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ABSTRACT
Traffic trajectories collected from GPS-enabled mobile de-
vices or vehicles are widely used in urban planning, traf-
fic management, and location based services. Their perfor-
mance often relies on having dense trajectories. However,
due to the power and bandwidth limitation on these devices,
collecting dense trajectory is too costly on a large scale. We
show that by exploiting structural regularity in large trajec-
tory data, the complete geometry of trajectories can be in-
ferred from sparse GPS samples without information about
the underlying road network — a process called trajectory
completion. In this paper, we present a knowledge-based
approach for completing traffic trajectories. Our method
extracts a network of road junctions and estimates traffic
flows across junctions. GPS samples within each flow clus-
ter are then used to achieve fine-level completion of individ-
ual trajectories. Finally, we demonstrate that our method is
effective for trajectory completion on both synthesized and
real traffic trajectories. On average 72.7% of real trajecto-
ries with sampling rate of 60 seconds/sample are completed
without map information. Comparing to map matching,
over 89% of points on completed trajectories are within 15
meters from the map matched path.

CCS Concepts
•Mathematics of computing→ Interpolation ; • Com-
puting methodologies→ Spatial and physical reason-
ing;

Keywords
Trajectory completion, junction network, trajectory skele-
ton

1. INTRODUCTION
Data completion, the task of recovering missing data from

limited sparse data, is a fundamental problem for most re-
search fields. Large traffic trajectory data is no exception.
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Figure 1: Linear Interpolation (left) vs. Knowledge-Based Tra-
jectory Completion (right) on sparse trajectories at a road junc-
tion.

Due to the power cost of GPS-enabled devices and the lim-
ited communication bandwidth for sending continuous po-
sition data to a centralized location, most trajectory data
are stored at low sampling rates. However, applications in
urban computing and traffic management typically require
dense trajectories with rich spatial and temporal knowledge
[24, 25]. Therefore, trajectory completion from sparse GPS
samples is an important task to improve the utilization of
large trajectory data.

Trajectory completion is a challenging problem. Sim-
ple interpolation between neighboring samples is far from
a faithful approximation of the trajectory a user actually
traversed. For example, in Figure 1 (left), a collection of
simulated traffic trajectories across a road junction, sam-
pled every 15 seconds is linearly interpolated. This results
in interpolated points being scattered off the roads. One
solution to this problem is map matching, which aligns GPS
samples with the road network on a digital map. However,
road network information may not be accurate for many
reasons, such as missing roads, constructions, or incomplete
information on turn restrictions. For bicycle or pedestrian
traffic, the underlying map may not even be available.

In this work we circumvent the limitations of map match-
ing by inferring user paths using trajectory data alone. We
rely on two basic assumptions of the input data: (i) trajec-
tories exhibit structural regularity, and (ii) there are enough
GPS samples on the same sub-path as the target trajectory
to provide detailed geometry information. Traffic trajec-
tories can satisfy both of these assumptions, as they are
constrained by roads and are available in large volume.

A key challenge in finding structural regularity of trajec-
tories is to detect common sub-trajectories that share the
same sub-path on the underlying map, so that GPS sam-
ples in these sub-trajectories can be used to complete each
other. In places where multiple roads intersect, such as a
highway junction with looping ramps, GPS samples from



Figure 2: Trajectory clusters (displayed as center curves) using
the TraClus Algorithm [13] (Left), and the clusters using our
algorithm (Right). The latter preserves the continuity of traffic
across the intersection.

different users on the same path might be distant from each
other due to the low sampling rate. We are required to use
a large search radius, which often includes more noise than
information. Hence clustering algorithms that rely on local
features, such as DBScan [7] does not perform well in these
places. Also, image-based path finding algorithms similar to
[15] can produce too many shortcuts at junctions. On the
other hand, sample points that are far away from junctions
can be much more reliably clustered as their topology and
geometry are much simpler. Inspired by this observation,
we propose a knowledge-based method that extracts infor-
mation about road junctions and how traffic flows between
them. This allows us to cluster subtrajectories with large
intracluster variance at junctions (Figure 2.b).

The main contributions of this paper are as follows

1. Discover junction and junction branches. We find junc-
tion branches by efficiently extracting a skeleton of
the GPS point cloud. This is achieved by an L1-
medial skeleton extraction on a voting image of the
GPS points. This process essentially decomposes the
map into non-junction (reliable) and junction (unreli-
able) regions.

2. Junction network construction. We capture distinct
traffic flows at junctions in a junction network, where
every edge represents a sub-trajectory cluster of the
input trajectories. This method is robust since we use
shared topology to collect information from reliable re-
gions (non-junction), and propagate such information
into unreliable regions (junctions).

3. Fine-level trajectory completion. We develop a borrowed-
sample tracking technique to concatenate dense sub-
trajectories into a complete trajectory at fine level. Us-
ing this technique, each trajectory will “borrow” sam-
ples from other trajectories with a greedy approach.

The rest of this paper is organized as follows. We present
the formal definition of trajectory completion and an outline
our approach in Section 2. Details of the algorithm are dis-
cussed in Sections 3-5. Section 6 shows experimental results
on the proposed algorithm, followed by a discussion on re-
lated works in Section 7. We conclude the paper in Section
8.

2. OVERVIEW

2.1 Problem definition
A trajectory τ = 〈(p1, t1), ..., (p|τ |, t|τ |)〉 is a sequence of

time-stamped points in R2, where |τ | is the cardinality of
trajectory τ . Since this work focuses on completing the ge-
ometry of trajectories rather than their dynamics, we do not

directly use timing information. More explicitly, we assume
the majority of input trajectories are sampled from the same
mode of transportation at similar sampling rates. Hence in
the rest of this paper, we consider trajectories simply as
polygonal curves τ = 〈p1, . . . , p|τ |〉 in the plane. In many
GPS captured trajectories, we also have access to the vehi-
cle’s heading direction at each GPS sample. Let d̂1, ..., d̂n
be the unit vectors indicating the heading directions along
the trajectory (if this information is not directly available, it
can be approximated from the positional and timing data).

Next we give a precise definition of a dense trajectory.

Definition 1. Trajectory τ = 〈p1, . . . , p|τ |〉 is ε-dense if
the distance between any consecutive pair of points pi and
pi+1 (1 ≤ i ≤ |τ | − 1) in τ is at most ε meters.

Now we formally define the trajectory completion problem
as follows:

Definition 2. The Trajectory Completion Problem:
Given a collection of sparse GPS trajectories T on an un-
known road network and a positive real number ε, trajectory
completion is the process of finding an ε-dense trajectory
τ ′ = 〈q1, ..., q|τ ′|〉 for every sparse trajectory τ ∈ T . Each
point qi ∈ τ ′ belongs to some input trajectory in T that is
on the same common sub-path as τ in the underlying road
network.

Note that the perfect completion of the entire trajectory
dataset T may not be possible if there is any point whose ε-
neighborhood doesn’t include any other points from T . This
is often the case on less frequently traveled roads. Therefore
our goal is to complete trajectories from major traffic flows,
where we assume input point sets are sufficiently large and
distributed.

2.2 Algorithm outline
Our trajectory completion algorithm consists of three main

steps: (i) Extract a skeleton from the trajectory point cloud,
(ii) Construct a junction network from the skeleton and the
input trajectories, (iii) Complete input trajectories based on
the junction network topology.

Figure 3 illustrates the algorithm on a single-junction sce-
nario. Consider the trajectories in Figure 3.a as part of many
sparse trajectories. For clarity, we color sample points based
on their traffic flow directions across the junction. During
trajectory skeleton extraction, we first apply an L1-medial
skeleton extraction algorithm on the filtered point cloud of
GPS samples. The resulting skeleton is represented by a
graphGsk, whose edges (skeleton branches) are densely trav-
eled roads, and vertices are branch endpoints. In Figure 3.b,
4 branches are extracted from the input point cloud and the
branch intersection is marked as a junction candidate.

The next step computes a junction network J , which cap-
tures the traffic flow between pairs of skeleton branches.
First all trajectory points are projected to nearby skeleton
branches. Then we identify traffic flow clusters via a vot-
ing process on pairs of branches. The junction network in
Figure 3.c contains 8 nodes, each representing a half-edge of
Gsk. It has 3 edges representing the 3 unique traffic flows
in the input. The weight of an edge (u, v) is the number of
trajectories with consecutive projections on u and v.

Finally, input trajectories are completed using trajectory
points within the same traffic flow cluster. This step con-
structs a constrained nearest neighborhood graph within
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Figure 3: Overview of the trajectory completion pipeline. Details can be found in Section 2.2

each cluster, then fills in missing points between consec-
utive samples using shortest paths in the graph. Figure
2.d illustrates three of the completed trajectories in the ex-
ample. When a trajectory is mapped to more than one
sub-trajectory clusters, we concatenate the recovered sub-
trajectories into full trajectories.

3. SKELETON EXTRACTION
We adapt the L1-medial skeleton extraction algorithm

proposed by Huang et. al. [11] for trajectory data. First we
will briefly describe the original algorithm for a generic point
set. Then we will explain several optimizations to extract
the skeleton of GPS trajectories.

3.1 L1-Medial skeleton

Definition 3. The L1-medial skeleton of a point set Q is a
curve that represents the 1D local center of the underlying
shape sampled by Q. Skeleton points X = 〈x1, . . . , x|X|〉
satisfy the local median property:

X = argmin
x

∑
i∈I

∑
j∈J

||xi − qj ||θ(||xi − qj ||) +R(x) , (1)

where I and J are indices of skeleton points X and input
points Q, respectively. θ(y) = exp(−y2/(η/2)2) is an expo-
nentially decaying weight function parametrized by positive
constant η [11].

Neighborhood size constant η determines how fast the weight
decays as distance y grows. The first term of the objective
function (1) measures the contraction force on X towards lo-
cal medians of Q; the second term R(x) regularizes the local
distribution of X to preserve the linearity of local branches
emerged from the data. Function R(X) is defined as follows:

R(X) =
∑
i∈I

γi
∑

i′∈I\{i}

θ(||xi − xi′ ||)
σi||xi − xi′ ||

.

γi is a normalizing constant. Variable σi measures the lo-
cal linearity at skeleton point xi using a PCA approach.
Consider the weighted covariance matrix Ci of point xi’s
k-nearest neighbors.

Ci =
∑

xi′∈kNN(xi)\{xi}

θ(||x′i − xi||)(x′i − xi)T (x′i − xi) .

Let λ0
i , λ

1
i be the eigenvectors of Ci. Without loss of gener-

ality, we assume λ0
i < λ1

i , and define the linearity measure
as σi = λ1

i /(λ
0
i + λ1

i ).
This optimization problem can be solved in an iterative

approach similar to k-means clustering. After skeleton point

set X converges, branches can be traced from the point xi ∈
X with the highest linearity score σi. The final skeleton is
a collection of polylines or branches, and line segments that
bridge two or more branches at their endpoints.

3.2 Aggregate trajectory points
We choose the L1-medial skeleton as the abstract repre-

sentation of a trajectory because of its robustness against
outliers and incomplete data. However, due to the large
number of trajectories, it is impractical to use all GPS sam-
ples as the input point cloud Q. A naive approach would be
taking a uniformly random sample from the input points.
The drawback of this approach is that sparse GPS samples
are not uniformly distributed along a route. When points
are clustered at the endpoints of a road segment, random
sampling is less likely to recognize the underlying road as a
linear feature.

We propose a sampling strategy by aggregating trajec-
tory points into a grayscale image of resolution r using in-
terpolation. Let pi and pi+1 be two consecutive points on a
trajectory with heading directions d̂i, d̂i+1, we define a fast
interpolation scheme as follows :
Case 1. If the angle between d̂i and d̂i+1 is less than π/6 or
greater than 6π/7, linearly interpolate between pi and pi+1.
Case 2. Otherwise, compute the intersection oi between
the ray originating from pi in the direction of d̂i and the ray
originating from pi+1 in the direction of direction −d̂i+1.
Then perform an “L-shape” piecewise linear interpolation
across pi, oi, and pi+1.

For example, given a trajectory 〈p1, p2, p3〉 with heading

vectors 〈d̂1, d̂2, d̂3〉 in Figure 4.a, we interpolate between p1

and p2 using Case 2 since the angle difference between d̂1

and d̂2 is π/2. Then interpolate between p2 and p3 using
Case 1. Note that the “L-shape” interpolation between p1

and p2 is better than a linear interpolation (red dashed line)
since the interpolated points are closer to the underlying
route. This simple interpolation method can be inaccurate,
but it reduces the undesired artifacts of linear interpolation,
making them easier to be eliminated in subsequent steps.

Let h and w be the height and width of the bounding
box of the interpolated trajectory collection T . Define the
voting image of T , V to be a pixel grid of height bh/rc
and width bw/rc. The intensity of the pixel at row i, column
j is the total number of trajectories passing through the grid
cell of index (i, j). i.e.

Vi,j =
∑
t̄∈T

∑
p∈t̄

1(i, j, p) .

Identifier function 1(i, j, t) evaluates to 1 if (i−1)r ≤ px <
(i)r, and (j − 1)r < py < (j)r, and 0 otherwise. Figure 4.b
shows the voting image of the junction in Figure 1. Given a
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Figure 4: a.) Two interpolation cases between consecutive sam-
ple points pi and pi+1. The red dashed line highlights the dif-
ference between piecewise linear interpolation and linear interpo-
lation. b.) The voting image of a 4-way junction. c) A more
complex voting image (See TAXI 1 in Section 6.1).

threshold parameter Vmin, the input point cloud Q consists
of pixels in the voting image whose intensity is at least Vmin.
The value of Vmin is typically a fraction of the maximum in-
tensity of the voting image. e.g. Vmin = 0.06 max0≤i<w

0≤j 6=h
Vi,j .

3.3 Skeleton branch extraction
We initialize X, the set of skeleton points as a uniformly

random sample of size N from Q. A challenge in the op-
timization process mentioned in Section 3.1 is that certain
points are slow to converge to the medial skeleton. Such
points tend to be far from the underlying road, either due
to GPS noise or the artifact of interpolation. We resolve this
issue by adding a density weight to each input point in Q
during the optimization, such that skeleton points in X will
be attracted to locations of higher intensity.

The density of an input point qj ∈ Q is approximated by
the weighted average of neighbor intensities in the voting
image. The contraction term in Equation 1 becomes∑

i∈I

∑
j∈J

||xi − qj ||θ(||xi − qj ||)density(qj) . (2)

Neighborhood size parameter η is set to be larger than the
half-width of the road so that noisy skeleton points along the
same road can be effectively pulled into a linear configura-
tion. In our problem settings, η = 12 suffices extracting
local roads, while η = 15 is better for extracting highways.

After skeleton points converge, branches are traced using
Algorithm 1. Notice that condition |b| > 4 on Line 6 implies
a skeleton branch contains at least 4 points. Therefore if
the non-junction portition of a road is L meters, r has be
be at most L/4 in order to represent this road as a junction
branch. Therefore we can determine the desirable r based on
the street density. The effect of r on trajectory completion
is discussed in Section 6.3.

3.4 From branches to skeleton graph
To obtain skeleton branches at multiple scales, we repeat

the aforementioned process multiple times with increasing
neighborhood constant η. The output is represented by the
skeleton graph Gsk, an undirected graph whose vertices are
branch endpoints. Gsk contains two types of edges. The
first type is a branch edge, represented as a polygonal curve.
The second type is a bridge edge, represented as a line seg-
ment that connects two branch edges in Gsk. Bridge edges
are constructed as follows: At the end of every iteration,
we identify bridge points, the closest non-branch points in
X to either endpoint of each branch and in the same direc-
tion as the branch. Bridge points that are close together
are then merged into a single bridge point. Finally, we add

Algorithm 1: Extract skeleton branches

Input: Skeleton points X
Linearity score σi for all i ∈ I
Principal direction γi for all i ∈ I

Output: List of skeleton branches B = {b1, . . . , bm}
parameter: threshσ (default value = 0.9 )

1 Define branch candidates C = {xi ∈ X|σi > threshσ}
2 Mark all candidates c ∈ C as unvisited

3 while C contains unvisited candidates do
4 Select branch seed s ∈ C with largest σi
5 b, noise = TraceBranchFrom(s, C)
6 if |b| ≥ 4 then
7 add b to B
8 mark all points in b as visited
9 remove b and noise from C

else
10 mark s as visited

end

end

Function TraceBranchFrom(s, C)
parameter: α (default value = 0.95)

1 branch← {s}
2 while True do
3 x← nearest point in C such that x− s · γj < −α

and ||x− s||2 < r
4 if x == NONE then
5 Break

end
6 Append x to branch
7 s← x

end
8 return branch, {p ∈ C|dist(p, branch) < 2r}

bridge edges between the merged bridge point and the closer
endpoint of every branch affected by the merge. If a bridge
point joins a branch at a later iteration, we add a bridge
edge between the bridge point to the endpoint of its for-
mer branch. A description of the overall skeleton extraction
process is given by Algorithm 2.

Algorithm 2: Multi-scale branch extraction

Input: Input points Q
Output: Skeleton graph Gsk
parameter: η0, α0, ∆, max num iterations

1 η ← η0; α← α0; i← 0
2 Initialize Gsk as an empty graph
3 while i < max num iterations do
4 Extraction skeleton branches from Q
5 Compute bridge points
6 Add branch edges and bridge edges to Gsk
7 if No edge has been added in this iteration then
8 η ← η + ∆η0

9 α← max(0, α−∆α0)

end
10 i← i+ 1

end

A few post-processing steps are performed on the skeleton
graph, such as removing degree two vertices, collapsing short
edges and finding intersections between the polygonal curves
of two branches. If two branches intersect, we split the edges
at their intersection.

4. JUNCTION NETWORK CONSTRUCTION
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Figure 5: a) The blue region is a trajectory junction since tra-
jectories belonging to the same horizontal road segment split at
this region. b) This is not a trajectory junction since neither a
split nor a merge is present.

(a)

Figure 6: Road network (dotted line) of a T-junction, and its
equivalent junction network (solid line)

The skeleton graph summarizes the geometry of the un-
derlying road network utilized by input trajectories, how-
ever, it doesn’t have accurate topological information needed
for trajectory completion. This section introduces the con-
cept of junction network, a topological data structure to
represent traffic flows across road junctions. We show how
to construct the junction network from the skeleton graph,
and how it relates to common sub-trajectory clustering.

4.1 Junction network
Unlike a road network, the junction network focuses on

the continuity of traffic movement across the unknown road
network. To describe such traffic, first introduce a trajec-
tory junction, a region where a group of trajectories merge
or split (Figure 5.) Since we often study trajectories that
span a bounded region (e.g. a bounding box), we designate
a special trajectory junction nil to represent all locations
where trajectories enter or leave the bounded region.

We define the vertices in a junction network as minimal
traffic flows:

Definition 4. A minimum trajectory flow f(a, b) is a set
of sub-trajectories that enters trajectory junction a into tra-
jectory junction b without passing any other trajectory junc-
tions in between. We denote the trajectory indices of sub-
trajectories in f(a, b) as T (a, b).

Let the size of traffic flow f(a, b) be the cardinality of its
trajectory indices, denoted as |T (a, b)|. A junction network
over minimal traffic flows is defined as follows:

Definition 5. Given a collection of trajectories T and a
positive integer M , the junction network of T is a directed
graph J = (V,E) on all minimal traffic flows. Two vertices
u = f(a, b) and v = f(c, d) are connected if 1.) At least M
trajectories that pass through both u and v in order. i.e.
|T (a, b) ∩ T (c, d)| ≥ M . and 2.) there is no other minimal
traffic flow w = (e, f) such that |T (a, b) ∩ T (e, f)| > M and
|T (e, f) ∩ T (c, d)| > M . The flow size, or weight of edge
(u, v) is |T (a, b) ∩ T (c, d)|.

In the ideal scenario when all possible turns on a road
network has been traversed by at least M trajectories, the
junction network can be considered the pseudo-dual graph of
the road network (Figure 6 .) A pseudo-dual graph transfor-
mation of a road network is a useful way to represent turn
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Figure 7: (a) Let γ be the angle between heading vec-

tor d̂i and half-edge e’s tangent vector at pi’s projection.

SameDirection(d̂i, e) = true if γ < π/4. d̂i points to the “front”
direction with respect to e. (b) Trajectory 〈p1, . . . , p6〉 has 5 sta-
ble projections to half-edges e1, e2 and e3. They belong to two
overlapping clusters C1,2 and C2,3, which correspond to edges
(v1, v2) and (v2, v3) in the junction network.

restrictions and variable turn cost in route planning and
traffic analysis [20]. For trajectory completion, it is the pre-
ferred approach to recover consistent flow across junctions,
and infer the correct topology of the road network utilized
by the traffic.

The junction network J = (V,E) has several important
characteristics.

1. An edge (f(a, b), f(b, c)) ∈ E encodes a flow cluster
Cu,v = f(a, b)∩ f(b, c), which captures the traffic flow
from one junction branch to another over a junction.
Sub-trajectories within the same flow cluster has much
lower geometrical variance than trajectories in differ-
ent clusters.

2. A path in the junction network represents continuous
traffic on a route. Each input trajectory is defined by
a sequence of flow clusters. Consecutive clusters in the
sequence are partially overlapped.

4.2 From skeleton graph to junction network
Now we discuss how to construct the junction network

J = (V,E) from trajectories using skeleton graph Gsk. To
distinguish traffic flows in opposite directions of a road seg-
ment, we first transform each edge (s, t) in undirected graph
Gsk into two directed half-edges e = (s, t), and e′ = (t, s).
The junction network can be constructed based on the fol-
lowing definition.

Definition 6. A Junction network is a directed graph J =
(E, V ) where V is the set of all half edges in Gsk. Two
vertices u and v are connected if (i) the number of trajec-
tories passing directly from u to v is larger than a positive
integer M , and (ii) the closest distance between u and v is
less than some constant l. The edge weight is the number
of trajectories from u to v.

Since Gsk is approximated, and the matching between tra-
jectory and routes on the skeleton graph is unknown, we
have to estimate the topology of J from trajectories based
on the most stable parts of the matching.

4.3 Estimate Junction Network Topology
Initially let J be a complete graph with zero edge weights.

First, we find a stable projection for each trajectory τ =
〈p1, ..., p|τ ||〉 in trajectory collection T onto the half-edges

derived from Gsk. For each pi ∈ T with heading vector d̂i,
let Nk(pi) be the set of k nearest half-edges from pi. We
define the heading-restricted neighborhood as follows:

Nk(pi, d̂i) =
{
e ∈ Nk(pi) | SameDirection(d̂i, e)

}



Predicate SameDirection(u, v) makes sure the general head-
ing direction of pi is consistent with skeleton half-edge e
(Figure 7.a). Let var(Di) be the variance of pi’s projection
distances Di = {dist(pi, e)|e ∈ Nk(pi)}. We consider pi’s
projection on the nearest half-edge as a stable projection if

1−
√
var(Di)/varmax > β,

where varmax is the largest variance among all distance sets.
We will discuss the choice of β in Section 6.3. As a result,
trajectory τ is mapped to a sequence of half-edges e1, . . . , em
(Figure 7.b .) Then for each consecutive pair (ej , ej+1) in
the sequence such that ej 6= ej+1, we increment the weight
of edge (vj , vj+1) in J . Finally, we retain only edges whose
weights are at least M to filter out incorrect projections.

5. TRAJECTORY COMPLETION
With the coarse level junction structure, we infer fine-

level trajectory completion using a borrowed-sample track-
ing scheme. Particularly, the algorithm“borrows”some sam-
ples from other trajectories to complete the target sparse
trajectory.

Recall that in the junction network, each edge (vj , vk)
is associated with a group of sub-trajectories with stable
projections on both vj and vk, denoted as flow cluster. Each
input trajectory τ is partially covered by a sequence Cj,k of
overlapping, pairwise distinct flow clusters (Figure 7.b). Our
goal is to fill in the “gap” between every pair of consecutive
points pi, pi+1 in the input trajectory using the sequence
of flow-clusters associated with this trajectory. This step is
outlined in Algorithm 3. Flow clusters in Cj,k are re-indexed
for clarity.

Algorithm 3: Trajectory completion

Input: Input trajectory τ = p0, . . . , p|τ |
Flow cluster sequence C(τ) = 〈C1, . . . , Cm〉
Starting and ending index of sub-trajectory
Ii = (starti, endi) ∀ 0 ≤ i < |τ |

Output: Completed trajectory τ ′ such that τ ⊂ τ ′
1 Sort C(τ) by cluster size in descending order
2 foreach Ci ∈ C(τ) do
3 for starti ≤ j < endi do
4 if gap[pj , pj+1] is not filled then
5 FillGap(pj , pj+1, Ci)

end

end

end
6 Concatenate filled gaps into dense trajectory τ ′

The key procedure in this algorithm is FillGap(pj , pj+1, Ci)
on line 5, which finds a polygonal curve P = 〈x0 = pj , x1, ...,
xp−1, xp = pj+1〉 within flow cluster Ci using a shortest path
method. Specifically, we construct a constrained k-nearest
neighborhood graph gk over all trajectory points in Ci. Let
u1 ∈ τ1 and u2 ∈ τ2 be two vertices in gk. Let d̂1 be the
heading angle of u1. gk contains a directed edge (u1, u2) if
the following conditions are satisfied:

a) u1 6= u2,
b) u2 is one of u1’s k-nearest neighbors such that

u2−u1
||u2−u1||

· d̂1 < α

The second condition implies that the cosine angle between
the heading of u1 and vector u2−u1 is less than α, which is
introduced in Section 3.4. In practice, we choose k to be 5.
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Figure 8: a.) Ground truth routes of benchmark dateset BM 3.
b.) Synthesized trajectory points in BM 3.

Since pi and pi+1 are vertices of graph gk, we can find
a shortest path from pi to pi+1. Then we apply a simple
smoothing function, such as linear local regression, on the
path to produce the final trajectory.

6. RESULTS

6.1 Experiment setup
To evaluate the performance of our trajectory completion

algorithm, we create a collection of benchmark datasets us-
ing synthesized trajectories, and several testing datasets us-
ing real taxi trajectories.
Synthesized trajectories. The benchmark dataset con-
tains trajectories generated using SUMO, an urban traffic
simulation software [5]. Since the challenge of this paper
is to recover trajectory geometry at complex junctions, we
select 8 junction regions on the map of Beijing, each has
size approximately 3km× 3km. Using Open Street Map [2]
as the road network, we generate a large number of vehicle
trips on predefined routes within each region via a 3 hour
simulation. For instance, Figure 8.a shows the road network
of two adjacent junctions. Each colored line represents a
unique route that is used to generate the sparse GPS sam-
ples in Figure 8.b. The simulation outputs dense trajectories
at 1 sample per second, which is used as the ground truth.
We then down-sample the dense trajectories at 15s, 20s, 30s
and 60s intervals to create the testing datasets. A random
offset of radius R = 5m is added to the down sampled tra-
jectories to emulate the variations of vehicle trajectories and
GPS noise. In particular, given a point p on the predefined
route, its perturbed position is p′ = p + n + o, where n is
a random vector from Gaussian distribution N (0, R

2
), and o

is a uniform random vector of length R. The specification
of the first three benchmark datasets (BM 1 to BM 3) can
be found in Table 1.

Name # of routes
# of points at sample interval

15s 20s 30s 60s

BM 1 12 22,020 16,500 12,386 2,730

BM 2 13 23,529 17,627 11,673 1,317

BM 3 15 30,111 22,608 15063 5,209

Mean trajectory size 11.58 8.68 5.88 3.96

Table 1: Specifications of the first three benchmark datasets.
Each route is sampled by 200 trajectories.

Real trajectories. The taxi trajectories used in this work
were part of the Beijing Taxi Open Dataset [3], which con-
tains GPS traces of 8602 taxis in Beijing, China in May,
2009. The following preprocessing steps are performed to
moderate the large amount of noise present in the raw data.
First, we partition all trajectories such that the sampling in-
tervals are between 50s to 60s, which is the default sampling



interval of GPS loggers used for data collection. Based on
the observation that user trajectories are most irregular at
the beginning or ending parts of a trip, we further strip the
first and last 30 sample points from each trajectory, and re-
tain those with at least 15 samples. Finally, we select filtered
trajectories from 3 regions in Beijing during May 1st to May
5th as the taxi datasets TAXI 1 to TAXI 3. In the follow-
ing experiments, we always compute the junction network
using the entire taxi dataset, but only perform trajectory
completion on the first 5000 trajectories in each dataset.

Name Size (km) # of trajectories Mean trajectory size

TAXI 1 3.5× 3 32,121 7.19

TAXI 2 6× 4 67,501 9.34

TAXI 3 6× 4 60,299 10.68

Table 2: Specification of taxi trajectory datasets TAXI 1,
TAXI 2 and TAXI 3.

6.2 Evaluation Method
When applying trajectory completion to the test trajec-

tories, we consider the following metrics that evaluate the
completeness, accuracy, and impact of parameters.
Projection rate. rproj is defined as the percentage of
input trajectories that have been projected to a path on the
junction network. Intuitively, it measures the proportion
of all input trajectories that can be up-sampled using the
trajectory completion algorithm.
Completion rate. rcpl(ε) measures the percentage of ε-
dense trajectories among all completed trajectories. Let D
be the subset of ε-dense trajectories in T ′,

D =
{
τ ′ ∈ T ′ | ||qi − qi+1||2 < ε for all 1 ≤ i ≤ |τ ′|

}
.

The completion rate is rcpl(ε) = |D|/|T ′|.
Completion accuracy. ρ(δ) is the percentage of points
in the completed trajectories whose error, measured by the
shortest Euclidean distances to the ground truth trajectory,
is less than δ. It evaluates the overall completion accuracy
of a dataset.

6.3 Benchmark Results
Performance. We run the trajectory completion algorithm
through all 32 benchmark datasets (8 regions × 4 sampling
profiles) on an Intel Precision T3400 workstation with 4
cores and 16GB RAM. Each test is performed over mul-
tiple trials, and the average statistics are used as results.
Each trail executes the full pipeline of trajectory comple-
tion, which takes approximately 1-2 minutes. The majority
of time has been spent on the final trajectory completion
step. In future works, this step can be sped up by paralleliz-
ing the FillGap operations on multiple trajectories.
Projection rate. Figures 9.a-h show the output ε-dense
trajectories of all benchmark tests with 20sec sampling in-
terval and ε = 100m. In most cases, the junction structures
can be clearly identified from the output. Table 6. summa-
rizes projection rate of each benchmark dataset at different
sampling profiles. When sampling interval is 30 seconds,
93.8% of all trajectories have been up-sampled using trajec-
tory completion. A few test cases such as BM 2 and BM 8
have lower projection rates than others. This is due to the
fact that junction areas in these cases are large comparing
to non-junction areas, where stable projections are found.

When sampling interval is 60 seconds, both the number
of trajectories in the dataset and the number of samples in

an input trajectory decreases. Hence the average projection
rate drops to 73.1%. i.e. There are not sufficient samples at
non-junction regions to infer which flow cluster a trajectory
belong to.
Completion quality. Figure 9.i plots average completion
rate rcpl(ε) of benchmark tests at different sampling inter-
vals. For instance, when the sampling interval is 30s, 60.6%
of the output trajectories have no gaps longer than 20 me-
ters. Similar to projection rate, completion rate is also lower
when sampling interval is 60s, implying that longer gaps are
more common.

The average completion accuracy ρ(δ) of the benchmark
trajectories is plotted in solid lines in Figure 9.j. As ex-
pected, accuracy is higher when the input trajectories con-
tain more samples. For a baseline comparison, we compute
the completion accuracy of cubic spline interpolation and
plot the results in dashed lines in the same figure. Let
δ = 10m be the tolerance of error for completion accuracy.
When the sampling interval is 30s, trajectory completion has
57% less errors than cubic spline interpolation.
Impact of voting image resolution. During the skele-
ton extraction step, voting image resolution r influences the
level-of-detail of the trajectory skeleton. See Figure 10 as
an example. Table 4 compares the projection rate and com-
pletion rate of BM 6 when r = 10, 12.5, 15 and 17.5 meters.
Notice that both metrics are highest when r = 12.5, and
decreases as r increases. We pick r = 13 for the rest of the
experiments to balance between quality and performance.

r (meters) 10 12.5 15 17.5

Running time (sec) 180.3 223.0 89.26 66.58

rproj 0.926 0.981 0.833 0.865

rcpl(20) 0.861 0.902 0.786 0.793

Table 4: Completion results of BM 6 (30 seconds/sample) for
different resolution r.

Impact of trajectory projection ratio. Skeleton pro-
jection ratio β controls the trade off between the number
of flow clusters discovered, and the correctness of trajectory
projection. Table 5 shows that both cluster count and pro-
jection rate decrease notablly when β > 0.7. Meanwhile,
completion rate increases as r increases (Figure 12).

β 0.5 0.6 0.7 0.8 0.9

# of flow clusters 26 26 23 21 13

rproj 0.999 0.998 0.997 0.995 0.825

rcpl(20) 0.423 0.505 0.599 0.692 0.734

Table 5: Completion results of BM 3 (30 seconds/sample) for
different projection ratio β.

Input size. To find out how input size affects completion
accuracy, we experiment with different input sizes on the
same set of routes. Figure 12.a visualizes the completion ac-
curacy of BM 1 using 500, 1000, and 2000 trajectories. We
can see that there is a clear difference in completion rate
between 500 trajectories and 1000 trajectories. This exper-
iment also demonstrates that our algorithm can effectively
leverage the information in individual trajectories. When
rare trajectories are discovered, the aggregated information
is more than what each trajectory contains, but not by far;
as more trajectories are fed into our algorithm, the aggre-
gated information increases, eventually leading the trajec-
tory completion towards the actually map structure.

6.4 Completing taxi trajectories
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1 Test

Benchmark 15 sec 20 sec 30 sec 60 sec

a. BM 1 0.976 0.971 0.970 0.880

b. BM 2 0.933 0.878 0.832 0.508

c. BM 3 0.995 0.982 0.953 0.531

d. BM 5 1.000 0.976 0.925 0.713

e. BM 4 0.986 0.978 0.962 0.650

f. BM 6 1.000 1.000 0.960 0.779

g. BM 7 1.000 1.000 0.999 0.914

h. BM 8 0.858 0.837 0.904 0.874

Average 0.969 0.953 0.938 0.731

1

Figure 9: Trajectory completion results for the 8 benchmark datasets. Each sub-plot (a)-(h) contains two views of the benchmark
trajectory sets BM 1-8. The top view shows the global configuration of the trajectories. The main trajectory junction is outlined in a
black bounding box, which is enlarged into the bottom view. Trajectories are colored by route for visual distinction. Sub-plots (i) and (j)
show the average completion rate rcpl(ε), and average completion accuracy ρ(δ) of BM 1-8 at different sampling intervals. The dashed
lines in sub-plot (j) shows the completion accuracy of cubic spline interpolation when the sampling intervals are 15s, 20s and 30s.
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Figure 10: This example shows the effect of resolution r on
skeleton graph for two parallel roads from the taxi trajectories,
displayed as a point cloud in Figure (a). Figures (b) and (c) show
extracted skeleton graphs with r = 8m and r = 15m respectively.
As r increases, two vertical streets identified as unique branches
merge into a single branch.

Trajectory completion results. The biggest challenge
of completing the taxi dataset is that traffic flows on different
roads have a large variance. Therefore the choice of mini-
mum flow cluster size M can influence the completion out-
come. We evaluate the effect of M using TAXI 1 in Table 7.
As M increases, more trajectories with ambiguous projec-
tions are discarded, reducing the overall projection rate. At
the same time, sub-trajectories assigned to each flow cluster
become more compact, which can be completed more easily,
thus increasing the completion rate. In practice, we choose
M = 2 to maximize the chance of up-sampling, then filter
unsuccessful completions through post-processing.

Table 6 shows the trajectory completion results for 5000
test trajectories in each test region. On average, 72.7% of
input trajectories have been projected to junction network.
The completion rate of those completed trajectories is visu-
alized in Figure 13.a.

Region rproj # of flow clusters Running time (sec)

TAXI 1 0.699 125 549

TAXI 2 0.772 262 1877

TAXI 3 0.712 215 1706

Table 6: Trajectory completion results of the taxi trajectories

M 2 4 8 16 32 64

# of flow

clusters
96 95 93 88 86 75

rproj 0.577 0.573 0.575 0.567 0.567 0.559

rcpl(20) 0.561 0.565 0.563 0.566 0.568 0.571

Table 7: Impact of M on projection rate and completion rate of
TAXI 1.

Comparison with map matching. We evaluate the
quality of completed trajectories by comparing against paths
found by a state-of-the-art map matching algorithm, inter-
active voting map matching (IVMM) [22], which uses knowl-
edge of the underlying road network. In our experiments,
the road network is obtained from OpenStreetMap [2]. With
a search radius of 125m, IVMM matches 98.3% of all test
trajectories to the road network. Next, we estimate the com-
pletion accuracy ρ(δ) of test trajectories using map matched
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Figure 11: Visualization of junction network, completed trajec-
tories, and the ground truth map for TAXI 1 (a-c) and TAXI 2
(d-f). For junction network edges, dark color implies larger flow
cluster size; For trajectories, darker color implies denser samples.
The ground truth maps are created using MapBox [1]. Only ma-
jor roads are shown for clarity. Junctions and junction links are
colored in red and green respectively.

paths as the ground truth. As shown in Figure 13.b, 89.5%
of points in the completed trajectories are within 15 meters
from the map matched path, representing 30-50% improve-
ment from cubic spline interpolation. One contributing fac-
tor to the difference between trajectory completion results
and the map matched paths is the route ambiguity from one
sample point to the next in the underlying road network.
Routes chosen by trajectory completion tend to follow pop-
ular traffic flows, while routes chosen by map matching tend
to prioritize shortest paths on the road network.
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Figure 12: a.) Impact of β on completion accuracy of BM 3
(30 seconds/sample). b.) Completion accuracy of BM 1 (20 sec-
onds/sample) using different input size.

Practical considerations. Real traffic trajectories often
span across a city or an even larger region. We need to
divide the bounding region of all trajectories into smaller
districts to make the problem tractable. Given a trajectory
that goes through multiple districts, we can complete parti-
tions of the trajectory in different districts in parallel, then
concatenate the generated sub-trajectories together. To re-
duce inconsistency during concatenation, it is best to place
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Figure 13: a.) Completion rate of 3 taxi datasets. b.) Com-
pletion accuracy of 3 taxi datasets using our method (solid lines)
and cubic spline interpolation (dashed lines).

district boundaries in places of low sample density.

7. RELATED WORKS
Trajectory interpolation. Interpolation is often used
to transform discretely sampled trajectories into parametric
curves. In [21], Yu et.al. finds the most likely trajectory
between two consecutive locations in a trajectory by solving
a dynamic problem on sample position, velocity and accel-
eration. The obvious drawback is fitting error. Hence it is
only useful when input trajectories are simple and dense.
Map matching is well known for reducing uncertainty in tra-
jectories using the geometry and topology of a given road
network. There has been extensive work on map matching
algorithms for sparse trajectories, such as [16] and [22]. In
particular, [12] and [14] use knowledge learned from histor-
ical trajectories to resolve path ambiguity in low sampling
rate map matching. These work differ from our approach
since we don’t assume any map knowledge.
Path inference from uncertainty trajectories. Simi-
lar to trajectory completion, its key insight is leveraging data
from other trajectories sharing the same route. Zheng et. al.
[23] infers missing sub-trajectories in a sparse trajectory by
matching it to a sequence of reference trajectories generated
from historical trajectories. It requires road network infor-
mation to represent paths. For network-independent sce-
narios, Goren-Bar’s Path Approximation Algorithm [9] first
aggregates the trajectory point cloud into groups of points
that belong to the same road, then finds the principal curve
of each group. It also finds a 3D vector map from the groups.
In [19], Wei et. al partitions space into uniform grids, and
infer popular routes as connected grid cells. Both algorithms
bear similarities with our work, however, they are designed
for traces much simpler than urban road network, such as
hiking trajectories, or bird tracks.
Trajectory clustering. This problem groups similar tra-
jectories into clusters and compute a representative trajec-
tory for each cluster. It is often involved in path inference
and trajectory pattern mining applications [8]. One cat-
egory of approaches treats trajectory data as point cloud
and iteratively move points toward the center line, such as
principal curves [6] and partical simulation [9]. Their effec-
tiveness are limited due to not directly using the sequen-
tial information in trajectories. Other approaches focus on
shared sub-trajectories. One representative algorithm is Tr-
aClus, which first partitions trajectories into a set of line
segments, then groups similar line segments into a cluster
[13]. Trajectory clustering may also use prior knowledge of
the road network. Han et. al. proposed a road network
aware trajectory clustering (NEAT) algorithm that discover
sub-trajectories that describe both dense and highly contin-
uous traffic flows of the user [10]. This work share similar



intuition with our work on using traffic flows to represent
sub-trajectory clusters. Another related problem is trajec-
tory calibration, introduced by Su et. al. [18]. The proposed
algorithm transforms heterogeneously sampled trajectories
into a uniform sampling profile by aligning trajectories to a
set of anchor points. The up-sampling step in this work is a
case of trajectory completion.
Map inference. A different approach to solve trajec-
tory completion is first reconstructing the road network from
trajectories, a process called “map inference”, then applying
map matching algorithms. See [4] for a survey of recent ad-
vancement on this topic. The accuracy of trajectory-based
map reconstruction is often limited when input trajectories
are collected in low sampling rates. A recent work by Shan
et. al. presents a map update system COBWEB, which
takes unmatched trajectories and computes missing edges
for an existing map [17]. Our algorithm is similar to COB-
WEB as they both use GPS samples from all trajectories to
infer unknown map structure. The novelty of our work is
using junction-based clustering of sub-trajectories to ensure
all GPS samples in a flow cluster are from the same route,
making trajectory completion more stable.

8. CONCLUSION
In this paper, we proposed a methodology for the trajec-

tory completion problem. Its core idea is that when the
whole data is not equally hard to analyze, we can extract
information starting from relatively easier regions, and prop-
agate to solve for more challenging regions. We adapted the
L1-medial skeleton algorithm to extract trajectory skeletons.
From the skeleton branches that are simple in terms of road
geometry and traffic flow, information from different sub-
trajectories is robustly aggregated. We built a junction net-
work out of the aggregated information, where traffic flows
between junction branches can be computed. Guided by
the junction knowledge recovered from data, sub-trajectories
that follow same topology in the junction network can be
clustered and used for completing individual trajectories.

Our approach does not rely on existing map, yet still pro-
duces quality trajectory completion from sparse GPS sam-
ples. Comparing to other path inference works, it is most
powerful when individual trajectories are sparsely sampled,
but over all trajectories, there are sufficient GPS samples
covering most of the underlying network. Although we have
focused on urban traffic trajectories, this algorithm may also
be used to complete trajectories where accurate map is less
available, such as biking trails in rural area.

In future work, we will take into consideration of GPS
noise, so that completed trajectories don’t have to contain
the input GPS samples exactly. In addition, as real world
road networks are constantly updating, it will be interesting
to apply our algorithm to trajectory-based map update ap-
plications. We believe that the idea of extracting junction
traffic flow can improve existing map update methods.
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