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ABSTRACT
Trajectory representation learning on a network enhances our un-
derstanding of vehicular traffic patterns and benefits numerous
downstream applications. Existing approaches using classic ma-
chine learning or deep learning embed trajectories as dense vectors,
which lack interpretability and are inefficient to store and analyze in
downstream tasks. In this paper, an explainable trajectory represen-
tation learning framework through dictionary learning is proposed.
Given a collection of trajectories on a network, it extracts a compact
dictionary of commonly used subpaths called “pathlets”, which op-
timally reconstruct each trajectory by simple concatenations. The
resulting representation is naturally sparse and encodes strong
spatial semantics. Theoretical analysis of our proposed algorithm
is conducted to provide a probabilistic bound on the estimation
error of the optimal dictionary. A hierarchical dictionary learning
scheme is also proposed to ensure the algorithm’s scalability on
large networks, leading to a multi-scale trajectory representation.
Our framework is evaluated on two large-scale real-world taxi
datasets. Compared to previous work, the dictionary learned by
our method is more compact and has better reconstruction rate for
new trajectories. We also demonstrate the promising performance
of this method in downstream tasks including trip time prediction
task and data compression.
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1 INTRODUCTION
The development of information technology and the widespread
use of mobile devices have produced a large amount of GPS trajec-
tory data. Raw trajectory data typically appears as variable-length
ordered sequences, which cannot be directly input into common
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data mining algorithms. Trajectory representation learning, which
means transforming a trajectory into an embedding vector, can stan-
dardize trajectory data, extract valuable information from redun-
dant original data, and benefit various downstream tasks including
trajectory compression, trip time estimation [1].

Recently, various deep learning based models for trajectory rep-
resentation learning has been developed. For example, Yang et al.
[2] introduced a model based on self-attention (T3S) that automati-
cally adjusts the importance of spatial and structure information for
different similarity measures. And they showed the effectiveness
for trajectory similarity computation. In addition, in [3] the authors
proposed a trajectory encoder-decoder network based on graph at-
tention mechanism to obtain trajectory embedding and evaluate in
vehicle trajectories prediction task. Before the emergence of these
deep learning based methods, researchers also attempted to ex-
plore this field using traditional algorithms, including [4], wherein
the authors introduce a pipelined algorithm that extract frequent
underlying paths called corridor from trajectories and evaluate it
using Minimum Description Length (MDL) score. Besides that, Zou
et al. [5] extracted middle level features from trajectories for clus-
tering using a cluster specific Latent Dirichlet Allocation Model.
However, the representations generated by previous methods are
usually dense vector whose dimensions lack semantic meanings.
As a result, it is difficult to interpret the learned representation.

Figure 1: Illustration of pathlet learning: A pathlet dictio-
nary is learned from dataset and each trajectory can be repre-
sented by concatenating pathlets chosen from this dictionary.

In this paper, we introduce an explainable trajectory represen-
tation method through dictionary learning for trajectories on a
network. The network is usually a road map for vehicle trajectories
or a grid network for unstructured trajectories, on which trajec-
tory can be projected using map matching [6]. The basic idea is
demonstrated in Figure 1. Given a collection of trajectories on a
network, it extracts a compact dictionary of commonly used sub-
paths called “pathlets”. Each trajectory can then be reconstructed by
concatenating pathlets from the dictionary, similar to the process
of constructing a sentence by assembling a group of words. The
resulting trajectory representation is a sparse binary vector, where
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each dimension corresponds to a pathlet in the learned dictionary
and each binary variable indicates whether the corresponding path-
let is used to reconstruct the trajectory. Such design is motivated by
the observation that people’s travel behavior exhibits remarkable
regularity, enabling us to reconstruct majority of trajectories using
a small set of movement patterns.

The pathlet representation of trajectories was first explored by
Chen et al. [7], who formulate the pathlet learning problem as a
combinatorial optimization problem. Solved approximately using
dynamic programming, the original formulation is costly to com-
pute and lacks theoretical guarantee. We propose an algorithm
using a novel dictioanry learning formulation that provides better
optimality and scalability for large trajectory datasets. Specifically,
in our formulation, the objective function minimizes the size of the
pathlet dictionary and the average number of pathlets required to
reconstruct each trajectory at the same time. We propose an effi-
cient solution to this integer programming problem, by first solving
its relaxed version and find the integer solution using randomized
rounding. To ensure the scalability to large-scale road networks, we
further propose a hierarchical representation scheme that compute
pathlets of different granularity in multi-scale spatial partition of
the map. This algorithm is evaluated on two real-world taxi datasets
and some frequent mobility patterns are visualized. We also demon-
strate the promising performance of this method in downstream
tasks. For example, our method outperforms neural-network based
methods by 4.7% in prediction accuracy on trip time prediction.

2 PRELIMINARY
Terminology. Given a dataset𝑇 and a roadmap that can be formed
as a directed graph 𝐺 = (𝐸,𝑉 ), a trajectory 𝑡 ∈ 𝑇 is defined as a
sequence of edges 𝑒 on 𝐺 . For each 𝑡 , a path 𝑝 on 𝐺 is a candidate
pathlet if 𝑝 is a subpath of 𝑡 . We denote the set of all candidate
pathlets traversed by T as 𝑃 .

Given a pathlet dictionary 𝑃 and a trajectory 𝑡 , 𝑃𝑠𝑢𝑏 is a subset
of 𝑃 so that 𝑡 can be represented by concatenating 𝑝 ∈ 𝑃𝑠𝑢𝑏 . This
process is denoted by 𝑡 = 𝑐 (𝑃𝑠𝑢𝑏 ). Furthermore, the representation
cost 𝑟𝑐 (𝑡, 𝑃) refers to the minimal number of elements required to
represent 𝑡 , which is defined as: 𝑟𝑐 (𝑡, 𝑃) = min

𝑃𝑠𝑢𝑏⊂𝑃,𝑡=𝑐 (𝑃𝑠𝑢𝑏 )
|𝑃𝑠𝑢𝑏 |

Problem definition. The goal is to find an optimal dictionary 𝑃

that minimizes the following two objectives at the same time: 1) the
size of the dictionary, as a smaller dictionary contains less redun-
dant information and is therefore more desirable. 2) the average
number of elements required to reconstruct trajectories. We use
hyperparameter 𝜆 to control the trade-off between these two objec-
tives. Therefore, similar to [7], in this paper the pathlet dictionary
learning problem is defined as:

min
𝑃⊂𝑃

𝑠𝑖𝑧𝑒 (𝑃) + 𝜆 ∗
∑︁
𝑡 ∈𝑇

𝑟𝑐 (𝑡, 𝑃) (1)

𝑠 .𝑡 .∀𝑡 ∈ 𝑇, ∃𝑃sub ⊂ 𝑃 : 𝑡 = 𝑐 (𝑃sub) (2)

3 METHODOLOGY
3.1 Problem Formulation
To formulate the problem defined above using vector notations, we
introduce three matrices𝑀 , 𝐷 , 𝑅 to record the cover relationship

among trajectories, edges, and candidate pathlets respectively. Ma-
trix 𝑀 has dimensions of |𝐸 | by |𝑇 |, where each element 𝑀𝑖, 𝑗 is
equal to 1 when the i-th trajectory passes through the j-th edge and
0 otherwise. Matrix 𝐷 with a size of |𝐸 | × |𝑃 | is constructed in the
same way for the relationship between all candidate pathlets and
edges. Similarly, matrix 𝑅 is a |𝑃 | × |𝑇 | decision matrix, each entry
𝑅𝑖, 𝑗 = 1 if 𝑝𝑖 is used to represent 𝑡 𝑗 , and 𝑅𝑖, 𝑗 = 0 otherwise. Based
on these definition, the problem can be formulated as follows:

min
𝑅𝑖,𝑗 ∈{0,1}

𝐶 (𝑅) =
|𝑃 |∑︁
𝑖=1

𝑚𝑎𝑥 (𝑅𝑖,:) + 𝜆 ∗
|𝑃 |∑︁
𝑖=1

|𝑇 |∑︁
𝑗=1

|𝑅𝑖, 𝑗 |

𝑠 .𝑡 .𝐷𝑅 = 𝑀

Here 𝑚𝑎𝑥 (𝑅𝑖,:) refers to the maximum value of 𝑖 th row of 𝑅,
which is equal to 1 if any trajectory utilizes 𝑝𝑖 to represent itself.
In other words,𝑚𝑎𝑥 (𝑅𝑖,:) = 1 means that candidate pathlet 𝑝𝑖 is
selected as an element of the dictionary. We reuse the notation 𝑃 to
represent the matrix form of the dictionary, which is a submatrix
formed by selected columns of 𝐷 , 𝑃 = 𝐷 [:, {𝑖 | 𝑚𝑎𝑥 (𝑅𝑖 , :) = 1}] and
therefore 𝑠𝑖𝑧𝑒 (𝑃) = ∑ |𝑃 |

𝑖=1𝑚𝑎𝑥 (𝑅𝑖,:). The constraint 𝐷𝑅 = 𝑀 corre-
sponds to the setting that each trajectory should be reconstructed
using pathlets. In this optimization problem, the dictionary and the
assignment relationship will be optimized at the same time. It is
worth noting that the pathlet learning problem described above is
NP-hard in most cases. Therefore, an effective algorithm is required
to obtain good approximated solutions.

3.2 Pathlet Dictionary Learning with
Randomized Rounding

The proposed algorithm consists of two main steps. Firstly, we relax
the binary constraint, which transforms the original optimization
problem into a convex optimization problem. Therefore, the global
optimal solution 𝑅∗ can be found easily by the projected gradient
descent algorithm. Then a randomized rounding step is carried out
to obtain the final solution 𝑅𝑟 . The whole procedure is shown in
the following pseudocode of Algorithm 1.

Algorithm 1 Pathlet dictionary learning by randomized rounding
Require: 𝑀 : trajectory matrix; 𝐷 : pathlet matrix; 𝑅0: initial solu-

tion; 𝜖, 𝜃 : hyperparameters; 𝐶: objective function;
Ensure: Optimal binary matrix 𝑅𝑟
1: # Step1, we compute the fractional solution 𝑅∗.
2: initial 𝑅0 = 0;
3: repeat
4: compute gradient directions 𝑔𝑘 = ▽𝐶 (𝑅𝑘 );
5: update the decision matrix 𝑅𝑘+1 = 𝑅𝑘 − 𝛼𝑔𝑘 ;
6: clip the result to make sure 0 ≤ 𝑅𝑘 ≤ 1;
7: until (|𝐶 (𝑅𝑘 ) −𝐶 (𝑅𝑘−1) | < 𝜖)
8: #Step2, we compute rounded solution 𝑅𝑟 based on 𝑅∗.
9: Sample 𝑅𝑟 with 𝑃 (𝑅𝑟

𝑖, 𝑗
= 1) =𝑚𝑖𝑛(1, 𝜃𝑅∗

𝑖, 𝑗
)

Probabilistic Bound. We claim that 𝑅𝑟 satisfies

𝑃 [𝐶 (𝑅𝑟 ) ≤ 2𝜃 𝜆 + 1
𝜆

𝐶 (𝑅∗) 𝑎𝑛𝑑 𝐷𝑅𝑟 ≥ 𝑀] ≥ 1
2 − |𝑇 |𝑒−𝜃

In practice, |𝑃 | can be quite large. We pre-filter out less frequently used candidates to
alleviate computational burden. Please refer to Appendix D for details.
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This inequality means that the probablity that a solution with low
cost can be found and all trajectories will be covered at the same
time is lower bounded by a positive constant. Therefore, we can
repeat the randomized rounding process to get a series of {𝑅𝑟1, 𝑅

𝑟
2 ...}

until find a satisfactory solution. The proof can be found in appen-
dix part A.

3.3 Hierarchical Pathlet Learning
Candidate pathlet space consists of all segments of trajectories from
dataset, whose size is usually huge in real-world dataset and make it
time-consuming to get the solution. On the other hand, Multi-scale
dictionaries of pathlets and trajectory representations can help peo-
ple gain a deeper understanding of traffic characteristic. To enhance
the scalability of the original algorithm, we introduce a hierarchi-
cal method called "pathlet of pathlets" to reduce the computation
complexity and generate multi-scale trajectory representations.

Specificly, we first partition the roadmap into different levels of
granularity using axis-aligned binary space partitioning. Starting
from the bottom of the partition tree, we compute the 𝑘-th level
pathlet dictionary 𝑃𝑘 as the union of dictionaries computed in all
𝑘-th level cells. Next, we use the 𝑘-th level pathlet representation of
each trajectory as the input, and compute the (𝑘−1)-th level pathlet
dictionaries. This iterative process can be repeated to generate
multi-scale pathlets that capture movement patterns.

Figure 2: Illustration of the hierchical pathlet representation.
Here 𝐺𝑘

𝑖
refers to the 𝑖-th region of the 𝑘-th layer.

3.4 Representing New Trajectories
Once we obtain a set of dictionaries at multiple scales, we can use
them together in representing new trajectories. We define a unified
dictionary matrix 𝑃 ′ by concatenating the dictionary matrices by
column. The size of dictionary 𝑃 ′ is therefore equal to the number
of columns of 𝑃 ′.

For any new trajectory, it can be mapped to a new representation
space using 𝑃 ′ . To be specific, representation vector is obtained by
solving:

min
𝑟𝑖 ∈{0,1}

𝑠𝑖𝑧𝑒 (𝑃 ′ )∑︁
𝑖=1

|𝑟𝑖 | 𝑠 .𝑡 .𝑃 ′𝑟 =𝑚

Here𝑚 represents the vector recording the edges covered by a
new trajectory, and 𝑟 denotes the representation vector that we aim
to solve for. This problem can be viewed as a simplified version of
the original problem because the dictionary is fixed at this moment.
We solve it using the same strategy described before: first compute
the optimal fractional solution 𝑟∗ using gradient descent and then
round it to get the final binary solution.

4 EXPERIMENTS
4.1 Numerical Performance
4.1.1 The Performance Comparison with Previous Work. Our re-
search largely follows the problem formulation described in [7]
Due to the space limit, details of experiments setup can be found in appendix part B.

but we adopt different formulation and method. In that paper, the
authors first relaxed𝑚𝑎𝑥 (𝑅𝑖,:) to 𝑅𝑖, 𝑗 , and then solved it using dy-
namic programming, which is simple and effective. However, this
relaxation operation resulted in an redundant dictionary, providing
us with room for improvement especially when 𝜆 is small.

In this experiment, hyperparameter 𝜆 and 𝜃 are set as 0.1 and
1
4 𝑙𝑛(2|𝑇 |) respectively, and we only randomly sample 3 times using
strategy described before. As is shown in Table 1, our approach
generates a more compact and effective dictionary compared to
dynamic programming methods, reducing the dictionary size by
43.01% and 36.36% respectively on two datasets and the representa-
tion cost is relatively lower. At the same time, it is observed that the
cover ratio is very close to 1, here 𝜃 is set as 1

4 𝑙𝑛(2|𝑇 |) instead of
𝑙𝑛(4|𝑇 |) because in the experiment we found that the method can
still produce a feasible solution with low cost within 3 random sam-
pling cycles, which further validates the effectiveness of previously
derived probability bound.

4.1.2 Reconstruction using Multi-scale Dictionary. The hierarchi-
cal framework enables us to learn multi-level pathlet dictionaries
on arbitrarily large maps and datasets with limited computational
resources. In this section, we validate the above statement by com-
paring the performance of the dictionary directly learned on the
whole map (denoted using 𝑃𝑑𝑖𝑟𝑒𝑐𝑡 ) and the dictionaries generated
by hierarchical framework on test data. Specifically, we randomly
selected 10,000 trajectories from the Futian district as train set to
learn the dictionary and tested it on another 10,000 trajectories.
In Table 2, 𝑃2 represents dictionaries learned on regions of the
2-th layer and 𝑃1 + 𝑃2 refers to multi-scale dictionaries. The per-
formance of 𝑃𝑑𝑖𝑟𝑒𝑐𝑡 can be considered as ground truth to some
extent, although it comes with significant computational resource
consumption. We can observe that compared to only using 𝑃2, the
reconstruction cost is much lower when using the multi-scale dic-
tionary. The performance of the multi-scale dictionary is closer
to that of 𝑃𝑑𝑖𝑟𝑒𝑐𝑡 , but consumes only 54% of the GPU memory re-
sources compared to the training of 𝑃𝑑𝑖𝑟𝑒𝑐𝑡 and the computation
time is reduced by 20%.

4.2 Visualization of Pathlet Dictionary
Some frequent pathlets are visualized in Figure 3 to intuitively verify
whether the algorithm finds common mobility patterns or not. For
example, Figure 3 (c) is a pathlet corresponding to turning left on
the overpass. Figure 3 (e) depicts Praça Mouzinho de Albuquerque,
which is one of the famous attractions in Porto. These pathlets have
semantic meaning consistent with our cognition in life and reveal
common mobility patterns shared by numerous trajectories.

4.3 Performance on Downstream Tasks
4.3.1 Application in Trip Time Prediction. To demonstrate the ef-
fectiveness and usability of the representation vector, we utilize a
simple GBDT model to predict trajectory time whose input is the
combination of trajectory embedding vector and the time encoding
vector. We use mean absolute error (MAE) between the predicted
result and the ground truth (in seconds) as the metric to train the
simple GBDT model. The performance of all evaluated models are
summarized in the table 3. It can be observed that our proposed al-
gorithm ensures explainability of the results without compromising
accuracy. One possible reason why our method outperforms others
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Table 1: The performance comparison with previous work.

Dataset Method Train Phrase Test Phrase
Dictionary size/|T| Representation cost Cover ratio Representation cost Cover ratio

Porto DP 1.79 2.14 100% 4.19 88.03%
our method 1.02(-43.01%) 2.00(-6.54%) 99.6% 2.75 93.6%(+5.57%)

Shenzhen DP 1.21 2.88 100% 3.01 93.9%
our method 0.91(-36.36%) 2.75 (-4.51%) 99.1% 3.02 95.4% (+1.5%)

Table 2: The performance using different dictionaries.

Dictionary Size Represent-
ation Cost

GPU
Memory *

Running
Time

𝑃𝑑𝑖𝑟𝑒𝑐𝑡 13076 5.21 42.8G 1.5h
𝑃2 10470 6.05 23.1G 0.9h
𝑃1 + 𝑃2 12631 5.33 23.1G 1.2h
* GPU memory here refers to the size of GPU memory
needed for training instead of storage of dictionary.

Figure 3: Top 300 frequent pathlets in two grids.

is that our vectors are naturally sparse, which makes it more robust
on the test set and easier to train the model. This demonstrates
the simplicity and effectiveness of our method, as well as its broad
prospects in the field of application.
Table 3: The performance comparison with previous work.

dataset method MAE MAPE RMSE RMSLE

Porto
[8] - - - 0.41
[9] 171.97 - - -
Ours 163.9 26.2 199.74 0.35

Porto
(short trips)

[10] 39.25 14.74 52.35 -
Ours 32.87 9.37 37.59 0.08

4.3.2 Application in Data Compression. Learning a dictionary and
reconstructing trajectories using elements from this dictionary can
also be considered as a process of data compression. In [4] the
authors described an evaluation method based on Minimum De-
scription Length (MDL) to measure the compression performance:

𝑀𝐷𝐿 score =
L(C) + L(D | C)

L(D)
Here L(.) refers to the size of a data collection in bits. D and C are
used to denote the dataset and the corridor set, a concept similar to
pathlets. D | C refers to the representation of the original trajec-
tory using corridor. Compared to the previous method’s score of

0.27 reported in [4], our method achieved a score of 0.21. One pos-
sible reason is our objective function and MDL score are consistent,
whereas method in [4] based on LDA does not optimize the MDL
score explicitly. This experiment indicates that transforming trajec-
tories into pathlets form can effectively compress data, facilitating
easier storage and transmission.

5 CONCLUSION AND FUTUREWORK
In this study, we reformulated the problem of pathlet learning from
a collection of trajectories and solved it using a novel dictionary
learning based method, resulting in a hierarchical and explainable
representation of trajectories with theoretical probability bound.
We tested our algorithm on two large-scale datasets. The output
dictionary of pathlets provides us with deeper insight into mobil-
ity patterns. We also demonstrate how the pathlet could benefit
downstream tasks such as trip time estimation and trajectory com-
pression. In future work, we will adapt our algorithm to represent
trajectories in other domains, improve the numerical optimization,
and further advance the theoretical analysis.
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