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CLASS-CONDITIONED DOMAIN GENERALIZATION VIA
WASSERSTEIN DISTRIBUTIONAL ROBUST OPTIMIZA-
TION

Jingge Wang ∗, Yang Li∗, Liyan Xie†, Yao Xie†

ABSTRACT

Given multiple source domains, domain generalization aims at learning a univer-
sal model that performs well on any unseen but related target domain. In this
work, we focus on the domain generalization scenario where domain shifts occur
among class-conditional distributions of different domains. Existing approaches
are not sufficiently robust when the variation of conditional distributions given
the same class is large. In this work, we extend the concept of distributional ro-
bust optimization to solve the class-conditional domain generalization problem.
Our approach optimizes the worst-case performance of a classifier over class-
conditional distributions within a Wasserstein ball centered around the barycenter
of the source conditional distributions. We also propose an iterative algorithm for
learning the optimal radius of the Wasserstein balls automatically. Experiments
show that the proposed framework has better performance on unseen target do-
main than approaches without domain generalization.

1 INTRODUCTION

The distribution shift between training and testing data, a.k.a. domain shift, is a common problem
in many realistic applications. One way to alleviate the adverse impact of domain shift is through
domain generalization, which aims to learn a universal model based on available source datasets and
in total absence of target data (Ghifary et al., 2016; Motiian et al., 2017). Most existing methods
learn a domain-invariant representation on source domains (Muandet et al., 2013; Ghifary et al.,
2015; Motiian et al., 2017; Li et al., 2018a;b). However, these methods may encounter problems
in certain challenging domain generalization scenarios. Consider a data model Y → X defined
on X × Y . Given class label Y , feature X is generated by conditional distributions Dy(X) =
PD(X|Y = y) where D denotes either a source domain (Sm,m = 1, . . . ,M ) or the target domain
T . For a fixed y ∈ Y , most domain generalization methods assume the class-conditional of target
domain T (X|Y = y) is closer to at least one of the M source class-conditionals Sm(X|Y = y)
than to any distributions of another class (Figure 1 Left). In an ideal case, even simple k-NN based
method can perform well. However, when the variation among class-conditionals of the same class
is large, i.e., the closest conditional distribution to T (X|Y = y) is some S(X|Y = y′) of class
y′ 6= y (Figure 1 Right), aforementioned methods may not perform well (Krueger et al., 2020).

In this work, we propose a class-conditioned domain generalization method inspired by the concept
of distributional robust optimization (Kuhn et al., 2019), which optimizes the worst-case perfor-
mance of a hypothesis over a set of distributions, namely the uncertainty set centered around the
observed reference distributions. In the domain generalization context, we assume that class condi-
tionals of different domains form class-specific uncertainty sets, aiming to learn a universally robust
classifier that is even discriminative over the worst-case distributions in these sets. One challenge
is to define a robust and computable uncertainty set. When there is only one source domain, Gao
et al. (2018) defined the uncertainty set using Wasserstein distance and formulated the robust opti-
mization problem as a convex optimization problem which can be solved efficiently. However, in
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Figure 1: Classic and special setting with respect to class-
conditional distributions (shaded circles indicate tasks, red
and blue indicates different categories, best viewed in color.
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Figure 2: Initialization for θ1, θ2 us-
ing Wasserstein barycenter of source
domain distributions.

domain generalization, there is no clear candidate for the reference distribution of each uncertainty
set. Moreover, the radius of the Wasserstein uncertainty set, a fixed hyper-parameter in Gao et al.
(2018), can largely impact the generalization performance. Our method uses Wasserstein barycenter
as the reference distribution and an iterative algorithm for learning the optimal radius automatically.

2 BACKGROUND

Gao et al. (2018) formulates the robust hypothesis testing as a minimax problem considering dis-
tributionally uncertainty, i.e. given two sets of distributions over X , P1 and P2, find distributions
P1 ∈ P1, P2 ∈ P2 and detector φ that minimizes the maximum of type I and type II error by solving

min
φ:X→R

max

{
sup
P1∈P1

P1{x : φ(x) < 0}, sup
P2∈P2

P2{x : φ(x) ≥ 0}
}
. (1)

While there are various choices for the uncertainty sets, this work uses the Wasserstein dis-
tance to construct uncertainty ball of radius θk centered around empirical distribution Qk, i.e.,
Pk = {P :W (P,Qk) ≤ θk} , k = 1, 2. Problem (1) can be transformed into an equivalent con-
vex optimization problem of the following form

min
φ

max
P1∈P1,P2∈P2

Φ (φ;P1, P2) , (2)

where Φ represents the risk under certain distribution P1 and P2. After interchanging the min
and max operators, we can first get optimal detector φ∗ for any given (P1, P2). Then what is left
is optimizing the least-favorable distributions (LFDs) P ∗1 and P ∗2 with uncertainty set constraints.
Reformulating Wasserstein metric constraints in (2) into equivalent linear constraints, the problem
is finally transformed into a convex optimization problem.

3 CLASS-CONDITIONED DOMAIN GENERALIZATION

Suppose we have access to M diverse source domain with labeled data {(Xm
s , Y

m
s )},m =

1, · · · ,M which are representative of an underlying universal domain. Let Sm(X|Y = y),m =
1, · · · ,M and T (X|Y = y) denote class-conditional distributions for each class y in source and tar-
get domain, respectively. To construct class-specific uncertainty sets, the reference distribution and
the radius need to be decided. Our method uses Wasserstein barycenter as the reference distribution,
and introduces an iterative algorithm for learning the optimal radius. Without loss of generality, we
consider the binary classification setting.

Estimation of Distribution Uncertainty Sets. Without access to any target domain data, we can no
longer use the empirical distribution as the center of uncertainty sets. A natural choice for the center
of an uncertainty set defined by the source domains is the 2-Wasserstein barycenter since it better
capture the geometry among distributions (Rabin et al., 2011). Max value of allM distances between
source distributions and the barycenter is taken as the initial uncertainty set radius. Therefore, we
can construct the uncertainty Wasserstein ball P1,P2 of radius θ1, θ2, which can be seen as general
class-conditioned domain, as shown in Figure 2.

Inference on Target Domain. Setting the generating function as exponential, the corresponding
optimal detector is φ∗ = 1/2 log(P1/P2) (Gao et al., 2018). Using the uncertainty sets of radius θ1,

2



Presented as a RobustML workshop paper at ICLR 2021

Algorithm 1 Learning algorithm for class-conditioned domain generalization
Input: M diverse source tasks with labeled data Xms = {(Xm

s , Y
m
s )},m = 1, · · · ,M ;

Output: The LFDs P ∗1 , P
∗
2 supported on source task samples;

1. Initialization of θ1, θ2:
for each class y do

Barycenter distribution C∗(X|y)← arg minC(X|y)
∑M
m=1

1
MW

2
2 (C(X|y), Sm(X|y));

Initial uncertainty set radius θy ← max
m=1,··· ,M

W2 (C(X|y), Sm(X|y));

end for
2. Dynamically Learning of θ1, θ2:
repeat

Solve P ∗1 , P
∗
2 ← min

T
max

P1∈P1(θ1),P2∈P2(θ2)
Φ (T ;P1, P2);

θ1 ← θ1 −∆, θ2 ← θ2 −∆;
until ρε(P ∗1 , P ∗2 ) < γ

θ2, problem (2) can produce worst-case distributions P ∗1 , P
∗
2 , which are non-parametric functions

of barycenter samples. To make inference on any target sample xt, we define a weighted k-NN
classifier as follows

φ∗(xt) =

{
1, if 1

K

∑K
i=1 wi log (P ∗1 (xi)/P

∗
2 (xi)) ≥ 0

2, if 1
K

∑K
i=1 wi log (P ∗1 (xi)/P

∗
2 (xi)) < 0,

(3)

where x1, . . . , xK are the K nearest neighbors of xt measured by the Euclidean distance and wi is
inversely proportional to ‖xi − xt‖2. We use K = 3 in the experiments.

Dynamically Learning of θ1, θ2. In practice, the initial radius of Wasserstein balls tends to be too
large and the optimal class-conditionals P ∗1 and P ∗2 may become indistinguishable. Thus we add
one more constraint to ensure the LFDs are significantly different, using the chi-squared test, whose
p-value is denoted as ρε (P1(θ1), P2(θ2)), and the problem becomes as follows

min
φ

max
P1∈P1(θ1),P2∈P2(θ2)

Φ (φ;P1, P2)

s.t. ρε (P1(θ1), P2(θ2)) < γ,
(4)

where γ is the significance threshold taken as 0.05 in Chi-square testing. To avoid the difficulty
of solving the optimization problem with non-convex constraint directly, we use a heuristic method
to search for the optimal radius satisfying the constraint. As larger uncertainty set leads to less
distinguishable LFDs, we initialize θ1, θ2 as the maximum Wasserstein distance between source
distributions and the barycenter distribution. In each iteration, θ1, θ2 are dynamically decremented,
i.e., θ1 = θ1 −∆, θ2 = θ2 −∆ with a small positive ∆, until P1 and P2 are significantly different.
More details can be found in Algorithm 1.

4 EXPERIMENTAL EVALUATION

Synthesized Data. We first evaluate our algorithm on data generated from Gaussian-like class-
conditional distributions for each source and target domain. Setting four source domains and one
target domain configured in a way similar to Figure 1 (right), we vary the source sample size from 20
to 200 and fix the target testing sample size at 60. Results shown in Figure 3 indicate that regardless
of different sample size settings, the k-NN classifier trained by mixing all the source domain data
shows far worse performance on the target testing data compared with our method. This simple
experiment illustrates the potential of handling special data scenario of our method.

Real-world Data. We adopt five datasets collected from electric charge-discharge tests of power
batteries under different experimental conditions. Using one dataset as the target domain and the
other four as source domains, our goal is to decide whether a battery should be retired based on its
charge-discharge features. For each sample, 17-dimension features represents the lab testing result,
and binary label represents the battery state determined by its capacity level. By varying the capacity
range of each battery state, we create six experimental scenarios with different classification diffi-
culty levels denoted by numbers 1-6 in Table 1. The higher the level, the harder the task. To simulate
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Figure 3: Average accuracy of unseen
Gaussian data from target domain us-
ing source Gaussian data with different
sample size.

Table 1: The range of for each class, data size and ini-
tial uncertainty set radius in varying difficulty settings
for battery datasets.

Difficultiy level

1 2 3 4 5 6

Capacity range [0.95,1] [0.945,1] [0.94,1] [0.93,1] [0.92,1] [0.905,1]
[0,0.85] [0,0.855] [0,0.86] [0,0.87] [0,0.88] [0,0.895]

Training 16 18 20 24 28 38
Testing 84 92 102 122 146 196

θ1 3.44 3.33 3.36 3.20 3.04 2.65
θ2 4.02 3.96 3.63 3.04 2.80 2.37

Table 2: Comparison of binary classification accuracy under 6 difficulty grade settings.

Method Difficulty level

1 2 3 4 5 6

Single domain

Target only (supervised) 0.935 0.927 0.925 0.899 0.850 0.782
Source a only (unsupervised) 0.929 0.934 0.927 0.884 0.872 0.761
Source b only (unsupervised) 0.224 0.218 0.184 0.184 0.228 0.270
Source c only (unsupervised) 0.918 0.927 0.909 0.866 0.822 0.751
Source d only (unsupervised) 0.083 0.085 0.078 0.108 0.160 0.247

Domain generalization

Source a+b+c+d (unsupervised) 0.525 0.538 0.451 0.476 0.469 0.478
Source a+b+c+d+target (semi-supervised) 0.680 0.691 0.626 0.609 0.601 0.568
Ours w/o radius learning(unsupervised) 0.740 0.670 0.608 0.402 0.599 0.517
Ours w/ radius learning(unsupervised) 0.806 0.795 0.765 0.681 0.628 0.530

the realistic setting of scarce labeled data, in each trial we randomly sample 1/10 of the training set
as source domain data and calculate the average accuracy over 20 trials for all experiments. Sampled
training and testing sizes for each source domain are also shown in Table 1.

We compare our method and its truncated version without dynamically learning of θ on target testing
data with the following baselines based on k-NN: (1) Target only: use k-NN on target training data;
(2) Source a/b/c/d only: use data from one of the four source domains; (3) Source a+b+c+d: mix
all source training data; (4) Source a+b+c+d+target: mix source and target training data together.
The truncated version uses the initial θ shown in the last two rows in Table 1, which is used as
initialization in the standard version.

Results in Table 2 shows that our proposed method outperforms the approach of mixing available
data in both unsupervised and semi-supervised way. It is inferior to two source only methods but
outperforms the other two. This shows the usability of our method especially when we have no
idea which source is more similar with the target in an unsupervised setting. The truncated version
only yields competitive results 0.740 compared with semi-supervised approach in the easiest grade,
implying the necessity of learning for θ.

5 CONCLUSIONS

In this paper, we present a robust domain generalization method that can effectively learn a universal
classifier invariant to domain shifts in the class conditional distributions. Testing on both synthesized
and real-world data, we show that this method has promising performance using only limited source
domains. In the future, we will extend our method to more learning scenarios, such as multi-class
classification, and evaluate our framework on more real-world applications.
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