makes OTCE
relatively inefficient and less applicable in general scenarios.

The statistic of the learned parameters λ1, λ2, and b (as
shown in Fig. 3) reveals that (|λ2|)/(|λ1|) among differ-
ent transfer configurations varied irregularly, suggesting that
the importance of domain difference and task difference
varies for different cross-domain transfer learning settings.
It is, therefore, incapable of using the predefined coeffi-
cients for computing OTCE scores. In addition, we note
that the task difference WT plays a more important role
((|λ2|)/(|λ1|) > 1) in evaluating transferability. Therefore, our
proposed auxiliary-free transferability metrics mainly utilize
the task difference for describing transferability.

IV. AUXILIARY-FREE TRANSFERABILITY METRICS

Our proposed auxiliary-free transferability metrics F-OTCE
and JC-OTCE can be viewed as the efficient versions of
the auxiliary-based OTCE metric, which only consider the
negative CE to describe transferability, as depicted in Fig. 2.
Although we do not explicitly evaluate the domain difference,
the estimated probabilistic coupling between the source and
target data implicitly captures the domain difference to some
extent in this unified framework.

Specifically, F-OTCE achieves higher efficiency, while
JC-OTCE performs better in terms of accuracy across diverse
scenarios. The main difference between the two metrics is that
the ground cost of JC-OTCE considers both sample distance
and label distance when calculating the optimal coupling
between the source and target data, which approximates com-
puting ground cost in the joint space X ×Y , resulting in more
precise data correspondences.

A. F-OTCE Metric

Formally, we first use the source feature extractor θs to
embed the source and target input instances as latent features,
denoted by x̂ i

s = θs(x i
s) and x̂ i

t = θs(x i
t ), respectively. Then,

the computational process contains two steps as described as
follows.

Step 1: Compute Optimal Coupling: First, for the F-OTCE
metric, we define the ground cost between samples as follows:

c1(x̂ i
s, x̂ j

t ) ≜ ∥x̂ i
s − x̂ j

t ∥
2
2 (3)
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Fig. 2. Illustration of the auxiliary-based OTCE metric [22] (top), our proposed F-OTCE (middle), and JC-OTCE (bottom) metrics which do not require
auxiliary tasks with known transfer accuracy to learn the weighting coefficients. For OTCE (top), WD and WT represent the domain difference and task
difference between two tasks, respectively. To estimate the coefficients λ1, λ2, and b of the linear model, we need to sample at least three auxiliary tasks from
the target dataset and calculate W i

D , W i
T , and transfer accuracy T rans f er Acci between the source task and each auxiliary task as training data.

Fig. 3. Statistic of the learned weighting coefficients λ1 and λ2 and the bias
term b of OTCE under diverse transfer configurations.

so the OT problem with the entropic regularization [28] can
be defined as follows:

OT (Xs, X t ) ≜ min
π∈P(Xs ,X t )

m,n∑
i, j=1

c1(x̂ i
s, x̂ j

t )πi j − λH(π) (4)

where π is the coupling matrix of size m × n, and H(π) =

−
∑m

i=1
∑n

j=1 πi j log πi j is the entropic regularizer with λ =

0.1. The OT problem above can be solved efficiently by the
Sinkhorn algorithm [28] to produce an optimal coupling matrix
π∗.

From a probabilistic point of view, the coupling matrix
π∗ is a nonparametric estimation of the joint probability
distribution of the source and target latent features P(Xs, X t ).
We model the relationship between the source and the tar-
get data according to the following simple Markov random
field: Ys − Xs − X t − Yt , where label random variables Ys

and Yt are only dependent on Xs and X t , respectively, i.e.,
P(Ys, Yt |Xs, X t ) = P(Ys |Xs)P(Yt |X t ). Furthermore, we can
derive the empirical joint probability distribution of the source

and target labels

P(Ys, Yt ) = EXs ,X t [P(Ys |Xs)P(Yt |X t )]. (5)

This joint probability distribution can reveal the transfer
performance since the goodness of class-to-class matching
intuitively reveals the hardness of transfer.

Step 2: Compute Negative Conditional Entropy: We are
inspired by Tran et al. [20] who use CE H(Yt |Ys) to describe
class-to-class matching quality over the same input instances.
They have shown that the empirical transferability is lower
bounded by the negative CE

T̃rf(S → T ) ≥ lS(θs, hs) − H(Yt |Ys) (6)

where the training log-likelihood T̃rf(S → T ) = lT (θs, ht ) =

(1/n)
∑n

i=1 log P(yi
t |x

i
t ; θs, ht ) is an approximation of the

empirical transferability when the retrained model is not
overfitted. And, lS(θs, hs) is a constant, so the empirical
transferability can be attributed to the CE.

We consider it as a reasonable metric to evaluate the trans-
ferability under the cross-domain cross-task transfer setting
once we learn the soft correspondence π∗ between source and
target features via OT. We can also compute the empirical joint
probability distribution of the source and target labels, and the
marginal probability distribution of the source label, denoted
as follows:

P̂(ys, yt ) =

∑
i, j :yi

s=ys ,y
j
t =yt

π∗

i j (7)

P̂(ys) =

∑
yt ∈Yt

P̂(ys, yt ). (8)
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Fig. 4. Toy example shows that the F-OTCE metric fails to distinguish the
more transferable source model, while the JC-OTCE predicts correctly by
involving the label distance in computing the correspondences.

Then, we can compute the negative CE as the F-OTCE score

F-OTCE = −Hπ∗(Yt |Ys)

=

∑
yt ∈Yt

∑
ys∈Ys

P̂(ys, yt ) log
P̂(ys, yt )

P̂(ys)
. (9)

Compared with the auxiliary-based OTCE, we directly use
the negative CE to characterize transferability, which avoids
the cumbersome parameter fitting process on auxiliary tasks,
resulting in a drastic efficiency improvement.

B. JC-OTCE Metric

F-OTCE is an efficient transferability metric in practical
scenarios, but its accuracy can be further improved. Take
a toy example as shown in Fig. 4 for illustration, where
the F-OTCE metric fails to distinguish the more transferable
source model. This observation suggests that computing data
correspondences solely based on sample distance (in space X )
may not always accurately capture the class-to-class matching
quality (or the label uncertainty of the target task) as expected.
Therefore, to further improve the accuracy of F-OTCE, we pro-
pose the JC-OTCE metric which involves the additional label
distance in computing the joint correspondences between data
in the joint space X × Y .

Formally, we first define the data instances of the source and
target tasks as zs = (x̂ s, ys) and zt = (x̂ t , yt ), respectively,
where zs ∈ Zs = X × Ys and zt ∈ Zt = X × Yt . And,
we define αy ≜ P(X |Y = y), which can be estimated from
a collection of finite samples with label y. Inspired by recent
work [29], we compute the label distance as the Wasserstein
distance Wass(αys , αyt ). Then, the ground cost for JC-OTCE
can be defined as follows:

c2(zi
s, z j

t ) ≜ γ ∥x̂ i
s − x̂ j

t ∥
2
2 + (1 − γ )Wass(αyi

s
, αy j

t
) (10)

where γ ∈ [0, 1] is a weighting coefficient to combine the
sample distance and the label distance, and here, we let γ =

0.5. More discussion about γ is described in Section VI-C.
Similarly, the OT problem for Zs and Z t is defined as follows:

OT (Zs, Z t ) ≜ min
π∈P(Zs ,Z t )

m,n∑
i, j=1

c2(zi
s, z j

t )πi j − λH(π). (11)

TABLE I
DIFFERENCES BETWEEN MODEL FINETUNING AND DG

By solving this OT problem, we also obtain the optimal
coupling matrix π∗. Then, following the Step 2 described in
Section IV-A [see (7) and (8)], the JC-OTCE score is computed
as the negative CE as well

JC-OTCE = −Hπ∗(Yt |Ys)

=

∑
yt ∈Yt

∑
ys∈Ys

P̂(ys, yt ) log
P̂(ys, yt )

P̂(ys)
. (12)

V. TRANSFERABILITY-GUIDED TRANSFER LEARNING

In this section, we present two examples of utilizing our
transferability metric to boost the performance of downstream
transfer learning tasks, including model finetuning and DG.
The differences between these two transfer learning tasks are
described in Table I.

To facilitate the training process, we adopt the F-OTCE
metric as the optimization objective since using the JC-OTCE
metric needs solving multiple OT problems to compute pair-
wise label distances, which incurs significant computational
costs. In addition, due to graphics processing unit (GPU)
memory constraints, we typically perform mini-batch training
which only loads a subset of the dataset in the current training
iteration, while computing label distance requires loading the
entire dataset.

A. OTCE-Based Model Finetuning

The vanilla finetune algorithm follows the “pretraining +

finetuning” pipeline that is commonly used in transfer learn-
ing. However, this scheme does not consider the relatedness
between the source and target tasks. To address this issue,
our proposed OTCE-based finetune algorithm introduces an
intermediate step into the conventional pipeline, i.e., maxi-
mize the transferability of transferring from the source task
to the target task, resulting in a “pretraining + adaptation
(maximizing transferability) + finetuning” framework. The
moderate optimization during the adaptation step utilizes the
task relationship characterized by our F-OTCE score to enable
the source feature representation to become more transferable
to the target task. This facilitates easier learning of the head
classifier during the finetuning step and ultimately leads to
higher transfer accuracy.

Suppose we have obtained the pretrained model on the
source task, the OTCE-based finetune algorithm is a two-
step framework, as depicted in Fig. 5 and Algorithm 1. First,
we optimize the source feature extractor θ̂ s by minimizing the
CE within one epoch. Formally,

θ̂∗

s = arg min
θ̂ s

Hπ∗(Yt |Ys)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on August 30,2024 at 14:34:35 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 5. Pipeline of our OTCE-based finetune method.

= − arg min
θ̂ s

∑
yt ∈Yt

∑
ys∈Ys

P̂(ys, yt ) log
P̂(ys, yt )

P̂(ys)
(13)

where π∗ is the optimal coupling matrix computed from (4).
Joint label distribution P̂(ys, yt ) and marginal P̂(ys) are
computed from (7) and (8). The computation of solving the OT
problem with entropic regularizer [28] (4) is differentiable [30]
since the iterations form a sequence of linear operations, so it
can be implemented on the PyTorch framework as a special-
ized layer1 of the neural network. After that, we initialize the
target feature extractor θt from the optimized source weights
θ̂∗

s , and then retrain the target model (θt , ht ) on the target
training data using the cross-entropy loss function

θ∗

t , h∗

t =arg max
θt ,ht

m∑
i=1

k∑
l=1

1{yi
t = l} log

exp(hl
t (θt (x i

t )))∑k
j=1 exp(h j

t (θt (x i
t )))

(14)

where m represents the number of target training samples and
k is the number of the categories of the target task.

Note that we do not make it a one-step framework, i.e.,
simultaneously maximize the transferability and minimize the
classification loss. Because optimizing two objectives simul-
taneously may cause gradient conflicts in mini-batch training,
which will deteriorate the final classification performance.

B. OTCE-Based Domain Generalization

In contrast to the model finetuning task, the DG task
aims to learn the generalizable feature representation exhibit-
ing domain-irrelevant and task-irrelevant characteristics from
multiple training domains. Therefore, the learned model can
also achieve high classification accuracy when transferred to
unseen tasks from unseen domains. We integrate our F-OTCE
metric into a state-of-the-art DG method URL [27], [31] as a
loss function to illustrate its effectiveness in boosting the DG
algorithm.

More specifically, URL learns a universal model via
distilling the common knowledge from multiple pretrained

1https://github.com/dfdazac/wassdistance

Algorithm 1 OTCE-Based Finetune
Require: source dataset Ds = {(x i

s, yi
s)}

m
i=1

target dataset Dt = {(x i
t , yi

t )}
n
i=1

source feature extractor θs

1: Initialize θ̂ s = θs

2: while sampling mini-batches within one epoch do
3: Generate mini-batch Bs = {(θs(x i

s), yi
s)}

M
i

4: Generate mini-batch Bt = {(θ̂ s(x i
t ), yi

t )}
N
i

5: Update θ̂ s via maximizing F-OTCE(Bs, Bt )

6: end while
7: Initialize θt = θ̂ s

8: Randomly initialize ht

9: while θt , ht not converge do
10: Update θt , ht using equation (14)
11: end while

Fig. 6. Partial illustration of the URL framework [27]. We replace the CKA
similarity with our F-OTCE metric.

domain-specific models corresponding to each training
domain. The universal model is required to achieve high
classification accuracy in all training domains as well. Once
the universal model is obtained, we can use it to extract feature
representations for unseen few-shot classification tasks and
make predictions via the nearest neighbor classifier (NCC).

In our opinion, the process of distilling knowledge from
domain-specific models can be interpreted as maximizing
the transferability between the domain-specific models and
the universal model. Therefore, we propose to replace the
knowledge distillation objective centered kernel alignment
(CKA) [32] similarity used in URL with our F-OTCE metric,
as illustrated in Fig. 6. Unlike CKA which solely focuses on
minimizing feature differences, F-OTCE considers a wider
range of task-specific information to minimize the label
uncertainty of the universal model. We follow the default
configuration of the URL algorithm. Please refer to [31] and
[27] and the official codebase2 for more details about the URL
algorithm.

2https://github.com/VICO-UoE/URL
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Fig. 7. Examples from the cross-domain datasets DomainNet and Office31,
where images from different domains exhibit different image styles or are
captured by different devices.

C. Few-Shot Classification Task Definition

We evaluate the effectiveness of our algorithms based on
their transfer accuracy on few-shot classification tasks across
domains. A few-shot classification task known as C-way-K-
shot means that the support (training) set S = {(x i , yi )}k×C

i=1
contains k labeled instances from each of the C categories. The
query set Q = {(x i , yi )}

q×C
i=1 contains q samples per category

and serves as the testing set to evaluate the classification
accuracy of the model finetuned on the support set.

VI. EXPERIMENTS

In this section, we begin by conducting quantitative evalu-
ations of our proposed transferability metrics under various
cross-domain cross-task transfer settings. We also explore
their applications in source model selection and multisource
feature fusion, as well as provide further analyses on computa-
tional efficiency, memory consumption, and hyperparameters.
In addition, we conduct extensive evaluations of our proposed
transferability-guided transfer learning methods including the
OTCE-based finetune algorithm and the OTCE-based URL
algorithm.

A. Evaluation on Transferability Estimation

1) Datasets: Our experiments are conducted on the data
from the largest-to-date cross-domain dataset DomainNet [33]
and popular Office31 [34] dataset. The DomainNet dataset
contains 345-category images in five domains (image styles),
i.e., Clipart (C), Painting (P), Quickdraw (Q), Real (R), and
Sketch (S), and the Office31 contains 31-category images in
three domains including Amazon (A), DSLR (D), and Webcam
(W). Data examples are shown in Fig. 7.

2) Evaluation Criteria: To quantitatively evaluate the effec-
tiveness of transferability metrics, we adopt the commonly
used Spearman’s rank correlation coefficient (Spearman’s
ρ coefficient) and the Kendall rank correlation coefficient
(Kendall’s τ coefficient) [35] to assess the correlation between
the transfer accuracy and predicted transferability scores.
Specifically, Spearman’s ρ coefficient is defined as follows:

ρ = 1 −
6

∑
d2

i

n(n2 − 1)
(15)

where di = R(Acci ) − R(Trfi ) is the difference between the
rankings of transfer accuracy Acci and transferability score

Trfi for the i th source-target task pair, and n represents the
total number of task pairs.

Kendall’s τ coefficient in our experiments is defined as
follows:

τ =
2

n(n − 1)

∑
i< j

sgn(Acci − Acc j )sgn(Trfi − Trf j ). (16)

Kendall’s τ coefficient computes the number of concordant
pairs minus the number of discordant pairs divided by the
number of total pairs. A higher rank correlation indicates a
more accurate transferability estimation result.

3) Transfer Settings: In the DomainNet dataset, we succes-
sively take each domain as the source domain and use the
rest as target domains. For each target domain, we generate
100 target tasks by randomly sampling images in different cat-
egories. Then, we transfer the source models (ResNet-18 [36])
pretrained on all source domain data to each target task to
obtain the ground-truth transfer accuracy. To investigate the
performance of transferability metrics under various transfer
configurations, three different transfer settings are considered,
i.e., the standard setting, the few-shot setting, and the fixed
category size setting.

1) Standard Setting: We keep all the training samples of
the target task for retraining the source model. Mean-
while, the number of categories of target tasks ranges
from 10 to 100. Thus, we totally conduct 5×4×100 =

2000 cross-domain cross-task transfer tests.
2) Few-Shot Setting: As transfer learning is commonly used

in scenarios where only a few labeled data are provided,
it is worth evaluating the accuracy of transferability
metrics on few-shot cases. The only difference with the
standard setting is that we limit the target tasks to have
only ten training samples per category.

3) Fixed Category Size Setting: As studied in [22], the
intrinsic complexity of the target task, e.g., category
size (number of categories), also affects the transfer
accuracy. Usually, a larger category size makes the
target task more difficult to learn from limited data.
As a result, in the previous two settings, the intrin-
sic complexity of target tasks with different category
sizes may overshadow the more subtle variations in the
relatedness with the source task. To investigate whether
the transferability metrics are capable of capturing those
subtle variations, we propose a more challenging fixed
category size setting, where all target tasks have the
same category_si ze = 50. Other configurations are the
same as the standard setting.

Moreover, in the Office31 dataset, the DSLR and Webcam
domains contain very few samples (∼15 samples per category)
and suffer from severe category imbalance. Consequently,
we construct two different configurations: data-imbalanced
and data-balanced settings. Both of these two settings are
few-shot, but the data-balanced setting permits a maximum of
ten samples per category. Here, we only use Amazon as the
source domain since the other two domains lack sufficient data
to train generalizable source models. It is worth noting that
we use the average per-class accuracy instead of the overall
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TABLE II
QUANTITATIVE COMPARISONS EVALUATED BY SPEARMAN’S ρ COEFFICIENT AND KENDALL’S τ COEFFICIENT BETWEEN TRANSFERABILITY METRICS

AND TRANSFER ACCURACY UNDER DIFFERENT CROSS-DOMAIN CROSS-TASK TRANSFER SETTINGS FOR IMAGE CLASSIFICATION TASKS.
OUR PROPOSED JC-OTCE AND F-OTCE METRICS CONSISTENTLY OUTPERFORM STATE-OF-THE-ART AUXILIARY-FREE METRICS.

MEANWHILE, THE JC-OTCE ACHIEVES COMPARABLE PERFORMANCE TO THE AUXILIARY-BASED OTCE

accuracy for representing the transfer performance under the
data-imbalanced setting.

For all the settings above, we adopt a stochastic gradient
descent (SGD) optimizer with a learning rate of 0.01 to
optimize the cross-entropy loss for 100 epochs during the
transfer training phase.

4) Results: Quantitative comparisons with state-of-the-art
auxiliary-free transferability metrics including LEEP [21],
NCE [20], H-score [7], and LogME [23] are shown in
Table II, and visual comparisons are illustrated in Fig. 8.
First, we can see that both our JC-OTCE and F-OTCE metrics
consistently outperform recent LEEP, NCE, H -score, and
LogME metrics on all three transfer settings. In particular,
our JC-OTCE metric achieves (7.3%, 14.7%, 4.5%, 11.4%)

and (16.6%, 22.5%, 18.0%, 17.0%) average gains on Kendall
correlation compared to LEEP, NCE, H -score, and LogME,
respectively, under the standard setting and the few-shot
setting. Moreover, the H -score metric and the LogME metric
failed under the more challenging fixed category size setting,
where they showed a negative correlation with the transfer
accuracy.

Second, the JC-OTCE metric outperforms the F-OTCE
metric with an average 5.4% gain on Kendall correlation,

which shows that involving the label distance in computing
the data correspondences makes the transferability estimation
more accurate. Meanwhile, the JC-OTCE metric performs
comparably to the original OTCE metric in accuracy, while
the former one is evidently more efficient and has fewer
restrictions.

Basically, we can conclude that OTCE ≈ JC-OTCE >

F-OTCE in accuracy and OTCE < JC-OTCE < F-OTCE
in efficiency. These three metrics can be applied flexibly
according to the needs of different practical situations.

B. Efficiency Analysis

Given d-dimensional extracted features of m source samples
and n target samples, assuming that |Ys |, |Yt | < min(m, n),
the computational complexity of F-OTCE is O(mn max{d, k}),
where k is the number of Sinkhorn iterations in the OT com-
putation. Specifically, the worst-case complexity of computing
the cost matrix between source and target samples is O(mnd).
Solving the OT problem by Sinkhorn algorithm with ϵ accu-
racy has complexity O(mnk) = O(2 mn∥c∥2

∞
/(λϵ)) [37],

where ∥c∥∞ = sup(zs ,zt )∈Z2 c(zs, zt ) is the maximum cost
between source and target sample features and λ is the
weighting coefficient of the entropic regularizer. In practice,
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