

Introduction

Background.

- Trajectory representation learning provides great opportunities to understand vehicular traffic patterns.
- It can benefit downstream tasks including trajectory compression, trip time estimation, public transportation route planning.

Algorithm

Pathlet sparse dictionary learning with randomized rounding.

- 1. Relax the binary constraint and find the fractional solution R^*
- 2. Obtain the rounded solution R^r

Probability bound. Given the size of dataset |T|, trajectory matrix M, pathlet matrix D and trade off parameter λ . Then for constant parameter θ , we have the following bound on the cost of R^r :

$$P[C(R^r) \le 2\theta \frac{\lambda + 1}{\lambda} C(R^*) \text{ and } DR^* \ge M] \ge \frac{1}{2} - |T|e^{-\theta}$$

Fig 1. Transforming a trajectory into an embedding vector

Motivation.

- Embeddings generated by deep-learning methods are usually dense vectors whose dimensions lack semantic meaning.
- It is difficult to interpret the learned representation.

Purpose.

- Extract common trajectory segments (called pathlet) as a dictionary.
- Represent trajectory by concatenating pathlets from dictionary.
- Generate semantic trajectory representation vectors, each dimension corresponding to a mobility pattern.

Hierarchical Pathlet Learning.

- 1. Divide the map into small grids and learn local pathlets.
- 2. Merge small grids and extract high-level pathlets iteratively.

Experiment & Result

Fig 2. Represent a trajectory by concatenating pathlets from dictionary

Evaluation criteria of a pathlet dictionary.

- This dictionary should be able to reconstruct all trajectories.
- Smaller dictionary is better, which means less redundant information.
- Average number of pathlets used to reconstruct trajectory should be as small as possible.

Problem Formulation

Fig 3. Visualization of Top 300 frequent pathlets.

Tab 1: The performance comparison with previous work.

Dataset	Method	Train Phrase				Test Phrase	
Dataset		dictionary size/ T	rc	cover	rc	cover	
				ratio		ratio	
Porto	DP	1.79	2.14	100%	4.19	88.03%	
	ours	1.02(-43.01%)	2.00(-6.54%)	99.6%	2.75	93.6%(+5.57%)	
Shenzhen	DP	1.21	2.88	100%	3.01	93.9%	
	ours	0.91(-36.36%)	2.75 (-4.51%)	99.1%	3.02	95.4% (+1.5%)	

Tab 2. Application in Trip Time Prediction.

dataset	method	MAE	MAPE	RMSE	RMSLE
	[28]	-	-	-	0.41
Porto	[3]	171.97	-	-	-
	Ours	163.9	26.2	199.74	0.35
Porto	[27]	39.25	14.74	52.35	_
(short trips)	Ours	32.87	9.37	37.59	0.08

which e does a p cover

which p are used to construct a t

- R is decision matrix, corresponding to dictionary P.
- Matrix D and M record the cover relationship between T, E, \overline{P}

Problem formulation.

Fig 4. Application in Data Compression. Fig 5. Effect of hyper-parameter.

Conclusion

- A dictionary learning based method with theoretical probability bound analysis is proposed to solve the trajectory representation problem.
- The most frequent pathlets generated are visualized.
- The numerical experiment result demonstrates the effectiveness and broad prospects in downstream tasks.