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ABSTRACT
Predicting the travel time of a path is an important task in route
planning and navigation applications. As more GPS �oating car
data has been collected to monitor urban tra�c, GPS trajectories of
�oating cars have been frequently used to predict path travel time.
However, most trajectory-based methods rely on deploying GPS
devices and collect real-time data on a large taxi �eet, which can
be expensive and unreliable in smaller cities. �is work deals with
the problem of predicting path travel time when only a small num-
ber of GPS �oating cars are available. We developed an algorithm
that learns local congestion pa�erns of a compact set of frequently
shared paths from historical data. Given a travel time prediction
query, we identify the current congestion pa�erns around the query
path from recent trajectories, then infer its travel time in the near
future. Experimental results using 10-15 taxis tracked for 11 months
in urban areas of Shenzhen, China show that our prediction has on
average 5.4 minutes of error on trips of duration 10-75 minutes. �is
result improves the baseline approach of using purely historical tra-
jectories by 2-30% on regions with various degree of path regularity.
It also outperforms a state-of-the-art travel time prediction method
that uses both historical trajectories and real-time trajectories.
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1 INTRODUCTION
Modern navigation and location-based applications rely on accu-
rately predicting of the travel time of a route at the current or future
times. Due to the prevalence of tra�c congestion in urban cities,
and the large variance of conditions in the tra�c environment, the
travel time of a route can vary signi�cantly from hour to hour,
day to day. �erefore the use of dynamic tra�c data is extremely
important in accurate travel time prediction

Traditional ways of monitoring tra�c conditions use static sen-
sors (e.g. induction loops, automatic license plate number recogni-
tion cameras) installed on selected streets and highways in the city.
�ese data collection methods tend to be less up-to-date, and are
di�cult to aggregate and maintain. As GPS devices have become
mainstream in the recent decade, it becomes possible to estimate
and predict tra�c conditions from large trajectory data collected
by GPS-equipped vehicles.

A great number of studies have been published on trajectory-
based travel time prediction [5, 9, 11, 14, 17, 18, 21, 23]. Most of
them make use of thousands of probe vehicles tracked simulta-
neously, such that the tra�c speed on a subset of the roads are
observed by at least one vehicle within a short time window. How-
ever, the large scale deployment of GPS-equipped vehicles and the
cloud infrastructure to process such data can still be unfeasible for
smaller cities. �e deployment process also takes time. For instance,
the Gotcha project deployed 100 sensor-equipped electric taxis in
Shenzhen, China in several stages from 2014 to 2016 [19]. During
the initial 15-month pilot stage, no more than 15 vehicles from the
project were active (Figure 1).

In this paper we use the Gotcha pilot data to investigate the
di�cult problem of travel time prediction when having a very
small number of concurrently active GPS-�oating cars on the road
network. �is constraint comes up in many real-life situations.
Although typically many GPS tracks are available when we look at
the full history of available trajectories as a whole, at a speci�c time
instance, only a potentially much smaller subset will be available.
Equally importantly, real-time information at any given time may
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Figure 1: a.) �e number of probing cars employed each
month by the Gotcha pilot study. b.) GPS traces of 10 cars in
December, 2014.

be available from a smaller subset of the active GPS cars. For ex-
ample, when crowdsourced trajectories are used, some drivers may
decide to upload their traces in batches rather than immediately,
to conserve ba�ery power, or when there is WIFI. We show how
latent structures in historical trajectories can be exploited to predict
travel time with sparse observations at a given time. Applying this
we develop and evaluate a novel, �exible and e�cient mechanism
that signi�cantly improves travel prediction times.

�is problem has two main challenges: �e most obvious one is
data sparsity. In the 15-vehicle dataset, on average only 3% of all
road links are traversed during a 30 minute interval on a weekday
morning. �e other challenge is the large variance in travel time
observations of the same path. Gotcha trajectories do not have
labels to identify passenger trips, as do trajectories in previous
works. While most travel time delays in taxi trajectories are likely
caused by congestion, it may also contain the time when drivers
stop temporarily to drop o� or pick up passengers, or intentionally
slows down to �nd passengers on the side walk. Due to the lack of
trip labels, our problem is akin to using crowd sourced trajectories.
�erefore our solution will need to handle both data sparsity and
various amount of uncertainty in travel time observations.

To address these challenges, we use a path-based approach,
which decomposes a route into a sequence of popular paths on
the road network and predicts the travel time on each path [17].
�is approach di�ers from the popular link-based design, which
predicts the travel time of a route based on the estimated time
of each road segment, also called a link. We prefer path-based
approach because path travel time also include link-delays, the
time spent transitioning from one link to the next. Such delay is
di�cult to estimate independently given the sparse and uncertain
nature of our problem. In this work, we refer to the popular paths as
pathlets, selected based on the shared geometry in taxi trajectories.
Although travel time information is not used directly to decompose
a path, we can still control pathlet selection through a parameter
learned from the training data.

�e key to our travel time prediction method is leveraging hid-
den structures within historical travel time observations to infer the
travel time of a path which hasn’t been traversed by any probing
vehicle recently. We observe that on a local scale, such as several
neighboring roads (or overlapping pathlets), the congestion pat-
terns are reoccurring (Figure 2). Our algorithm clusters the local
congestion pa�erns of a pathlet across the entire time span of the
historical data. Periodic factors including time of day and workday
are implemented as so� clustering constraints rather than hard
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Figure 2: Visualization of 3 congestion patterns over path-
lets r1, r2 and r3 at an intersection. Colors red and green rep-
resent congested and non-congested tra�c states of a given
pathlet.
constraints. Hence it allows tra�c delays caused by random events,
such as weather, accident and special events, to in�uence the clus-
tering results. By learning such latent pa�erns, we are able to infer
the near-future travel time of any path in the neighborhood if only
a few paths have been observed in recent time.

�e contributions of this work are threefold:

(1) Proposing a travel time prediction framework that combines
the prediction based on the current congestion pa�ern and the
historical travel time of each pathlet.

(2) Extracting local congestion features by exploiting spatial rela-
tions among pathlets in a neighborhood.

(3) Developing an unsupervised learning approach to �nd conges-
tion pa�erns that are robust against missing data.

2 RELATEDWORKS
�is section reviews previous works on the travel time prediction
problem for urban road networks. We classify existing methods in
three main categories.
Link-based travel time prediction. Link-based approaches are
the classical method to predict travel time on a road network. �ey
are similar to prediction techniques designed for static tra�c sen-
sors, such as induction loop [18] and license plate identi�cation
cameras [4].

For �oating car data, the travel time of individual links can be
inferred by trajectories of cars passing through those links. �is is
called the link travel time estimation problem. For instance, Ho�eit-
ner et al. models the travel time distributions of links based on a
tra�c �ow model [9]. Zhan et al. uses least-square minimization
to estimate link travel time from taxi trip data that only contain
endpoint locations and meta information about the trip such as trip
distances [21]. More generally, one can estimate tra�c parameters,
such as the speed and the �ow volume [7][22] associated with indi-
vidual links to infer link travel time. �ese works focus on inferring
the current tra�c parameters, rather than predicting the future.

Various prediction methods have been proposed to predict link
travel time in the near future, such as dynamic Bayesian network
[10], pa�ern matching [4], gradient boosting regression tree [23]
and deep learning [13]. In both link travel time estimation and
prediction problems, correlations between the travel time for nearby
links (spatial) and di�erent time windows (temporal) are o�en used
to select the relevant features for inferring the tra�c parameter
on a particular link [13][23]. Our algorithm also makes use of
spatial-temporal relationships on tra�c states, but on a path-level.

Many studies compute the travel time of a path as a summation of
the predicted link travel time. �is approach has the drawback that
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link-delays are not considered. In [14], the authors designed several
correction methods to take into account the travel time bias in the
additive link-based travel time model. Yet such models require good
dynamic coverage of the road network. As a result, these works
only focus on a speci�c highway region or a few selected routes.
Path-based travel time prediction. In an early work that advo-
cates the computation of path-based travel time over link-based
travel time [5], researchers demonstrated that the direct measuring
of path-based travel time on a highway strip could generate a more
accurate prediction than measuring link travel time independently.

Since it’s not always possible to have a travel time measurement
on an arbitrary path, large scale path-based travel time prediction
needs to decompose the query path into popular subpaths, whose
travel time is more likely to be measured by some probing vehicle.
Wang et al. discussed the trade o� between subpath lengths and the
minimum support size in path-based prediction [17]. It computes
the optimal decomposition by minimizing the total travel time vari-
ance of subpaths, normalized over the number of unique drivers on
each subpath. It is worth noting that path decomposition (partition)
is also an important problem in trajectory compression on road
networks. Earlier works on this topic are summarized in [15] and
[12]. In particular, Chen et al. �nds a compact dictionary of path-
lets that reconstruct trajectories by fewer pieces (more compressed
trajectory) [3]. We adopt this technique in our algorithm since it is
designed to maximize the path regularity in input trajectories. Path
decomposition using this approach allows the same observations
to account for the prediction of more query paths. It also allows
�ner control of the trade o� by a single parameter.

Some approaches such as [5] only use historical data to predict
the travel time of a query. In [17], trajectories in the recent past
are used to estimate the current travel time of the query path. �e
historical travel time of each road link, imputated using tensor
decomposition over spatial-temporal features and driver identities,
is only used when recent observations are not available.
Trip-based travel time prediction. Trip-based methods rely
on �nding historical trips that match the origin, destination and
departure time interval of the query [11, 16]. �ey usually assume
trips between the same endpoints share the same route, or a small
number of alternative routes. �erefore it is more o�en used for
coarse-level prediction or predictions of predetermined routes such
as bus trips. Jiang et al. compute the travel time distribution of a
query trip from matched historical trajectories and use statistical
tests to remove outliers [11]. Wang et al. infer the travel time of
trips that are not found in historical data from nearby trips, while
adjusting for periodic tra�c pa�erns [16]. Trip-based travel time
prediction can also be extended hierarchically to allow some route
diversity. In [20], Yuan et al. represent a trip as a sequence of
shorter trips between popular landmarks in the city. Trip travel
times are computed as the sum of landmark-to-landmark travel
times, plus the time spent from the origin to the �rst landmark, and
from the last landmark to the destination. While trip-based travel
time prediction has much be�er performance than link-based or
path-based algorithms, while achieving useful results, they can not
be applied to our scenario as we can not reliably identify the true
starting and ending points of a taxi trip in an unlabeled GPS trace.

3 PROBLEM DEFINITION
We represent a GPS trajectory as a sequence of n spatial-temporal
points: τ = {

(pi , ti )
}n
i=1. Point pi = (xi ,yi ) is the GPS position

projected in R2 and ti is the sample timestamp. We de�ne the
cardinality of trajectory τ , |τ | = n as is the number of GPS samples
in τ .

Given the road network G and a trajectory τ , we can infer the
path inG that τ represents through a process calledmap match-
ing. We call this path the map-matched path of τ , wri�en as a
sequence of edges τG =

{
e1, . . . , e |τG |

}
.

We formally de�ne the travel time prediction problem as follows:

De�nition 3.1 (�e travel time prediction problem). Let T be a
collection of historical trajectories on road network G. Let subset
Rβ ⊆ T be the set of recent trajectories collected in the last β
minutes. Given a query path P and the current time t , compute
dt (P ), the predicted travel time of a trip along P departing at t ,
based on trajectories in T and Rβ .

In this problem, we compute the expected travel time of the
query path, rather than the travel time of a particular driver. Hence
driver identities are not considered. In addition, we only study trips
in the near future (10min-1.5hr). As we predict further into the
future, the tra�c status is less predictable by observations in Rβ .
In that case, our prediction will not be able to re�ect delays due to
random factors. One workaround for longer trips is to predict the
travel time of an initial segment of the path using Rβ , then predict
the next segment when recent trajectories in Rβ are updated.

4 ALGORITHM OUTLINE
Figure 3 illustrates our travel time prediction framework in three
stages: i) trajectory preprocessing, ii) o�ine congestion pa�ern
clustering and iii) online travel time prediction.
Preprocessing. Given unprocessed input trajectories shown in
Figure 3.a, we partition each trajectory into trips by removing long
gaps and staying points, i.e. clusters of GPS samples recorded when
a car is not moving for an extended period of time. �en we apply
map matching to compute the map-matched path τG of every input
trajectory τ (Figure 3.b). We abuse the notation of T and R so
that they refer to trajectories a�er partitioning and map matching.
Congestion pattern learning. First, we compute the pathlet
dictionary, a compact set of pathlets that are used to reconstruct
the input trajectories. �e top 100 most frequently used pathlets
are visualized in Figure 3.c, along with three dictionary entries
shown in the table. Each pathlet r in the dictionary is associated
with a set of travel time observations at di�erent time and dates
from all trajectories in T . �e dynamic congestion feature of r is
computed by aggregating its travel time observations into frames,
which are �xed time intervals within the entire date-range of the
input data, e.g. 8:00am-8:30am Dec 2, 2014. Using the spatial and
temporal relationships between travel time features, we extract a set
of distinctive congestion pa�erns C (r ) among congestion features
of pathlets in r ’s neighborhood. Figure 3.d visualizes six congestion
pa�erns from a pathlet’s neighborhood using a color scale, where
red implies the most congested state and blue implies free �ow
state. Details are discussed in Section 5- 6.
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Figure 3: Our travel time prediction framework consists of the o�line stage that preprocesses data (a-b) and learns travel time
patterns (c-d), and the online stage that process travel time prediction queries (e-h). See section 4 for details.

Travel time prediction. Figure 3.e shows the sample input of
the online stage: recent trajectories Rβ (red curves) and the query
path P (blue curves). First, P is decomposed into three pathlets
r1, r2, and r3. For each ri with i = {1, 2, 3}, we identify the current
congestion pa�erns of any observed neighborhoods that contain
ri , and use them to predict dt (ri ), the travel time of ri departing
at t . For instance, Figure 3.g shows the congestion pa�erns for
three neighborhoods that contain r2, and the pa�erns closest to
observations in Rβ in each neighborhood are highlighted by the
black boxes. �e �nal travel time prediction of r2, dt (r2) = 8.4min
is computed based on the predictions from each neighborhood.
Lastly, we combine the predictions based on pa�ern matching and
the historical travel time of each pathlet to obtain the travel time
of path P (Figure 3.h). �e algorithm will be presented in Section 7.

5 COMPUTING PATHLET TRAVEL TIME
�e �rst task in the o�ine stage is obtaining travel time observa-
tions of pathlets from GPS trajectories. In this section, we will �rst
review the formal de�nition of pathlets and the pathlet dictionary
proposed by Chen et. al [3]. �en we will discuss how to derive
pathlet travel time observations from input trajectories.
5.1 Pathlet dictionary
A pathlet is a subpath on the road network that is traveled by one
or more input trajectories. A pathlet dictionary (PD) is a set of
pathlets that reconstructs all input trajectories T by concatenation.
Let p (τG ) = {r1, . . . , rm } ⊆ PD denote the set of pathlets in the
dictionary that reconstruct τG . We de�ne the support set of a
pathlet r ∈ PD, T (r ) to be the set of trajectories that uses r in its
decomposition. i.e. T (r ) = {τG ∈ T | r ∈ p (τG )}.

Given input trajectory set T, the optimal pathlet dictionary
satis�es the following criteria: i.) Number of pathlets in the
dictionary, |PD | is minimized. ii.) For each τG ∈ T , the number of

pathlets used to reconstruct τG , |p (τG ) | is minimized. It is shown
in [3] that the optimal dictionary P can be learned by solving the
following optimization problem. Let xτ ,r be an indicator variable
that evaluates to 1 if r ∈ p (τG ) and 0 otherwise. For each trajectory
τG ∈ T , the solution minimizes the following problem:

min
xτ ,r ∈{0,1}

∑
r ∈p (τ )

(
λ +

1
|T (r ) |

)
xτ ,r

Parameter λ determines the trade-o� between objectives i) and ii).
�e smaller the value of λ, the smaller the dictionary size |PD |, and
the larger the average trajectory decomposition size |p (τ ) |.

( ps1 ,ts1 ) (ps2 ,ts2) 

(pt1 ,tt1) (pt2 ,tt2)

r
r.start

r.end

qs1 qs2

qe1 qe2 (ps, ts) = (ps1, ts1)

(pt, tt) = (pt1, tt1)

Figure 4: �is �gure illustrates an example of computing
the travel time observation of pathlet r (highlighted in or-
ange) by a trajectory, which contains 5 GPS samples (blue
drop pins) projected to pathlet r and its adjacent road links.

5.2 Pathlet travel time observations
We compute the travel time observation of a trajectory τG on some
pathlet r as follows.

First we �nd the last sample point (ps1, ts1) in τ before it en-
ters pathlet r and the �rst sample point (ps2, ts2) projected onto
r . Similarly, we �nd (pe1, te1) and (pe2, te2), the last GPS sample
projected on r and the �rst GPS sample exiting r , respectively (see
Figure 4). Let qs1,qs2,qe1 and qe2 be the projections of these points
on the road network. We de�ne the nearest GPS samples (ps , ts )
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Figure 5: Travel time distribution of the seven most fre-
quently used pathlets.

and (pe , te ) from the endpoint vertices of r , r .start and to r .end :

(ps , ts ) =



(ps1, ts1) if dist (qs2, r .star t ) < dist (qs1, r .star t )
(ps2, ts2) otherwise

(pt , tt ) =



(pe1, te1) if dist (qe2, r .end ) < dist (qe1, r .end )
(pe2, te2) otherwise

Distance function dist (x ,y) is the geodesic distance from x to y
along the path τG . �e travel time of pathlet r observed by trajectory
τG , dτ (r ) is the scaled timestamp di�erence te − ts :

dτ (r ) =
dist (qs ,qe )

lenдth(r )
(te − ts )

Let D (r ) be the set of all travel time observations of pathlet r from
the input trajectories. Figure 5 shows the travel time distribution of
the top ten pathlets used to reconstruct input paths. Most of them
are skewed towards larger values due to outliers that represent
extremely long delays. To reduce the bias of outliers, we apply
the probability integral transformation [2] to dπ (r ), such that the
transformed value, d̂π (r ) is in a uniform distribution between 0 and
1. �is transformation allows us to compare travel times between
di�erent pathlets.

6 LEARNING CONGESTION PATTERNS
In this section, we formulate the problem of learning congestion
pa�erns, and subsequently we give algorithms to infer the conges-
tion status of each pathlet at a given time from a range of historical
data. To address the problem of sparse concurrent observations,
both spatial and temporal relationships are exploited.

6.1 Design features with spatial relationship
We design features that capture local tra�c pa�erns using spatial
relationships among the pathlets. In particular, we observe that traf-
�c states of pathlets that share common edges are not independent.
�erefore we de�ne a neighborhood near pathlet r by selecting
pathlets with a signi�cant amount of overlap with r .

Speci�cally, let the overlap ratio of pathlet r ′ with respect to
r , o(r , r ′) be de�ned as the fraction of shared edges between the
two pathlets. We further de�ne the overlapping neighborhood of
r , OL(r ) = {o1, . . . ,os } as the set of s pathlets with the highest
overlapping ratios with respect to r .

To capture the dynamic congestion state of neighborhoodOL(r ),
we aggregate travel time observations of r by discrete time steps (or
frames) across the entire date range of the input trajectories. Due
to the constraint of having very few �oating cars, most frames will
either contain no observations or only contain a few observations.

For each frame fi with one or more observations, we use the me-
dian operator to aggregate observations into a scalar value dfi (r )
and compute its congestion state d̂fi (r ). �e step size is chosen
empirically based on the observation sparsity. With 15 �oating
cars, we found 30 minutes to strike the best balance between the
granularity of tra�c states and the number of observed pathlets.

Given pathlet r with overlapping neighborhood {o1, . . . ,os }, we
de�ne the feature vector of frame fi ,M (r )i as an s-dimensional vec-
tor consisting of observed congestion states from pathlet r ’s neigh-
borhoodOL(r ) during frame fi . i.e. M (r )i =

[
d̂fi (o1) . . . d̂fi (os )

]
.

We stack feature vectors that contain at least two non-missing val-
ues into a single feature matrixM (r ). Let N be the number of such
“partially observed” feature vectors. MatrixM (r ) has the following
structure:

M (r ) =



M (r )1
...

M (r )N



6.2 Congestion feature clustering with
temporal constraint

Having obtained matrixM (r ) that represents the dynamic conges-
tion status of OL(r ), we �rst apply k-POD [6], an iterative k-mean-
based clustering algorithm to cluster rows of M (r ) into k groups
and �ll in missing values in M (r ). Unlike other methods dealing
with missing data, such as deletion and imputation, k-POD works
well with unknown missing mechanism and high missing rate.

Given k cluster centroids c1, . . . , ck computed using k-POD, we
initialize missing values in M (r ) by �nding the nearest centroid
for each row inM (r ). Since the feature matrix size N varies a lot
among di�erent pathlets (e.g. from 5 to over 4000 frames), it is
important that we select cluster size k adaptively. We therefore
adopt the Gaussian-Means (G-Means) method to �nd the optimal
k . It works by starting with many small clusters, then recursively
merging them into larger clusters if two clusters are sampled from
the same Gaussian distribution [8].

Next, we re�ne the initial clustering result by introducing tem-
poral relationships in congestion features.
Graph label optimization. We formulate our problem through k-
means with Laplacian smoothing. Given feature matrixM (r ) and an
a�nity matrixW that represents the temporal consistency between
any two frames in M (r ), we want to �nd k cluster centroids that
minimize their distances to the observations, while determining
the so� assignment between a frame and one of the k clusters at
the same time.

Formally speaking, let P be the N × k cluster assignment matrix.
Each row pi of P is a binary vector such that pi (j ) = 1 if frame fi is
assigned to cluster j or 0 otherwise. �e k cluster centers are stored
as row vectors in k × s matrix C . We initialize P and C using the
results from Section 6.2, then �nd their optimal values by solving
the following minimization problem.

minimize
P,C

| |PC −M (r ) | |2F + γTr (P
T LP )

s.t. P1 = 1, P = {0, 1}, 0 ≤ C ≤ 1
(1)
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Figure 6: a) Illustration of a weighted consistency graph
of congestion patterns in observed frames (white nodes).
Shaded nodes represent the observation in each frame la-
beled by its starting time. Red and blue edges represent the
time-of-day similarity and the similarity between nearby
frames. �e opacity of an edge represents its weight. b.) Vi-
sualization ofW , the adjacency matrix of the weighted con-
sistency graph in (a). In practice,W is mostly sparse.
L is the graph Laplacian matrix, obtained as L = D −W , where
D = diaд(

∑n
j=1wi, j ) is the degree matrix of the weighted graph

de�ned by adjacency matrixW . Constant coe�cient γ controls the
weight of temporal consistency in the clustering process. Figure 6
illustrates a simple example of how pairwise consistencies are de-
�ned among frames. We relax the integer constraint on P to be a
real matrix of values [0, 1]. �e resulting function can be solved
using alternating direction optimization.
Formulation ofW . �e �rst type of temporal relationship is the
similarity between adjacent frames. i.e. it would be less likely for
local tra�c to transition from free �ow to a fully congested state
between two frames in consecutive time steps. �erefore we de�ne
the smoothness weight between the ith frame and the jth frame
as an exponential decay function:

Csmooth (i, j ) = exp *
,
−
(ti − tj )

2

σ 2smooth

+
-

where ti and tj are the starting times of frames fi and fj . σsmooth
is a small constant.

�e second type of temporal relationship is the similarity based
on the periodical nature of tra�c �ow in urban cities. In particular,
we focus on the starting time-of-day (TOD) of a frame and whether
or not it starts on a weekday or a weekend. We discretize starting
time-of-day of each frame by a �xed window of ω frames, and call
it hi , the TOD identi�er of frame fi . We de�ne the TOD weight
between frames fi and fj as

Ctod (i, j ) = exp *
,
−
min{|hi − hj |,hmax − |hi − hj |}

2

σ 2tod

+
-
.

Edge weight w (i, j ) is computed as a linear combination of Ctod
and Csmooth , i.e.

wi, j = θCsmooth (i, j ) + (1 − θ )CTOD (i, j )

wi, j = 1 if frame i and frame j are in the same time step. By default,
σtod =

√
2 and σsmooth = 2. �e coe�cient of the smoothness

weight θ is chosen to be 0.5.
7 TRAVEL TIME PREDICTION
�is section describes the online step in path travel time prediction.
We will explain how to predict path travel time using local conges-
tion pa�erns we learned from historical data. Several variations of
our algorithm will be discussed.

7.1 Prediction using historical data
We �rst introduce a baseline prediction method that only relies on
historical trajectories H . Initially, query path P is decomposed into
m pathlets r1, . . . , rm . We proceed to compute the time-dependent
historical travel time of each pathlet if the departure time is t .

Let ti be the time when the predicted trip enters ri , the ith pathlet
in P . We compute the historical travel time of ri at ti , dHti (ri ) as
the median of all travel time observations in the same time-of-
day interval as ti . �e historical travel time of path P , dHt (P ) is
computed recursively. Let Pi denote the sub-path of the �rst i
pathlets r1, . . . , ri in P, such that P1 = 〈r1〉 and Pm = P . Initially,
set t1 = t and dHt (P0) = 0. �en for all i = 1, . . . ,m, we update
dHt (Pi ) and ti using the following formulas:

dHt (Pi ) = d
H
t (Pi−1) + d

H
ti (ri )

ti+1 = ti + d
H
ti (ri )

�e travel time of P is dHt (P ) = dHt (Pm ).

7.2 Prediction exploiting current observations
7.2.1 Congestion pa�ern matching.

We use pa�ern matching to incorporate recent congestion states
observed by Rβ into travel time predictions. Our approach is sum-
marized in Algorithm 1.

Algorithm 1: Algorithm for predicting travel time of P using
pa�ern matching.
Input: �ery path: P = 〈r1, . . . , rm〉
Recent trajectories: H
Current (departure) time: t

Output: Predicted travel time of path P : dt (P )
Parameters :Time when user enters �rst pathlet r1 of P: t1 = t
for i = 1 . . .m do

1 if ri is observed by Rβ then
2 d̂R (ri ) ← PredictByPM(ri, Rβ)

3 ti+1 = ti + cd f
−1

(
d̂Rti (ri )

)
else

4 d̂R (ri ) ← cd f (D (ri ),d
H
ti (ri ))

5 ti+1 = ti + d
H
ti (ri )

end
end

6 dR (ri ) = cd f
−1 (D (ri ), d̂

R (ri ))

7 dt (P ) ←
∑m
i dR (ri )

On Line 1, we test if pathlet r is observed by Rβ . Speci�cally, we
de�ne the inverse overlapping neighborhood of pathlet r to be
the set of all pathlets whose neighborhoods contain r :

OL−1 (r ) = {o ∈ PD |r ∈ OL(o)}

We say the neighborhood of some pathlet o, OL(o) is observed by
Rβ if at least one pathlet in OL(o) has been traversed by one of
the trajectories in Rβ . �en pathlet r is observed by Rβ if there
exists at least one pathlet o ∈ OL−1 (r ) such that its neighborhood
OL(o) is observed by Rβ .
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When r is observed by Rβ , we predict the travel time of pathlet
r using PredictByPM ( Line 2). i.e. For each pathlet ol ∈ OL−1 (r )
such that OL(ol ) is observed in Rβ , we identify the current con-
gestion pa�ern of OL(ol ) by matching recent observations in Rβ
against congestion pa�erns learned in Section 6. �is results in
one prediction of the travel time of pathlet r , d̂ol (r ). We aggregate
predictions from multiple neighborhoods using a weighted average,
where the weight function w (r ,ol ) is the correlation coe�cient
between the congestion status of r and the status of ol inM (r ).

If r is not observed, we compute the time-dependent historical
travel time of r instead (Line 4). A�er converting the predicted
values to absolute travel time using the inverse probability integral
transform, we compute the total path time as the sum of all pathlet
travel time (Line 6-7).

7.2.2 Optimizations for prediction.

�epa�ernmatchingmethod presented so far has a few potential
issues. First, function PredictByPM assumes that the tra�c status
of the road network observed from Rβ doesn’t change over the
predicted trip duration. For longer trips, however, we need to take
into account that the predictive power of Rβ decays over time.
Second, computing path travel time as a sum of pathlet travel time
that are predicted independently doesn’t consider the transition of
congestion status between adjacent pathlets in the query path. We
a�empt to address these issues using the following heuristics.
Hybrid prediction. We replace Line 7 by a hybrid model where
pathlet travel time is computed as a linear combination of PredictByPM
and the historical prediction. By decreasing the coe�cient on the
former term for each subsequent pathlet, we canmodel the decaying
predictive power of Rβ as we predict further into the future.

Technically, consider a decreasing sequence α1 ≥ α2 ≥ · · · ≥ αm
such that 0 ≤ αi ≤ 1 for all i . We de�ne the hybrid travel time
prediction of path P as follows:

dRt (P ) =
m∑
i
dEti (ri ) =

m∑
i
αid

R (ri ) + (1 − αi )dHti (ri )

We use a heuristic approach to determine the optimal value of
coe�cients a1, . . . ,am . Initially, assign a1, . . . ,am to a constant
value a0. �e value of ai should decrease as the fraction of travel
time spent on the �rst i pathlets increases. We solve the following
system of 2m equations iteratively:

dEti (ri ) = αid
R (ri ) + (1 − αi )dHti (ri )

ai = 1 −
∑i
j=1 d

E
tj (r j )∑m

j=1 d
E
tj (r j )

for all i = 1, . . . ,m

�e initial value a0 can be learned from data. e.g a0 = 0.8 is a good
choice for our test dataset.
Adjacent pathlet smoothing. �is optimization is motivated
by the intuition that abrupt changes of congestion status tend to
happen near (1) intersections, or (2) on a road segment connecting
to another road of di�erent classes, as in the case of highway exits.
In order to reduce the impact of outliers on pathlet travel time
prediction, we apply a rule-based smoothness constraint on the
independently predicted congestion status of each pathlet ri .

Let xi be the hybrid travel time prediction of pathlet ri ∈ P using
adjacent pathlet smoothing. Let li be the length of pathlet ri . We
�nd the optimal values that minimize the following optimization
problem:

min
x1, ...,xm

m∑
i=1

(xi − d
E
ti (ri ))

2 + µ
m−1∑
i=1

b (i, i + 1, P )
�����
xi
li
−
xi+1
li+1

�����
�e �rst term in the objective function measures the cost of per-
turbing the hybrid prediction of pathlet ri , dEti (ri ). �e second term
measures the cost of changing average speed on adjacent pathlets
ri , ri+1 ∈ P . �e weight on each pair of adjacent pathlets is de�ned
by the following function:

b (i, i + 1, P ) = NotAJunction(ri , ri+1)+

SameRoadClass(ri , ri+1)

NotAJunction and SameRoadClass are indicator functions that
decide whether the last link of ri and the �rst link of ri+1 do not
meet at a road intersection (i.e. a vertex of degree greater than 2),
and if they share the same road class. �e choice of Parameter µ is
learned from data via cross validation.

8 RESULTS

8.1 Experimental data
We test our algorithm using GPS trajectories of 15 GPS-equipped
electric taxis deployed by the Gotcha II project from Oct 2014 to
September 2015 in Shenzhen, China [19]. �e GPS sampling rate
is 10 seconds per sample. Only 10 unique taxis were active for six
months of the eleven-month study. We divide the urban districts
of Shenzhen into 4 regions (Figure 7.a) and test travel time predic-
tion in each region.Table 1 summarizes the characteristics of the
districts from west to east. To illustrate the sparsity of concurrent
observations, we show in the last column of Table 1, the percentage
of links traversed within a 30 minute interval in the morning of
November 2, 2014. Despite taken from a weekday morning, on
average only 3.32% of the road links in the test region are observed.

Table 1: Specs of test regions
Region
ID

Name # of links # of trajec-
tories

dictionary
size

7-7:30am
coverage

1 Bao’an 7649 11373 3438 0.86%
2 Nanshan 2991 33859 11363 5.35%
3 Futian 7574 60111 47898 5.40%
4 Luohu 5651 20378 32589 2.80%

�e Open Street Map of Shenzhen is used for map matching
[1]. Road class information of each link (e.g. motorway, primary,
secondary and tertiary road segments and links) is extracted from
the OSM tags in the map data.

In each test region, we randomly select 300 trajectories from
January to September 2015 as test data. �e rest of the trajectories
are considered the training data for learning congestion pa�erns.
�is allows each test query to have at least 5 months of historical
data to rely on. We use the actual trip duration of each test trajectory
as the prediction ground truth. Trip duration is bounded between
40-4500 seconds. Tested on a Dell T3600 workstation with 3.2GHz
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Figure 7: Top: Visualization of taxi trajectories (colored by
id) in one month and the bounding box of each region. �e
plane icon in Region 1 marks the Shenzhen International
Airport. Bottom: �e road network for Region 1 (BaoAn)
and Region 3 (Futian). Red edges indicate road segments
that are visited by at least one �oating car from 7:00am to
7:30am on Nov 2, 2014.

processors and 32GB RAM, the o�ine step takes approximately 4
hours per region.�e average query processing time is 0.7 seconds.

We evaluate Algorithm 1 and its variations against the baseline
method that uses only historical data. �e �rst one, PredictPM is
the same as Algorithm 1. We refer to the variation with hybrid
travel time prediction, described in Section 7.2.2 as PredictPM+;
and refer to the variation that uses both hybrid prediction and
adjacent pathlet smoothing as PredictPM++.

We also compare the baseline and PredictPM++ with CATD-OC,
a popular path-based travel time estimation algorithm from [17].
To adapt CATD-OC under our problem se�ing, we introduce a few
modi�cations to the algorithm in the original paper. First, we as-
sume each trajectory is from a unique driver since driver identities
are not preserved in our test datasets. �is is the case when anony-
mous trajectories are used, or when the driver pool is constantly
changing. Second, the geographical features of road segments do
not include their point of interest (POI) distributions, as POIs are
not available in our datasets. Each time slice in the travel time
tensor is 15 minutes long and the total number of time slices used
in the tensor decomposition process is 8 (2 hours).

8.2 Evaluation metrics
Our �rst evaluation metric is the observation rate ρR , which mea-
sures the percentage of trajectories that contain at least one pathlet
observed by Rβ . For trajectories that don’t contain any observed
pathlet, their travel time prediction will be the same as the base-
line. We will only use observed trajectories to evaluate prediction
accuracy, as detailed below.

Let dipred and ditrue be the predicted travel time and the actual
travel time of the ith test paths. We use two metrics to evaluate
prediction accuracy over N test queries: the Mean Absolute Error

(MAE) and the Mean Relative Error (MRE) [20]:

MAE =
N∑
i=1

|dipred − d
i
true |

N
MRE =

N∑
i=1

|dipred − d
i
true |∑

ditrue

8.3 Travel time prediction result
We compare the overall travel time prediction results in di�erent
test regions in Table 2. �e observation rate ρR ranges from 12.4%
in Region 2 to 62.8% in Region 3. On average, our algorithm can
infer recent-time tra�c status from either direct observations or
indirect observations from overlapping pathlets for 38.1% of the
test queries. �e observation rate in Region 3 and 4 is much higher
than the other two because of higher route diversity and higher
taxi demand.

Table 2: Regional travel time prediction results
Region ρR Baseline PredictPM++ %

improvedID MRE MAE MRE MAE
1 0.218 0.213 6.739 0.148 4.700 30.3%
2 0.124 0.155 2.959 0.151 2.891 2.43%
3 0.556 0.198 7.357 0.185 6.654 6.33%
4 0.628 0.238 8.472 0.201 7.310 15.36%
Mean 0.381 0.201 6.382 0.171 5.389 13.60%

Using (PredictPM++), the average MRE is 0.171, and the average
MAE is 5.4 minutes. �e lowest MRE is 0.148 in Region 1 (BaoAn),
which is 30.3% lower than the baseline method. �is is mainly be-
cause Region 1 has the strongest path regularity, as re�ected by the
small dictionary size in Table 1. Most trajectories in this Region are
either going to or coming from the airport located at the northwest
corner of the map. On the other hand, the prediction accuracy of
Region 4 is the worst among the regions. Since Region 4 (Luo hu) is
known as the shopping and nightlife district in Shenzhen, it has a
denser street layout that contributes to higher route diversity. �e
GPS noise in this region is also more severe. �is would negatively
impact the preprocessing step and the computation of travel time
observations.
Comparison with CATD-OC. Table 3 compares the evaluation
results between our methods and CATD-OC for Region 1 and Re-
gion 3. Note that due to the small number of travel time obser-
vations in one time slice, the travel time tensor, especially the
portion representing real-time tra�c is extremely sparse. As a re-
sult, context-aware tensor decomposition fails to �nd valid core
tensors in some test queries. �e percentage of successful queries is
reported in the success rate column in Table 3. Only test queries with
successful tensor decomposition are used for evaluating all three
methods1. �e comparison results show that both Baseline and
PredictPM++ out-perform CATD-OC on the test data. 2 It demon-
strates that our approach is more robust against sparsity in real-time
data and can handle large bias in travel time observations.
E�ect of window size β . Figure 9.a plots the MRE of test tra-
jectories in Region 1 given recent trajectories of di�erent window
1 Region 2 and Region 4 are omi�ed since the success rate of tensor decomposition is
very low in those areas.
2�e MRE and MAE for PredictPM++ is much closer to Baseline than the results in
Table 2 since some of the test paths used in this experiment are neither directly nor
indirectly observed by the recent trajectories. In such cases, PredictPM++ predicts the
travel time using the baseline approach.
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Table 3: Prediction Accuracy of Baseline, PredictPM++ and
CATD-OC

Region success CATD-OC Baseline PredictPM++
ID rate MRE MAE MRE MAE MRE MAE
1 42.86% 0.2830 506.2 0.1963 343.6 0.1828 320.0
3 24.75% 0.2135 456.0 0.2065 441.1 0.2023 432.2

size β and using di�erent algorithm variations. When β is small,
we have fewer observations from recent trajectories. On the other
hand, if β is too large, the tra�c observations may become out of
date, so that they couldn’t be used to predict future travel time.
In most test regions, we found β = 1.5 hours is the most stable
choice for achieving good prediction accuracy. For the comparison
among algorithm variations, we see that pa�ern matching using
recent trajectories contributes to most of the improvement from the
baseline method, especially when β is small. �e two optimization
heuristics introduced in Section 7.2.2 have a small but consistent
improvement on the prediction accuracy.

β (hours)
1 2 3 4
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Figure 8: Comparison of prediction accuracy between the
baseline and variations of our algorithm

E�ect of dictionary size. We evaluate the impact of pathlet
dictionary size on prediction error using trajectories in Region 1.
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Figure 9: a.) E�ect of λ on dictionary size |PD | and average
decomposition size. b.) E�ect of λ on MRE and the observa-
tion ratio ρR .

Figure 9.b shows how parameter λ, introduced in Section 5.1,
allows us to control the dictionary size and the average trajectory
decompostion size; Figure 9.c plots the testMRE and the observation
rate against λ. �e lowest MRE (0.148) is achieved when λ = 0.001.
We can see that in general the smaller the dictionary, the smaller
MRE and the higher the observation rate. �ough making the
dictionary too small (e.g λ = 10−4) decreases the average pathlet
length, thus losing the advantage of a path-based method.
Number of GPS �oating cars. To determine the performance of
the algorithm with even fewer �oating cars, we limit the number of
taxis observed per month to 5,7,9,11 and 13 and evaluate the predic-
tion results using 500 random queries from Region 1. As shown in
Figure 10.a , when the number of taxis decreases, the observation
rate ρR drops from 23.8% to 3.3%, while the prediction accuracy

actually increases for the observed trajectories, since having fewer
drivers reduces the variability in the historical travel time of a path-
let. Nevertheless, Figure 10.b shows the accuracy improvement of
the pa�ern matching approach consistently increases when more
�oating cars are used. With 11 taxis, the MRE of PredictPM++ is
21.6% smaller than the MRE of the baseline.
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Figure 10: a.) E�ect of number of taxis on the prediction
accuracy (MRE) and the observation ratio. b.) Relative re-
duction in MRE of PredictPM++ from the baseline.

Error analysis. We analyze the relative prediction error (dipred −
ditrue )/d

i
true for the 32 observed weekday test queries in Region 1.

�ree prediction methods, PredictPM++, Baseline and CATD-OC
are tested. For CATD-OC, we use a heuristic to handle failure cases
in the context-aware tensor decomposition process 3. We found
that for 62.5% of the test queries, PredictPM++ outperforms the
baseline. Half of those have made an improvement of more than
10%. In contrast, CATD-OC outperforms the baseline on 43.8% of the
test queries.

Figure 11.a and 11.b plot the relative errors with respect to
trip distance and trip duration. We observe a negative correla-
tion between trip duration and relative prediction error. �e cor-
relation coe�cients are rbaseline = −0.522, rCATD−OD = −0.591
and rPredictPM++ = −0.412 for the three methods in compari-
son. On the other hand, the correlation between relative error
and trip distance is less salient (rbaseline = −0.292, rCATD−OD =
−0.261, rPredictPM++ = −0.116). �is indicates that some trips have
longer delays than usual and PredictPM++ is the best among the
three methods in predicting those unexpected delays.

Figure 11.c plots the distribution of prediction errors at four
time-of-day intervals, separated by the morning rush hour (7:30-
9:30am) and the evening rush hour (5:00-8:00pm). During rush hour,
PredictPM++ has be�er prediction accuracy improvement from the
other two methods.

9 CONCLUSION AND FUTUREWORKS
While real-time collection of GPS trajectories from taxis and mobile
users are common today, a practical solution for trajectory-based
travel time prediction needs to be robust to the situation of only
having access to a small number of active mobile probes. �is
paper presented an algorithm framework for predicting path travel
time from GPS trajectories, under the scenario of 10-15 of GPS-
�oating cars and no trip labels. In the o�ine stage, it �nds a pathlet
dictionary that represents the frequently shared paths and learns
congestion pa�erns from sparse pathlet travel time observations.
In the query step, it identi�es the current congestion pa�ern of

3We identify and remove indices in the input tensor that cause tensor decomposition
failure, then use historical average to estimate the travel time of the removed indices.
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Figure 11: Visualizations of prediction errors for weekday
travel time queries inRegion 1 using PredictPM++ (blue) , the
baseline method (orange) and CATD-OD (yellow). a.) Relative
prediction error vs. trip distance. b.) Relative error vs. trip
duration. c.) Distribution of prediction error for trips that
depart within 4 di�erent periods of a day.

relevant pathlets from recent trajectories, then infers the travel
time of the query path from the identi�ed pa�ern and the historical
travel time. We experimented on trajectories collected by 10-15
taxis over 11 months and demonstrated higher accuracy than the
baseline approach of using only historical trajectories, as well as
a state-of-the-art travel time prediction method that uses both
historical trajectories and real-time trajectories.

�is work has also demonstrated that regular pa�erns in travel
time observations can help extrapolate tra�c status information
from incomplete data. As shown in the experiment, regions with
higher path regularity bene�t the most from the pa�ern matching
approach of travel time prediction. �is concept can be applied to
other data mining applications using sparse mobile sensors.

For future works, we will address some of the limitations in our
method. For example, we can improve the prediction for longer
trips by taking in a stream of real time trajectory data from all GPS
�oating cars during the trip, and updating the prediction results
periodically. Another potential improvement is considering di�er-
ent GPS noise levels in the collected trajectories. i.e. many modern
GPS loggers also output the number of satellites used to produce
each measurement, which is strongly correlated with its GPS noise.
�is value can be used as a weighting constant to the travel time
observations, when we compute the travel time distribution of
pathlets.
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