
4

Personalized Travel Time Prediction Using a Small Number

of Probe Vehicles

YANG LI, Tsinghua-Berkeley Shenzhen Institute, China

DIMITRIOS GUNOPULOS, National and Kapodistrian University of Athens, Greece

CEWU LU, Shanghai Jiao Tong University, China

LEONIDAS J. GUIBAS, Stanford University, United States

Predicting the travel time of a path is an important task in route planning and navigation applications. As

more GPS probe data has been collected to monitor urban traffic, GPS trajectories of the probe vehicles have

been frequently used to predict path travel time. However, most trajectory-based methods rely on deploying

GPS devices and collect real-time data on a large taxi fleet, which can be expensive and unreliable in smaller

cities. This work deals with the problem of predicting path travel time when only a small number of cars

are available. We propose an algorithm that learns local congestion patterns of a compact set of frequently

shared paths from historical data. Given a travel time prediction query, we identify the current congestion

patterns around the query path from recent trajectories, then infer its travel time in the near future. Driver

identities are also used in predicting personalized travel time. Experimental results using 10–25 taxis in urban

areas of Shenzhen, China, show that personal prediction has on average 3.4mins of error on trips of duration

10–75mins. This result improves the baseline approach of using purely historical trajectories by 16.8% on

average, over four regions with various degrees of path regularity. It also outperforms a state-of-the-art travel

time prediction method that uses both historical trajectories and real-time trajectories.

CCS Concepts: • Information systems → Data mining; Data streaming; Global positioning systems;

• Applied computing → Transportation;

Additional Key Words and Phrases: Travel time prediction, mobile sensors, GPS trajectories

ACM Reference format:

Yang Li, Dimitrios Gunopulos, Cewu Lu, and Leonidas J. Guibas. 2019. Personalized Travel Time Prediction

Using a Small Number of Probe Vehicles. ACM Trans. Spatial Algorithms Syst. 5, 1, Article 4 (May 2019), 27

pages.

https://doi.org/10.1145/3317663

This research was funded by NSF grants CCF-1514305 and DMS-1521608, ONR MURI grant N00014-13-1-0341, European

Union Horizon2020 grant 688380 “VaVeL,” a Google 2017 Faculty Research Award, and a gift from Google.

Authors’ addresses: Y. Li, Tsinghua-Berkeley Shenzhen Institute, Building C2, Nanshan Park, #1001 Xueyuan Ave.

Shenzhen, Guangdong, 518052, China; email: yangli@sz.tsinghua.edu.cn; D. Gunopulos, National and Kapodistrian Univer-

sity of Athens, 30 Panepistimiou street, Athens, 10679, Greece; email: dg@di.uoa.gr; C. Lu, Shanghai Jiao Tong University,

800 Dongchuan Rd. Shanghai, 200240, China; email: lucewu@sjtu.edu.cn; L. J. Guibas, Stanford University, 450 Serra Mall,

Stanford, California, 94305, United States; email: guibas@cs.stanford.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2374-0353/2019/05-ART4 $15.00

https://doi.org/10.1145/3317663

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 1, Article 4. Publication date: May 2019.

https://doi.org/10.1145/3317663
mailto:permissions@acm.org
https://doi.org/10.1145/3317663

4:2 Y. Li et al.

1 INTRODUCTION

Modern navigation and location-based applications rely on accurately predicting the travel time
of a route at the current or future times. Due to the prevalence of traffic congestion in urban cities
and the large variance of conditions in the traffic environment, the travel time of a route can vary
significantly from hour to hour, day to day. Therefore the use of dynamic traffic data is extremely
important in accurate travel time prediction. Traditional ways of monitoring traffic conditions use
static sensors (e.g., induction loops, automatic license-plate-number recognition cameras) installed
on selected streets and highways in the city. These data collection methods tend to be less up-to-
date and are difficult to aggregate and maintain. As GPS devices have become mainstream in the
recent decade, it becomes possible to estimate and predict traffic conditions from large trajectory
data collected by GPS-equipped vehicles.

A great number of studies have been published on trajectory-based travel time prediction (Chen
and Chien 2001; Hofleitner and Bayen 2011; Jiang and Li 2013; Rahmani et al. 2013; Wang et al.
2014b; Wu et al. 2004; Zhan et al. 2013; Zhang et al. 2016). Most of them make use of thousands
of probe vehicles tracked simultaneously, such that the traffic speed on a subset of the roads is
observed by at least one vehicle within a short time window. However, the large-scale deployment
of GPS-equipped vehicles and the cloud infrastructure to process such data can still be unfeasible
for smaller cities. The deployment process also takes time. For instance, the Gotcha project had
deployed dozens of sensor-equipped electric taxis in Shenzhen, China, in several stages from 2014
to 2017 (Xu et al. 2014). During the pilot stage (Stage I), no more than 15 vehicles from the project
were active (see Figures 1 and 2).

In this article, we use the Gotcha pilot data to investigate the difficult problem of travel time
prediction when having a very small number of concurrently active probe vehicles on the road net-
work. This constraint comes up in many real-life situations. Although typically many GPS tracks
are available when we look at the full history of available trajectories as a whole, at a specific time
instance, only a potentially much smaller subset will be available. Equally importantly, real-time
information at any given time may be available from a smaller subset of the active probe vehicles.
For example, when crowd-sourced trajectories are used, some drivers may decide to upload their
traces in batches rather than immediately to conserve battery power, or when there is Wi-Fi. We
show how latent structures in historical trajectories can be exploited to predict travel time with
sparse observations at a given time. Applying this, we develop and evaluate a novel, flexible, and
efficient mechanism that significantly improves travel prediction times.

This problem has two main challenges: The most obvious one is data sparsity. In the 15-vehicle
dataset, on average only 3% of all road links are traversed during a 30-minute interval on a weekday
morning. The other challenge is the large variance in travel time observations of the same path.
Gotcha trajectories do not have labels to identify passenger trips, as do trajectories in previous
works. While most travel time delays in taxi trajectories are likely caused by congestion, it may
also include the times when drivers stop temporarily to drop off or pick up passengers or when
drivers intentionally slow down to find passengers on the sidewalk. Due to the lack of trip labels,
our problem is akin to using crowd-sourced trajectories. Therefore, our solution will need to handle
both data sparsity and an amount of uncertainty in travel time observations.

To address these challenges, we use a path-based approach that decomposes a route into a se-
quence of popular paths on the road network and predicts the travel time on each path (Wang et al.
2014b). This approach differs from the popular link-based design, which predicts the travel time
of a route based on the estimated time of each road segment, also called a link. We prefer the path-
based approach, because path travel time also includes link-delays, the time spent transitioning
from one link to the next. Such delay is difficult to estimate independently, given the sparse and
uncertain nature of our problem. In this work, we refer to the popular paths as pathlets, selected

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 1, Article 4. Publication date: May 2019.

Personalized Travel Time Prediction Using a Small Number of Probe Vehicles 4:3

Fig. 1. The number of taxis employ-

ed each month by the Gotcha study.

Fig. 2. GPS traces of 10 taxis during the month of December 2014.

Fig. 3. Visualization of three congestion patterns over pathlets r1, r2, and r3 at an intersection. Colors red

and green represent congested and non-congested traffic states of a given pathlet.

based on the shared geometry in taxi trajectories. Although travel time information is not used
directly to decompose a path, we can still control pathlet selection through a parameter learned
from the training data.

The key to our travel time prediction method is leveraging hidden structures within historical
travel time observations to infer the travel time of a path that has not been traversed by any probe
vehicle recently. We observe that, on a local scale, such as several neighboring roads (or overlap-
ping pathlets), the congestion patterns are reoccurring (see Figure 3). Our algorithm clusters the
local congestion patterns of a pathlet across the entire time span of the historical data. Periodic
factors including time of day and workday are implemented as soft clustering constraints rather
than hard constraints. Hence, it allows traffic delays caused by random events, such as weather,
accidents, and special events, to influence the clustering results. By learning such latent patterns,
we are able to infer the near-future travel time of any path in the neighborhood if only a few paths
have been observed in recent time.

In addition, research in human cognition and transportation science has shown that different
drivers may have significantly different speed profiles under the same driving conditions (McNew
2012; Reymond et al. 2001). Hence, it is useful to incorporate driver identity into travel time predic-
tion, especially for personal navigation, as well as estimating arrival time for taxi and ride-sharing
services. A common approach to obtain a driver’s speed profile is by modeling his or her driving
behavior. A traditional driver model often requires accurate measurement of acceleration, throt-
tle index, and other parameters of the vehicle. However, as our study focuses on GPS trajectory
data of moderate sampling rate (<1Hz), we adopt a purely data-driven approach by clustering dri-
vers into groups based on how fast they drive compared to others over the frequent pathlets. We

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 1, Article 4. Publication date: May 2019.

4:4 Y. Li et al.

then extract congestion patterns while normalizing the differences in travel time distributions of
different driver groups. At the query time, we determine which group a given driver belongs to
using his or her recent trajectories, then predict the travel time accordingly.

The contributions of this work are threefold:

(1) Proposing a personalized travel time prediction framework that combines the prediction
based on the current congestion pattern and the historical travel time of each pathlet.

(2) Extracting local congestion features by exploiting spatial relations among pathlets in a
neighborhood.

(3) Developing an unsupervised learning approach to find congestion patterns that are robust
against missing data.

This work is an extended version of (Li et al. 2017), which discusses travel time prediction with-
out using driver identity information. The new contribution in the extended version is mainly on
personalized prediction. We evaluate personalized prediction results on a new dataset containing
GPS trajectories of 25 taxis during 2016–2017. The experiment results show a significant improve-
ment in prediction accuracy over the non-personalized approach. The prediction accuracy also
increases when more probing cars are employed. In addition, we provide details on how to pro-
cess raw GPS trajectories into trips and how to predict travel time for a given query path for both
the non-personalized and personalized scenarios. While Li et al. (2017) focus on extracting con-
gestion patterns from travel time observations, this work presents a more complete picture of how
our trajectory-based travel time prediction framework can be applied in practice.

2 PROBLEM DEFINITION

We represent a GPS trajectory as a sequence of n spatial-temporal points: τ = {(pi , ti)}ni=1. Point

pi = (xi ,yi) is the GPS position projected in R2 and ti is the sample timestamp. We define the
cardinality of trajectory τ , |τ | = n as the number of GPS samples in τ .

Given the road network G and a trajectory τ , we can infer the path in G that τ represents
through a process called map matching. We call this path the map-matched path of τ , written
as a sequence of edges τG = {e1, . . . , e |τG | }.

We formally define the travel time prediction problem as follows:

Definition 2.1 (Travel Time Prediction). Let T be a collection of historical trajectories on road
network G. Let subset Rβ ⊆ T be the set of recent trajectories collected in the last β minutes.
Given a query path P and the current time t , compute dt (P), the predicted travel time of a trip
along P departing at t , based on trajectories in T and Rβ .

The above problem computes the expected travel time of the query path over the entire driver
population. To predict the travel time for a particular driver, we introduce the following problem:

Definition 2.2 (Personalized Travel Time Prediction). Let T ,G,Rβ , and β be defined as in Defini-
tion 2.1. Denoteu (τ) ∈ {1, . . . ,N } to be the driver identity for each trajectory τ ∈ T . Given a query
path P and the current time t , predict the travel time for any driver u whom has some historical
trajectories recorded in T .

In addition, we only study trips in the near future (10mins–1.5h). As we predict further into the
future, the traffic status is less predictable by observations in Rβ . In that case, our prediction will
not be able to reflect delays due to random factors. One workaround for longer trips is to predict
the travel time of an initial segment of the path using Rβ , then predict the next segment when
recent trajectories in Rβ are updated.

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 1, Article 4. Publication date: May 2019.

Personalized Travel Time Prediction Using a Small Number of Probe Vehicles 4:5

Fig. 4. Our travel time prediction framework consists of the offline stage that preprocesses data (a–b) and

learns travel time patterns (c–d), and the online stage that process travel time prediction queries (e–h). See

Section 3 for details.

3 ALGORITHM OUTLINE

Figure 4 illustrates our travel time prediction framework in three stages: (i) trajectory preprocess-
ing, (ii) offline congestion pattern clustering, and (iii) online travel time prediction.

Preprocessing. Given unprocessed input trajectories shown in Figure 4(a), we partition each tra-
jectory into trips by removing long gaps and staying points, i.e., clusters of GPS samples recorded
when a car is not moving for an extended period of time. Then, we apply map matching to com-
pute the map-matched path τG of every input trajectory τ (Figure 4(b)). We abuse the notation of
T and R so they refer to trajectories after partitioning and map matching.

Congestion pattern learning. First, we compute the pathlet dictionary, a compact set of pathlets
that are used to reconstruct the input trajectories. The top 100 most frequently used pathlets are
visualized in Figure 4(c), along with three dictionary entries shown in the table. Each pathlet r in
the dictionary is associated with a set of travel time observations at different times and dates from
all trajectories inT . The dynamic congestion feature of r is computed by aggregating its travel time
observations into frames, which are fixed time intervals within the entire date-range of the input
data, e.g., 8:00am–8:30am on December 2, 2014. Driver identity is also used in this aggregation pro-
cess, such that each group of drivers with similar driving styles has a unique distribution of travel
time observations on r . Using the spatial and temporal relationships between travel time features,
we extract a set of distinctive congestion patternsC (r) among congestion features of pathlets in r ’s
neighborhood. Figure 4(d) visualizes six congestion patterns from a pathlet’s neighborhood using
a color scale, where red implies the most congested state and blue implies free-flow state. Details
are discussed in Sections 6 and 7.

Travel time prediction. Figure 4(e) shows the sample input of the online stage: recent trajectories
Rβ (red curves) and the query path P (blue curves). First, P is decomposed into three pathlets r1, r2,
and r3. For each ri with i = {1, 2, 3}, we identify the current congestion pattern of any observed
neighborhoods that contain ri , and use them to predictdt (ri), the travel time of ri departing at t . For
instance, Figure 4(g) shows the congestion patterns for three neighborhoods that contain r2, and
the patterns closest to observations in Rβ in each neighborhood are highlighted by the black boxes.

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 1, Article 4. Publication date: May 2019.

4:6 Y. Li et al.

The final travel time prediction of r2, dt (r2,u) = 8.4mins is computed based on the predictions
from each neighborhood. Lastly, we combine the predictions based on pattern matching and the
historical travel time of each pathlet to obtain the travel time of path P (Figure 4(h)).

To make a personalized prediction for driver u, we first determine the most likely driver group
based on its historical trajectories. Then, in Figure 4(h), we derive the travel time from the es-
timated congestion status using the travel time distribution for u’s driver group. Details on the
algorithm will be presented in Section 8.

4 RELATED WORKS

This section reviews previous works on the travel time prediction problem for urban road networks
and driver-specific predictions. First, we classify existing travel time prediction algorithms in three
main categories.

Link-based travel time prediction. Link-based approaches are the classical method to predict
travel time on a road network. They are similar to prediction techniques designed for static traffic
sensors, such as induction loop (Wu et al. 2004) and license-plate identification cameras (Chen
et al. 2013a).

For probe vehicle data (a.k.a. floating car data), the travel time of individual links can be inferred
by trajectories of cars passing through those links. This is called the link travel time estimation

problem. For instance, Hofleitner and Bayen (2011) model the travel time distributions of links
based on a traffic flow model. Zhan et al. (2013) uses least-square minimization to estimate link
travel time from taxi trip data that only contain endpoint locations and meta information about
the trip such as trip distances. More generally, one can estimate traffic parameters, such as the
speed and the flow volume (De Fabritiis et al. 2008, Zhan et al. 2017) associated with individual
links to infer link travel time. These works focus on inferring the current traffic parameters, rather
than predicting the future.

Various prediction methods have been proposed to predict link travel time in the near fu-
ture, such as dynamic Bayesian network (Hofleitner et al. 2012), pattern matching (Chen et al.
2013a), gradient boosting regression tree (Zhang et al. 2016), and deep learning (Niu et al. 2014). In
both link travel time estimation and prediction problems, correlations between the travel time for
nearby links (spatial) and different time windows (temporal) are often used to select the relevant
features for inferring the traffic parameter on a particular link (Niu et al. 2014; Zhang et al. 2016).
Our algorithm also makes use of spatial-temporal relationships on traffic states, but on a path level.

Many studies compute the travel time of a path as a summation of the predicted link travel
time. This approach has the drawback that link-delays are not considered. In Rahmani et al. (2013),
the authors designed several correction methods to take into account the travel time bias in the
additive link-based travel time model. Yet such models require good dynamic coverage of the road
network. As a result, these works only focus on a specific highway region or a few selected routes.

Path-based travel time prediction. In an early work that advocates the computation of path-
based travel time over link-based travel time (Chen and Chien 2001), researchers demonstrated
that the direct measuring of path-based travel time on a highway strip could generate a more
accurate prediction than measuring link travel time independently.

Since it is not always possible to have a travel time measurement on an arbitrary path, large-
scale path-based travel time prediction needs to decompose the query path into popular subpaths,
whose travel time is more likely to be measured by some probe vehicles. Wang et al. (2014b) dis-
cussed the trade-off between subpath lengths and the minimum support size in path-based pre-
diction. It computes the optimal decomposition by minimizing the total travel time variance of
subpaths, normalized over the number of unique drivers on each subpath. It is worth noting that

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 1, Article 4. Publication date: May 2019.

Personalized Travel Time Prediction Using a Small Number of Probe Vehicles 4:7

path decomposition (partition) is also an important problem in trajectory compression on road
networks. Earlier works on this topic are summarized in Sun et al. (2016) and Kellaris et al. (2013).
In particular, Chen et al. (2013b) finds a compact dictionary of pathlets that reconstruct trajectories
by fewer pieces (more compressed trajectory). We adopt this technique in our algorithm, since it
is designed to maximize the path regularity in input trajectories. Path decomposition using this
approach allows the same observations to account for the prediction of more query paths. It also
allows finer control of the trade-off by a single parameter.

Some approaches, such as Chen and Chien (2001), use only historical data to predict the travel
time of a query. In Wang et al. (2014b), trajectories in the recent past are used to estimate the
current travel time of the query path. The historical travel time of each road link, calculated using
tensor decomposition over spatial-temporal features and driver identities, is only used when recent
observations are not available.

Trip-based travel time prediction. Trip-based methods rely on finding historical trips that
match the origin, destination, and departure time interval of the query (Jiang and Li 2013; Wang
et al. 2016; Xu et al. 2017). They usually assume trips between the same endpoints share the same
route or a small number of alternative routes. Therefore, it is more often used for coarse-level pre-
diction or predictions of predetermined routes such as bus trips. Jiang and Li (2013) compute the
travel time distribution of a query trip from matched historical trajectories and use statistical tests
to remove outliers. Wang et al. (2016) infer the travel time of trips that are not found in histori-
cal data from nearby trips, while adjusting for periodic traffic patterns. Deep-learning techniques
have also been employed in travel time prediction from a large number of historical trips and their
attributes (Xu et al. 2017). Trip-based travel time prediction can also be extended hierarchically to
allow some route diversity. In Yuan et al. (2010), they represent a trip as a sequence of shorter trips
between popular landmarks in the city. Trip travel times are computed as the sum of landmark-to-
landmark travel times, plus the time spent from the origin to the first landmark, and from the last
landmark to the destination. While trip-based travel time prediction has much better performance
than link-based or path-based algorithms, while achieving useful results, they cannot be applied
to our scenario, as we cannot reliably identify the true starting and ending points of a taxi trip in
an unlabeled GPS trace.

Driver modeling and personalized predictions. Driver modeling is important for building ac-
curate traffic simulation and advanced driver assistance systems. In transportation research, there
have been many studies modeling drivers’ behaviors for various tasks, such as car-following, lane-
changing, route selection, and so on (Wang et al. 2014a). Such behaviors constitute the unique
profile of a driver among other drivers on the same road. Some works independently predict cer-
tain states of individual drivers. For instance, McNew (2012) predicted driver-specific cruise speed
using travel speed during the “launch time” of a car and the speed limit. Other works tend to cate-
gorize drivers into groups based on an “aggressiveness” metric, which characterizes the tendency
of speeding and other risky behaviors. Kedar-Dongarkar and Das (2012) classified drivers into
three categories (conservative, moderate, and aggressive) based on dynamic parameters including
acceleration, braking, speeding index, and throttle activity index. A similar categorization is pro-
posed in Shi et al. (2015), using an aggressiveness index (AggIn) computed based on the detected
drivers’ behaviors.

5 PREPROCESSING

The preprocessing step takes the raw GPS trajectories of floating cars as input and generates a
collection of paths on the road network that correspond to the input trajectories. It consists of two
tasks: trajectory partitioning and map matching.

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 1, Article 4. Publication date: May 2019.

4:8 Y. Li et al.

Fig. 5. Computation of resting points.

The first task, trajectory partitioning, involves extracting trips from GPS trajectories that are
tracked continuously for each vehicle during data collection. For taxi trajectories, each GPS sam-
ple may include a binary status that indicates whether a passenger is on board. In this case, we
can easily extract trips as the sub-trajectory between a pick-up event and a drop-off event, marked
by a change in the status variable. However, since our data does not contain such information, we
partition trajectories by “stay points,” i.e., segments of the trajectory sampled when the car is not
moving for some extended period of time, and by large temporal gaps. Although extracting trips or
finding stay points (also referred as stop points or dwell points in the literature) from vehicle trajec-
tories are challenging problems on their own (Du and Aultman-Hall 2007; Xiang et al. 2016; Zheng
et al. 2009), for the scope of this project, we adopt a simple, conservative definition of stay points.

Definition 5.1 (Stay Points). Given trajectory (pn , tn), . . . , (pn , tn), the sequence of GPS points
pi , . . . ,pi+w with 1 ≤ i ≤ n −w are stay points if

(1) ti+w − ti > dmin minutes and
(2) maxi+w

j=i | |pj − p̄ | |2 < lmax meters where p̄ is the centroid of the sequence.

Criterion (1) makes sure stops that are shorter than dmin minutes, such as when a car waits dur-
ing a red light or a traffic jam, are excluded from real stop points.1 Criterion (2) requires the vehicle
to be stationary at a stay point, assuming the maximum deviation of GPS measurement is less than
lmax meters. As shown in Figure 5, the GPS signal will hop around even when a car is still. In prac-
tice, we choose parameters based on the estimated GPS noise in the data. Conservative constraints
are preferred, e.g., dmin = 3 and lmax = 10, to reduce the amount of outliers with extremely long
travel time not caused by traffic congestion at the cost of having slightly less observations.

Based on Definition 5.1, we use a sliding window filter to identify stay points and replace each
stay point sequence by two new points (p̄, ti) and (p̄, ti +w) located at the centroid. Then, we
partition the trajectory when the difference between consecutive timestamps is greater than tmax

minutes. The value of tmax has to be greater thandmin . We chose tmax = 10 minutes in our problem.

1In practice, we also partition trajectories in T by a maximum duration of L = 1hr and remove trajectories shorter than

L = 4 samples. Both map matching and travel time observation work less accurately when the trajectory is extremely short

or extremely long. Experiments show that varying L between 30 minutes and 2 hours and changing starting positions does

not significantly impact prediction results.

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 1, Article 4. Publication date: May 2019.

Personalized Travel Time Prediction Using a Small Number of Probe Vehicles 4:9

Note that for taxi trajectories, the aforementioned approach is not intended for finding a one-
to-one correspondence between trajectories and passenger trips. Each output trajectory may start
with a passenger pick-up, followed by a quick drop-off, and continue while the driver roams around
the city until the next detected stop. Comparing to a typical passenger trip, these kinds of trips
are prone to have larger travel time variance. We will explain in later sections how we handle this
issue.

The second task of preprocessing is map matching. We project each partitioned trajectory τ ∈ H
to its actual path τG on road networkG. Since the sampling rate in our data is moderately high (10s
per sample), we use the IVMM algorithm (Yuan et al. 2010) to perform map matching efficiently.
For trajectories with a lower sampling rate, the joint map-matching algorithm (Y. Li and Guibas
2013) is recommended.

6 COMPUTING PATHLET TRAVEL TIME

The first task in the offline stage is obtaining travel time observations of pathlets from GPS tra-
jectories. In this section, we will first review the formal definition of pathlets and the pathlet dic-
tionary proposed by Chen et al. (2013b). Then, we will discuss how to derive pathlet travel time
observations from input trajectories.

6.1 Pathlet Dictionary

A pathlet is a subpath on the road network that is traveled by one or more input trajectories. A
pathlet dictionary (PD) is a set of pathlets that reconstructs all input trajectories T by concate-
nation. Let p (τG) = {r1, . . . , rm } ⊆ PD denote the set of pathlets in the dictionary that reconstruct
τG . We define the support set of a pathlet r ∈ PD, T (r) to be the set of trajectories that uses r in
its decomposition, i.e., T (r) = {τG ∈ T | r ∈ p (τG)}.

Given input trajectory set T, the optimal pathlet dictionary satisfies the following criteria:
(i) Number of pathlets in the dictionary, |PD | is minimized. (ii) For each τG ∈ T , the number of
pathlets used to reconstruct τG , |p (τG) | is minimized. It is shown in Chen et al. (2013b) that the
optimal dictionary P can be learned by solving the following optimization problem. Let xτ ,r be an
indicator variable that evaluates to 1 if r ∈ p (τG) and 0 otherwise. For each trajectory τG ∈ T , the
solution minimizes the following problem:

min
xτ ,r ∈{0,1}

∑
r ∈p (τ)

(
λ +

1

|T (r) |

)
xτ ,r . (1)

Parameter λ determines the trade-off between objectives (i) and (ii). The smaller the value of λ, the
smaller the dictionary size |PD |, and the larger the average trajectory decomposition size |p (τ) |.
Although 1 is an NP-hard problem to solve exactly, Chen et al. (2013b) presented an approxima-
tion algorithm to find solutions in O (|T |). After a dictionary is computed, it is easy to query the
decomposition of trajectories in the dataset using graph search.

The theoretical optimal pathlet dictionary does not guarantee that it covers the entire map, since
there could be certain roads not traversed by any GPS trajectories in the dataset. This may be a
problem when we later use the learned dictionary to decompose future trajectories. In practice,
we solve this problem by augmenting the computed pathlet dictionary with edges of the road
network. During the decomposition process, the added edges are treated as length one pathlets
and have the least weight to be included in the decomposition of any trajectory. Another practical
consideration for computing a pathlet dictionary is setting an upper bound on the length of a
pathlet, thus making the computation scalable towards larger networks. For our experiments, we
constrain the pathlet to contain no more than 20 road segments.

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 1, Article 4. Publication date: May 2019.

4:10 Y. Li et al.

Fig. 6. This figure illustrates an example of computing the travel time observation of pathlet r (highlighted

in orange) by a trajectory, which contains five GPS samples (blue drop pins) projected to pathlet r and its

adjacent road links.

Fig. 7. (a) Travel time distribution of the seven most frequently used pathlets. (b) Distribution of the

congestion status of the same pathlet using probability integral transformation.

6.2 Pathlet Travel Time Observations

We compute the travel time observation of a trajectory τG on some pathlet r as follows: First,
we find the last sample point (ps1, ts1) in τ before it enters pathlet r and the first sample point
(ps2, ts2) projected onto r (see Figure 6). Similarly, we find (pe1, te1) and (pe2, te2), the last GPS
sample projected on r and the first GPS sample exiting r , respectively. Let qs1,qs2,qe1 and qe2 be
the projections of these points on the road network. We define the nearest GPS samples (ps , ts)
and (pe , te) from the endpoint vertices of r , r .start , and to r .end :

(ps , ts) =

{
(ps1, ts1) if dist (qs2, r .start) < dist (qs1, r .start),
(ps2, ts2) otherwise,

(pt , tt) =

{
(pe1, te1) if dist (qe2, r .end) < dist (qe1, r .end),
(pe2, te2) otherwise.

Distance function dist (x ,y) is the geodesic distance from x to y along the path τG . The travel time
of pathlet r observed by trajectory τG , dτ (r) is the scaled timestamp difference te − ts :

dτ (r) =
dist (qs ,qe)

lenдth(r)
(te − ts).

LetD (r) be the set of all travel time observations of pathlet r from the input trajectories. Figure 7
shows the travel time distribution of the top-seven pathlets used to reconstruct input paths. Most
of them are skewed towards larger values due to outliers that represent extremely long delays. To
reduce the bias of outliers, we apply the probability integral transformation (Angus 1994) to dτ (r),

such that the transformed value, d̂τ (r) = cd f (D (r),dτ (r)), is in a uniform distribution between 0
and 1. This transformation allows us to compare travel times between different pathlets.

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 1, Article 4. Publication date: May 2019.

Personalized Travel Time Prediction Using a Small Number of Probe Vehicles 4:11

Fig. 8. Group-specific travel time distributions for the top three most popular pathlets in the dictionary.

Each color represents a driver group.

Fig. 9. Group-specific probability integral functions for the top three most popular pathlets in the dictionary,

zoomed to show the differences between driver groups.

6.3 Group-specific Travel Time Observations

For personalized prediction, we need to learn the pathlet travel time distribution for each driver.
Since one driver cannot visit all pathlets on the road network on a regular basis, it is best to utilize
travel time observations from drivers with a similar preferred driving speed.

We cluster all N drivers into K groups based on their historical travel time for every pathlet in
the dictionary. Let d (u, i, j) denote Driver u’s average travel time on the jth pathlet during the ith
time-of-day interval (1 ≤ i ≤ D). We represent Driver u as a |PD | × D dimensional point f (u) =
[d (u, 1, 1), . . . ,d (u,D, 1),d (u, 1, 2), . . . ,d (u,D, |PD |)] in the feature space. Among many clustering
techniques, we choose Ward’s hierarchical clustering algorithm, since the driver groups it produces
are often more balanced and consistent under parameter perturbations than other approaches.
The cluster number K is set to 3, as drivers are often categorized into conservative, moderate, and
aggressive groups in transportation literatures such as McNew (2012) and Shi et al. (2015).

Next, we describe how to normalize travel time observations from different driver groups into a
common metric of congestion states. Given a driver groupGi , we defineD (r ,Gi) = {dτ (r) |u (τ) ∈
Gi } to be the set of travel time observations in this group. Similar to the driver-independent sce-
nario, we estimate the travel time distribution of pathlet r for each driver group Gi and apply
probability integral transformation to observation dτ (r):

d̂τ ,Gi
(r) = cd f (D (r ,Gi),dτ (r)).

Figures 8 and 9 illustrate the probability density of dτ (r) and the probability integral transforma-
tion function cd f (D (r ,Gi), ·) for each driver group on three sample pathlets. When the user group

is known, we simply write the resulting congestion state as d̂τ (r).

7 LEARNING CONGESTION PATTERNS

In this section, we formulate the problem of learning congestion patterns and subsequently present
algorithms to infer the congestion state of each pathlet at a given time from historical data. To
address the problem of sparse concurrent observations, both spatial and temporal relationships
are exploited.

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 1, Article 4. Publication date: May 2019.

4:12 Y. Li et al.

7.1 Design Features with Spatial Relationship

We design features that capture local traffic patterns using spatial relationships among the pathlets.
In particular, we observe that traffic states of pathlets that share common edges are not indepen-
dent. Therefore, we define a neighborhood near pathlet r by selecting pathlets with a significant
amount of overlap with r .

Specifically, let the overlap ratio of pathlet r ′ with respect to r , o(r , r ′) be defined as the fraction
of shared edges between the two pathlets. We further define the overlapping neighborhood of r ,
OL(r) = {o1, . . . ,os } as the set of s pathlets with the highest overlapping ratios with respect to r .

To capture the dynamic congestion state of neighborhoodOL(r), we aggregate travel time obser-
vations of r by discrete time steps (or frames) across the entire date range of the input trajectories.
Due to the constraint of having very few probe vehicles, most frames either contain no observa-
tions or only contain a few observations. For each frame fi with one or more observations, we

use the median operator to aggregate observations into a single congestion state d̂fi
(r). The step

size is chosen empirically based on the observation sparsity. With 15–25 floating cars, we found
that 30mins struck the best balance between the granularity of traffic states and the number of
observed pathlets.

Given pathlet r with overlapping neighborhood {o1, . . . ,os }, we define the feature vector of
frame fi , M (r)i as an s-dimensional vector consisting of observed congestion states from pathlet

r ’s neighborhoodOL(r) during frame fi , i.e.,M (r)i = [d̂fi
(o1) . . . d̂fi

(os)]. We stack feature vectors
that contain at least two non-missing values into a single feature matrixM (r). Let N be the number
of such “partially observed” feature vectors. Matrix M (r) has the following structure:

M (r) =

⎡⎢⎢⎢⎢⎢⎢⎣

M (r)1

...
M (r)N

⎤⎥⎥⎥⎥⎥⎥⎦
.

7.2 Congestion Feature Clustering with Temporal Constraint

Having obtained matrix M (r), which represents the dynamic congestion state of OL(r), we first
apply k-POD (Chi et al. 2016), an iterative k-mean-based clustering algorithm to cluster rows of
M (r) into k groups and fill in missing values in M (r). Unlike other methods dealing with missing
data, such as deletion and imputation, k-POD works well with unknown missing mechanisms and
high missing rates.

Given k cluster centroids c1, . . . , ck computed using k-POD, we initialize missing values in M (r)
by finding the nearest centroid for each row in M (r). Since the feature matrix size N varies a lot
among different pathlets (e.g., from 5 to over 4,000 frames), it is important that we select cluster
size k adaptively. We therefore adopt the Gaussian-Means (G-Means) method to find the optimal k .
It works by starting with many small clusters, then recursively merging them into larger clusters
if two clusters are sampled from the same Gaussian distribution (Hamerly and Elkan 2003).

Next, we refine the initial clustering result by introducing temporal relationships in congestion
features.

Graph label optimization. We formulate our problem through k-means with Laplacian smooth-
ing. Given feature matrix M (r) and an affinity matrixW that represents the temporal consistency
between any two frames in M (r), we want to find k cluster centroids that minimize their dis-
tances to the observations while determining the soft assignment between a frame and one of the
k clusters at the same time.

Formally speaking, let X be the N × k cluster assignment matrix. Each row xi of X is a binary
vector such that xi (j) = 1 if frame fi is assigned to cluster j or 0 otherwise. The k cluster centers

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 1, Article 4. Publication date: May 2019.

Personalized Travel Time Prediction Using a Small Number of Probe Vehicles 4:13

Fig. 10. Illustration of a weighted

consistency graph of congestion pat-

terns in observed frames (white

nodes). Shaded nodes represent the

observation in each frame labeled by

its starting time. Red and blue edges

represent the time-of-day similarity

and the similarity between nearby

frames. The opacity of an edge rep-

resents its weight.

Fig. 11. Visualization of W , the

adjacency matrix of the weighted

consistency graph in Figure 10. In

practice,W is mostly sparse.

are stored as row vectors in k × s matrixC . We initializeX andC using the results from Section 7.2,
then find their optimal values by solving the following minimization problem:

minimize
X ,C

| |XC −M (r) | |2F + γTr (XTLX),

s.t. X1 = 1,X = {0, 1}, 0 ≤ C ≤ 1.
(2)

L is the graph Laplacian matrix, obtained as L = D −W , where D = diaд(
∑n

j=1wi, j) is the degree

matrix of the weighted graph defined by adjacency matrixW . Constant coefficient γ controls the
weight of temporal consistency in the clustering process. Figure 10 illustrates a simple example
of how pairwise consistencies are defined among frames. We relax the integer constraint on X to
be a real matrix of values [0, 1]. The resulting function can be solved using alternating direction
optimization.

Formulation of W . The first type of temporal relationship is the similarity between adjacent
frames, i.e., it would be less likely for local traffic to transition from free-flow to a fully congested
state between two frames in consecutive time steps. Therefore, we define the smoothness weight

between the ith frame and the jth frame as an exponential decay function:

Csmooth (i, j) = exp �
	
−

(ti − tj)
2

σ 2
smooth

�
,

where ti and tj are the starting times of frames fi and fj . σsmooth is a small constant.
The second type of temporal relationship is the similarity based on the periodical nature of

traffic flow in urban cities. In particular, we focus on the starting time-of-day (TOD) of a frame
and whether or not it starts on a weekday or a weekend. We discretize starting time-of-day of each
frame by a fixed window of ω frames and call it hi , the TOD identifier of frame fi . We define the
TOD weight between frames fi and fj as

Ctod (i, j) = exp �
	
−

min{|hi − hj |,hmax − |hi − hj |}2

σ 2
tod

�
.

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 1, Article 4. Publication date: May 2019.

4:14 Y. Li et al.

Edge weight w (i, j) is computed as a linear combination of Ctod and Csmooth , i.e.,

wi, j = θCsmooth (i, j) + (1 − θ)CT OD (i, j)

wi, j = 1 if frame i and frame j are in the same time step. By default, σtod =
√

2 and σsmooth = 2.
The coefficient of the smoothness weight θ is chosen to be 0.5. Figure 11 shows the weight matrix
W associated with the consistency graph in Figure 10.

8 TRAVEL TIME PREDICTION

This section describes the online step in path travel time prediction. We will explain how to predict
path travel time using local congestion patterns we learned from historical data. Several variations
of our algorithm will be discussed.

8.1 Prediction Using Historical Data

We first introduce a baseline prediction method that only relies on historical trajectories. Initially,
query path P is decomposed intom pathlets r1, . . . , rm . We proceed to compute the time-dependent
historical travel time of each pathlet if the departure time is t .

Let ti be the time when the predicted trip enters ri , the ith pathlet in P . We compute the historical
travel time of ri at ti , d

H
ti

(ri) as the median of all travel time observations in the same time-of-day
interval as ti . If pathlet ri has no travel time observation during the given time interval, then we
take the median over all available observations on ri . For pathlets not traversed by any trajectories,
speed limit and road geometry information are used to derive a travel time estimation.

The historical travel time of path P ,dH
t (P) is computed recursively. Let Pi denote the sub-path of

the first i pathlets r1, . . . , ri in P, such that P1 = 〈r1〉 and Pm = P . Initially, set t1 = t and dH
t (P0) = 0.

Then for all i = 1, . . . ,m, we update dH
t (Pi) and ti using the following formulas:

dH
t (Pi) = dH

t (Pi−1) + dH
ti

(ri),

ti+1 = ti + d
H
ti

(ri).

The travel time of P is dH
t (P) = dH

t (Pm).

8.2 Prediction Exploiting Current Observations

8.2.1 Congestion Pattern Matching. We use pattern matching to incorporate recent congestion
states observed by Rβ into travel time predictions. We will first introduce the prediction process
for all drivers, then discuss the additional steps needed for personalized prediction.

Algorithm 1 summarizes our approach for travel time prediction without using driver identities.
On Line 1, we test if pathlet r is observed by Rβ . Specifically, we define the inverse overlapping

neighborhood of pathlet r to be the set of all pathlets whose neighborhoods contain r :

OL−1 (r) = {o ∈ PD |r ∈ OL(o)}.

We say the neighborhood of some pathlet o, OL(o) is observed by Rβ if at least one pathlet in
OL(o) has been traversed by one of the trajectories in Rβ . Then pathlet r is observed by Rβ if

there exists at least one pathlet o ∈ OL−1 (r) such that its neighborhood OL(o) is observed by Rβ .
When r is observed byRβ , we predict the travel time of pathlet r using PredictByPM (Line 2), i.e.,

for each pathlet ol ∈ OL−1 (r) such thatOL(ol) is observed inRβ , we identify the current congestion
pattern of OL(ol) by matching recent observations in Rβ against congestion patterns learned in
Section 7. Pattern matching is done using least square, i.e., let matrix Col

represent k congestion

patterns over neighborhood OL(ol), and MR (ol) represent the most recently observed congestion

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 1, Article 4. Publication date: May 2019.

Personalized Travel Time Prediction Using a Small Number of Probe Vehicles 4:15

Fig. 12. Illustration of how PredictPM computes d̂R (r), the congestion status of pathlet r , observed by Rβ .

(a) The query pathlet r to be estimated and observed pathlets in r ’s inverse neighborhoodOL−1 (r) = {o1,o2};
(b) For each neighborhoodOL(ol), congestion pattern matching outputs a congestion state d̂o1 (r) for pathlet

r ; (c) The aggregated congestion state of r .

ALGORITHM 1: Algorithm for predicting travel time of P using pattern matching.

Input: Query path P = 〈r1, . . . , rm〉, recent trajectories Rβ , current (departure) time t
Transformation function cd f (D (r), ·) from travel time to congestion state for each
dictionary pathlet r

Output: Predicted travel time of path P : dt (P)
Parameters: Time when user enters first pathlet r1 of P: t1 = t
for i = 1 . . .m do

1 if ri is observed by Rβ then

2 d̂R (ri) ← PredictByPM(ri, Rβ)

3 ti+1 = ti + cd f
−1

(
D (ri), d̂R

ti
(ri)

)
else

4 d̂R (ri) ← cd f (D (ri),dH
ti

(ri))

5 ti+1 = ti + d
H
ti

(ri)

end

end

6 dR (ri) = cd f −1 (D (ri), d̂R (ri))

7 dt (P) ← ∑m
i dR (ri)

states in that neighborhood. We solve the following optimization problem:

x∗ = arg min
x
| |Col

x −MR (ol) | |2,

s .t . |x | = 1, 0 ≤ xi ≤ 1 for all i = 1, . . . ,k .
(3)

Solution x∗ results in one prediction of the congestion state of pathlet r , d̂R
ol

(r) = Col
x∗.

We then aggregate predictions from multiple neighborhoods via weighted average, d̂R (r) =∑
o∈OL−1 (r) w (r ,ol)d̂R

ol
(r), where the weight functionw (r ,ol) is the correlation coefficient between

the congestion states of r and that of ol in feature matrix M (ol). Figure 12 shows an example of
this procedure.

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 1, Article 4. Publication date: May 2019.

4:16 Y. Li et al.

If r is not observed, then we compute the time-dependent historical travel time of r instead
(Line 4). After converting the predicted values to absolute travel time using the inverse probability
integral transform, we compute the total path time as the sum of all pathlet travel time (Lines 6–7).

8.2.2 Optimizations for Prediction. The pattern-matching method presented so far has a few
potential issues. First, function PredictByPM assumes that the traffic status of the road network
observed from Rβ does not change over the predicted trip duration. For longer trips, however, we
need to take into account that the predictive power ofRβ decays over time. Second, computing path
travel time as a sum of pathlet travel times that are predicted independently does not consider the
transition of congestion status between adjacent pathlets in the query path. We attempt to address
these issues using the following heuristics.

Hybrid prediction. We replace Line 7 by a hybrid model where pathlet travel time is computed as
a linear combination of PredictByPM and the historical prediction. By decreasing the coefficient
on the former term for each subsequent pathlet, we can model the decaying predictive power of
Rβ as we predict further into the future.

Technically, consider a decreasing sequence α1 ≥ α2 ≥ · · · ≥ αm such that 0 ≤ αi ≤ 1 for all i .
We define the hybrid travel time prediction of path P as follows:

dR
t (P) =

m∑
i

dE
ti

(ri) =
m∑
i

αid
R (ri) + (1 − αi)dH

ti
(ri).

We use a heuristic approach to determine the optimal value of coefficients a1, . . . ,am . Ini-
tially, assign a1, . . . ,am to a constant value a0. The value of ai should decrease as the fraction of
travel time spent on the first i pathlets increases. We solve the following system of 2m equations
iteratively:

dE
ti

(ri) = αid
R (ri) + (1 − αi)dH

ti
(ri),

ai = 1 −
∑i

j=1 d
E
tj

(r j)∑m
j=1 d

E
tj

(r j)
for all i = 1, . . . ,m.

The initial value a0 can be learned from data, e.g., a0 = 0.8 is a good choice for our test dataset.

Adjacent pathlet smoothing. This optimization is motivated by the intuition that abrupt
changes of congestion status tend to happen near (1) intersections or (2) on a road segment con-
necting to another road of different classes, as in the case of highway exits. To reduce the impact
of outliers on pathlet travel time prediction, we apply a rule-based smoothness constraint on the
independently predicted congestion status of each pathlet ri .

Let xi be the hybrid travel time prediction of pathlet ri ∈ P using adjacent pathlet smoothing. Let
li be the length of pathlet ri . We find the optimal values that minimize the following optimization
problem:

min
x1, ...,xm

m∑
i=1

(xi − dE
ti

(ri))2 + μ
m−1∑
i=1

b (i, i + 1, P)
�����
xi

li
− xi+1

li+1

�����
.

The first term in the objective function measures the cost of perturbing the hybrid prediction of
pathlet ri , d

E
ti

(ri). The second term measures the cost of changing average speed on adjacent path-
lets ri , ri+1 ∈ P . The weight on each pair of adjacent pathlets is defined by the following function:

b (i, i + 1, P) = NotAJunction(ri , ri+1) + SameRoadClass(ri , ri+1).

NotAJunction and SameRoadClass are indicator functions that decide whether the last link of
ri and the first link of ri+1 do not meet at a road intersection (i.e., a vertex of degree greater

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 1, Article 4. Publication date: May 2019.

Personalized Travel Time Prediction Using a Small Number of Probe Vehicles 4:17

than 2) and if they share the same road class. The choice of Parameter μ is learned from data via
cross-validation.

8.3 Personalized Prediction

To predict path travel time for a particular user, we need to determine which driver group the user
belongs to at query time. Then, we can use the travel time distribution for that driver group to
transform the estimated congestion state of each pathlet back to a travel time prediction for that
particular user.

Algorithm 2 describes the details of prediction for a given user uq . First, we find the driver
group thatuq belongs to based on the available travel time observations fromuq ’s recent trajectory
history (Line 1). Let f (uq) be the feature vector ofuq as defined in Section 6.3. f (uq) would contain
many missing values if the history is short. Procedure MatchDriverGroup estimates the nearest
driver group while ignoring the missing pathlets. The distance function between query user uq

and driver group G j is defined as follows:

d (uq ,G j) =
1

|G j |
∑

u ∈G j

1

|x |

|P D |∑
i=1

(f (uq)i − f (u)i)2xi ,

where xi = 1 if the ith pathlet in the dictionary is observed in uq ’s recent history and xi = 0
otherwise.

The computation of pathlet travel time is similar to that in Algorithm 1. The main difference
is replacing the inverse probability integral functions cd f −1 (D (r), ·) with ones that are defined
for the matched driver group cd f −1 (D (r ,G j), ·) on Lines 4 and 6. The optimization techniques
proposed in Section 8.2.2 can also be applied to personalized prediction.

In practice, we also need to handle the rare scenario when none of the drivers in the historical
data has a similar travel time profile to the query user’s. Such an event can be detected by checking

ALGORITHM 2: Algorithm for predicting travel time of P for user uq using pattern matching.

Input: Query path: P = 〈r1, . . . , rm〉 of user uq , recent trajectories Rβ , current (departure)
time t

Transformation function cd f (D (r ,Gi), ·) from travel time to congestion state for each
dictionary pathlet r and each driver group Gi , (1 ≤ i ≤ K).
Output: Predicted travel time of path P for user uq : dt (P ,uq)
Parameters: Time when user enters first pathlet r1 of P: t1 = t

1 G j ← MatchDriverGroup(Rβ ,uq)

2 for i = 1 . . .m do

3 if ri is observed by Rβ then

4 d̂R (ri) ← PredictByPM(ri, Rβ)

5 ti+1 = ti + cd f
−1 (D (ri ,G j), d̂

R
ti

(ri))

else

6 d̂R (ri) ← cd f (D (ri ,G j),d
H
ti

(ri))

7 ti+1 = ti + d
H
ti

(ri)

end

end

8 dR (ri) = cd f −1 (D (ri ,G j), d̂
R (ri)) for all i = 1, . . . ,m

9 dt (P ,uq) ← ∑m
i dR (ri)

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 1, Article 4. Publication date: May 2019.

4:18 Y. Li et al.

whether the optimal distance computed by MatchDriverGroup is higher than a threshold, such as
the average intra-cluster distance. We then resort to the non-personalized approach in Algorithm 1.

9 RESULTS

9.1 Experimental Data

We evaluate our algorithms using GPS trajectories of electric taxis deployed by Gotcha II (Xu et al.
2014), a two-stage project that ran from 2014 to 2017 in Shenzhen, China.2 The Stage I dataset
contains trajectories of 15 vehicles from August 2014 to November 2015, with an average sampling
rate of 10s per sample. Driver identities are not available in this dataset, since vehicle IDs are
coded differently each month. We use this dataset for experiments on non-personalized travel
time prediction (Section 9.3).

The Stage II dataset contains trajectories of 25 vehicles from December 2016 to November 2017,
with complete driver identity information. The sampling rates for these more recent trajectories
are between 2–5s per sample. They are used for experiments on personalized travel time prediction
(Sections 9.4 and 9.5).

We selected four urban districts in Shenzhen for experiments, labeled Regions 1–4 (Figure 13).
Region 1 is the largest of all, with Shenzhen International Airport to the northwest. Regions 2–4
cover the densely populated downtown areas of the city. Table 1 summarizes the characteristics
of the regions for both datasets. To illustrate the sparsity of concurrent observations, we show in
the last column of Table 1 the percentage of links traversed within a 30-minute interval on the
morning of November 2, 2014. Despite being taken from a weekday morning, on average only
3.32% of the road links in the test region are observed. These observed road links are highlighted
as red dashed lines on the regional maps in Figure 13. Although the map of Region 1 contains a
large number of links, as rider demand is lower than the downtown area, only a small number of
taxi trips are observed in this region. Hence, it has the lowest coverage of traffic observations.

The Open Street Map of Shenzhen is used for map matching (osm 2015).3 Road class information
of each link (e.g., motorway, primary, secondary, and tertiary road segments and links) is extracted
from the OSM tags in the map data.

Figure 13 also visualizes the map coverage of the optimal pathlet dictionary, computed using
the approximation method mentioned in Chen et al. (2013b) with a minimum of five travel time
observations on each pathlet. In Table 2, we show the detailed coverage for individual road classes
based on the Open Street Map annotation.4 The total coverage rate ranges between 30% to 70%. This
is partially affected by the fact that the road network is larger in size than the trajectory bounding
box to ensure successful map matching. Region 1 has the lowest coverage for its remoteness from
the inner city. For Regions 2, 3, and 4, the coverage on non-residential roads is mostly above 85%.
Roads labeled residential and others (e.g., including service roads and other non-standard road
types) are less covered, as taxis are more likely to travel on major roads.

In each test region, we randomly selected 300 trajectories collected during the last six months
in the dataset as the test data. The rest of the trajectories are considered training data for learning
congestion patterns. This allows each test query to have at least five months of historical data
to rely on. We use the actual trip duration of each test trajectory as the prediction ground truth.

2Shenzhen is a major city in southern China.
3The OpenStreetMap map used for processing the 2014–2015 dataset was retrieved in 2016. The map for processing the

2016–2017 dataset was retrieved in 2018.
4Road classes are defined based on the “highway” tag of the OSM ways. Classes motorway, trunk, primary, secondary, and

tertiary include both the labeled ways and their associated links. The other class includes service road, construction, and

other unclassified ways.

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 1, Article 4. Publication date: May 2019.

Personalized Travel Time Prediction Using a Small Number of Probe Vehicles 4:19

Fig. 13. Top left: Map of Shenzhen, China, with test regions annotated. Top right and bottom: Road networks

for Regions 1–4. Black edges indicate road segments covered by the pathlet dictionary of the ’14 dataset. Red

dashed lines highlight road links visited by at least one probe vehicle from 7:00am to 7:30am on November

2, 2014. Segments not covered by the pathlet dictionary are represented as blue lines.

Table 1. Map and Trajectory Statistics of Test Regions During 2014–2015 (’14) and 2016–2017 (’16)

Region
ID

Name
Area

(km2)
of links

(’14)
of links

(’16)
of trajectories

(’14)
of trajectories

(’16)
dictionary
size (’14)

dictionary
size (’16)

7-7:30am
coverage

1 Bao’an 138.9 7,649 11,558 11,373 7,265 3,438 5,527 0.86%

2 Nanshan 29.2 2,991 4,728 33,859 31,680 11,363 7,726 5.35%

3 Futian 60.3 7,574 9,173 60,111 58,185 47,898 22,201 5.40%

4 Luohu 44.7 5,651 7,489 20,378 36,103 32,589 14,671 2.80%

Table 2. Road Link Coverage of the Pathlet Dictionary of the 2014–2015 Dataset

Link class
Region 1 (Baoan) Region 2 (Nanshan) Region 3 (Futian) Region 4 (Luohu)

of links coverage # of links coverage # of links coverage # of links coverage

motorway 148 0.74 27 1.00 95 1.00 18 0.72

trunk 650 0.86 313 0.98 786 0.96 438 0.98

primary 428 0.79 259 0.96 749 0.99 623 0.97

secondary 664 0.70 102 0.99 563 0.89 649 0.97

tertiary 1,078 0.42 207 0.89 1,107 0.85 885 0.91

residential 2,268 0.06 1,264 0.49 2,767 0.58 1,880 0.59

others 2,413 0.08 819 0.28 1,507 0.33 1,158 0.33

total 7,649 0.30 2,991 0.57 7,574 0.68 5,651 0.70

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 1, Article 4. Publication date: May 2019.

4:20 Y. Li et al.

Table 3. Regional Travel Time Prediction Results

Region
ρR Baseline PredictPM++

% improved
ID MRE MAE (min) MRE MAE(min)
1 0.218 0.213 6.739 0.148 4.700 30.3%
2 0.124 0.155 2.959 0.151 2.891 2.43%
3 0.556 0.198 7.357 0.185 6.654 6.33%
4 0.628 0.238 8.472 0.201 7.310 15.36%
Mean 0.381 0.201 6.382 0.171 5.389 13.60%

Trip duration is bounded between 40–4,500s. Tested on a Dell T3600 workstation with 3.2GHz
processors and 32GB RAM, the offline step takes approximately 4h per region. The average query
processing time is 0.7s.

We evaluated non-personalized travel time prediction (Algorithm 1) and its variations against
the baseline method that uses only historical data. The first one, PredictPM is the same as Algo-
rithm 1. We refer to the variation with hybrid travel time prediction, described in Section 8.2.2
as PredictPM+; and refer to the variation that uses both hybrid prediction and adjacent pathlet
smoothing as PredictPM++. Finally, we refer to the combination of personalized travel time pre-
diction (Algorithm 2) and the optimizations as PersonalPM++.

9.2 Evaluation Metrics

Our first evaluation metric is the observation rate ρR , which measures the percentage of trajectories
that contain at least one pathlet observed by Rβ . For trajectories that do not contain any observed
pathlet, their travel time prediction will be the same as the baseline. We will only use observed
trajectories to evaluate prediction accuracy, as detailed below.

Let di
pr ed

and di
true be the predicted travel time and the actual travel time of the ith test paths.

We use two metrics to evaluate prediction accuracy over N test queries: the Mean Absolute Error

(MAE) and the Mean Relative Error (MRE) (Yuan et al. 2010):

MAE =
N∑

i=1

|di
pr ed
− di

true |
N

, MRE =
N∑

i=1

|di
pr ed
− di

true |∑
di

true

.

We typically prefer MRE when comparing the performance of two problem instances, since MAE
is sensitive to the trip duration.

9.3 Non-personalized Travel Time Prediction Results

We compare the overall travel time prediction results in different test regions using the 2014–
2015 data (Table 3). The observation rate ρR ranges from 12.4% in Region 2 to 62.8% in Region 3.
On average, our algorithm can infer recent-time traffic status from either direct observations or
indirect observations from overlapping pathlets for 38.1% of the test queries. The observation rate
in Regions 3 and 4 is much higher than the other two because of higher route diversity and higher
taxi demand.

Using (PredictPM++), the average MRE is 0.171, and the average MAE is 5.4mins. The lowest
MRE is 0.148 in Region 1 (BaoAn), which is 30.3% lower than the baseline method. This is mainly
because Region 1 has the strongest path regularity, as reflected by the small dictionary size in
Table 1. Most trajectories in this region are either going to or coming from the airport, located at
the northwest corner of the map. However, the prediction accuracy of Region 4 is the worst among
the regions. Since Region 4 (Luo hu) is known as the shopping and nightlife district in Shenzhen,

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 1, Article 4. Publication date: May 2019.

Personalized Travel Time Prediction Using a Small Number of Probe Vehicles 4:21

Table 4. Prediction Accuracy of Baseline, PredictPM++, and CATD-OC

Region success CATD-OC Baseline PredictPM++
ID rate MRE MAE MRE MAE MRE MAE
1 42.86% 0.2830 506.2 0.1963 343.6 0.1828 320.0
3 24.75% 0.2135 456.0 0.2065 441.1 0.2023 432.2

it has a denser street layout that contributes to higher route diversity. The GPS noise in this region
is also more severe. This would negatively impact the preprocessing step and the computation of
travel time observations.

Comparison with CATD-OC. We compared the baseline and PredictPM++ with CATD-OC, a pop-
ular path-based travel time-estimation algorithm from Wang et al. (2014b). To adapt CATD-OC under
our problem setting, we introduce a few modifications to the algorithm in the original paper. First,
we assume each trajectory is from a unique driver, since driver identities are not available in the
2014–2015 dataset. Second, the geographical features of road segments do not include their point
of interest (POI) distributions, as POIs are not available in our datasets. Each time slice in the travel
time tensor is 15mins long and the total number of time slices used in the tensor decomposition
process is 8 (2h).

Table 4 compares the evaluation results between our methods and CATD-OC for Region 1 and
Region 3. Note that due to the small number of travel time observations in one time slice, the travel
time tensor, especially the portion representing real-time traffic, is extremely sparse. As a result,
context-aware tensor decomposition fails to find valid core tensors in some test queries. The per-
centage of successful queries is reported in the success rate column in Table 4. Only test queries
with successful tensor decomposition are used for evaluating all three methods.5 The compari-
son results show that both Baseline and PredictPM++ out-perform CATD-OC on the test data.6 It
demonstrates that our approach is more robust against sparsity in real-time data and can handle
large bias in travel time observations.

Effect of window size β . Figure 14 plots the MRE of test trajectories in Region 1 given recent
trajectories of different window size β and using different algorithm variations. When β is small,
we have fewer observations from recent trajectories. However, if β is too large, then the traffic
observations may become out of date, so they could not be used to predict future travel time.
In most test regions, we found β = 1.5h is the most stable choice for achieving good prediction
accuracy. For the comparison among algorithm variations, we see that pattern matching using
recent trajectories contributes to most of the improvement from the baseline method, especially
when β is small. The two optimization heuristics introduced in Section 8.2.2 have a small but
consistent improvement on the prediction accuracy.

Effect of dictionary size. We evaluate the impact of pathlet dictionary size on prediction error
using trajectories in Region 1. Figure 15(a) shows how parameter λ, introduced in Section 6.1,
allows us to control the dictionary size and the average trajectory decomposition size; Figure 15(b)
plots the test MRE and the observation rate against λ. The lowest MRE (0.148) is achieved when
λ = 0.001. We can see that, in general, the smaller the dictionary, the smaller the MRE and the

5Region 2 and Region 4 are omitted, since the success rate of tensor decomposition is very low in those areas.
6The MRE and MAE for PredictPM++ is much closer to Baseline than the results in Table 2, since some of the test paths

used in this experiment are neither directly nor indirectly observed by the recent trajectories. In such cases, PredictPM++
predicts the travel time using the baseline approach.

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 1, Article 4. Publication date: May 2019.

4:22 Y. Li et al.

Fig. 14. Comparison of prediction accuracy between the baseline and variations of our algorithm. The error

bars indicate the standard error in each experiment.

Fig. 15. (a) Effect of λ on dictionary size |PD | and average decomposition size. (b) Effect of λ on MRE and

the observation ratio ρR .

higher the observation rate. Though making the dictionary too small (e.g. λ = 10−4) decreases the
average pathlet length, thus losing the advantage of a path-based method.

Error analysis. We analyze the relative prediction error (di
pr ed
− di

true)/di
true for the 32 ob-

served weekday test queries in Region 1. Three prediction methods, PredictPM++, Baseline,
and CATD-OC are tested. For CATD-OC, we use a heuristic to handle failure cases in the context-
aware tensor decomposition process.7 We found that for 62.5% of the test queries, PredictPM++
outperforms the baseline. Half of those have made an improvement of more than 10%. In contrast,
CATD-OC outperforms the baseline on 43.8% of the test queries.

Figures 16(a) and 16(b) plot the relative errors with respect to trip distance and trip duration. We
observe a negative correlation between trip duration and relative prediction error. The correlation
coefficients are rbaseline = −0.522, rCATD−OD = −0.591 and rPredictPM++ = −0.412 for the three meth-
ods in comparison. However, the correlation between relative error and trip distance is less salient

7We identify and remove indices in the input tensor that cause tensor decomposition failure, then use historical average

to estimate the travel time of the removed indices.

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 1, Article 4. Publication date: May 2019.

Personalized Travel Time Prediction Using a Small Number of Probe Vehicles 4:23

Fig. 16. Visualizations of prediction errors for weekday travel time queries in Region 1 using PredictPM++
(blue), the baseline method (orange) and CATD-OD (yellow). (a) Relative prediction error vs. trip distance.

(b) Relative error vs. trip duration. (c) Distribution of prediction error for trips that depart within four different

periods of a day.

(rbaseline = −0.292, rCATD−OD = −0.261, rPredictPM++ = −0.116). This indicates that some trips have
longer delays than usual and PredictPM++ is the best among the three methods in predicting those
unexpected delays.

Figure 16(c) plots the distribution of prediction errors at four time-of-day intervals, separated
by the morning rush hour (7:30–9:30am) and the evening rush hour (5:00–8:00pm). During rush
hour, PredictPM++ has better prediction accuracy improvement than the other two methods.

9.4 Personalized Travel Time Prediction Results

In this section, we consider two scenarios to evaluate the performance of personal travel time
prediction (PersonalPM++). The first scenario is when the query user’s historical trajectories are
within the training set. In this case, the driver group that the user belongs to is already known
at query time. The other scenario is when the query user is unknown. We need to use the
approximation method presented in Section 8.3 to determine the closest driver group based on
recent trajectories of that user.

The results using the 2016–2017 dataset are summarized in Table 5 and Figure 17. As this dataset
contains more drivers than the 2014–2015 dataset used in previous experiments, non-personalized
algorithm PredictPM++’s performance is not as good as in previous experiments. However, by
incorporating driver information, the average MRE becomes much lower: 0.177 and 0.163 for the
two scenarios.

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 1, Article 4. Publication date: May 2019.

4:24 Y. Li et al.

Table 5. Travel Time Prediction Results Using PredictPM++ and PersonalPM++

PredictPM++ PersonalPM++
Region ID No driver information Driver in training data Driver not in training data

MRE MAE (sec) MRE MAE (sec) MRE MAE (sec)
1 0.139 194.3 0.113 168.4 0.135 156.6
2 0.198 179.7 0.188 215.1 0.183 188.3
3 0.264 289.1 0.203 278.2 0.172 224.9
4 0.209 292.7 0.205 214.2 0.162 257.3
Mean 0.203 238.9 0.177 219.0 0.163 206.8

Fig. 17. (a) Travel time prediction results using drivers’ information. (b) Observation rate ρR for each region

for personalized prediction.

For Region 1, traffic patterns are more regularized, incorporating driver information results in
an MRE of 0.113 and MAE of 2.8mins in the first scenario. In the second scenario, the error is
slightly larger. Nevertheless, personalized prediction still achieved a 2.9% reduction in the mean
relative error compared to non-personalized prediction.

For the other three regions, while incorporating driver information always has a positive effect
on prediction accuracy, the first scenario results in larger prediction error than the second. There
could be many possible reasons for this behavior. For instance, a driver’s driving style may change
over time, or the vehicle changed its driver during the one-year study. In addition, Figure 17(b)
compares the observation rates of the two scenarios. We can clearly see that the observation rate
is lower when the driver identity is unknown, as our experiment excludes users who cannot be
confidently assigned to any driver groups based on their recent trajectories.

9.5 Number of Probe Vehicles in Personalized Travel Time Prediction

Finally, we analyze the performance of our algorithm with a different number of probe vehicles
using Region 1 data. Here, we consider the second, more challenging scenario when the query
users are not the same as the users in the historical data. The test data consists of 300 query paths
of five drivers and their recent trajectories (β = 1.5hr). The training data for each test case contains
historical trajectories from 8–20 unique drivers.

Figure 18 plots the MRE of PersonalPM++ and the baseline approach against the number of dri-
vers in the training data. We observe that the MRE in general decreases as the number of drivers
increases, which is consistent with the intuition that having more data helps prediction. It is worth
noting that in our previous work (Li et al. 2017), which predicts travel time without driver infor-
mation, prediction may be worse when the number of drivers increases due to large variations

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 1, Article 4. Publication date: May 2019.

Personalized Travel Time Prediction Using a Small Number of Probe Vehicles 4:25

Fig. 18. MRE of PersonalPM++ (orange) and the baseline (blue) on Region 1 with a different number of

drivers in the training data. Drivers in the test data do not appear in the training data.

in personal driving behaviors. The results in this experiment demonstrate that clustering drivers
based on their travel time history can indeed leverage the variations in drivers’ speed profiles,
making the pathlet-based approach more scalable to a larger driver pool.

10 DISCUSSIONS AND FUTURE WORKS

While the real-time collection of GPS trajectories from taxis and mobile users are common today, a
practical solution for trajectory-based travel time prediction needs to be robust to the situation of
only having access to a small number of active mobile probes. This article presented an algorithm
framework for predicting path travel time from GPS trajectories, under the scenario of 10–25 GPS-
equipped vehicles and no trip labels. In the offline stage, it finds a pathlet dictionary that represents
the frequently shared paths and learns congestion patterns from sparse pathlet travel time obser-
vations. In the query step, it identifies the current congestion pattern of relevant pathlets from
recent trajectories, then infers the travel time of the query path from the identified pattern and the
historical travel time. Driver information can also be incorporated to provide personalized predic-
tion based on a driver’s partial driving history. Experiments on taxi trajectories from Shenzhen,
China, result in higher accuracy than the baseline approach of using only historical trajectories, as
well as a state-of-the-art travel time prediction method that uses both historical trajectories and
real-time trajectories.

This work has also demonstrated that regular patterns in travel time observations can help
extrapolate traffic status information from incomplete data. As shown in the experiment, regions
with higher path regularity benefit the most from the pattern-matching approach of travel time
prediction. This concept can be applied to other data-mining applications using sparse mobile
sensors. We also showed the benefits of using driver information in travel time prediction when
trajectories are collected from drivers with diverse driving styles. Our approach works regardless
of whether the training set includes the user we want to make predictions for.

As the focus of our study included the scenario of a limited number of probe vehicles, the train-
ing data as well as the evaluation data are both collected from a relatively small group of taxis
from the Gotcha project. These trajectories are a sub-sample of all taxi trajectories in Shenzhen
and reflect the general taxi mobility patterns. However, our evaluation results could not account
for areas rarely traveled by taxis, such as the suburban areas in the northern part of Region 1.

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 1, Article 4. Publication date: May 2019.

4:26 Y. Li et al.

Therefore, additional trajectory data, potentially from non-taxi vehicles, would be necessary to
apply the proposed method in those areas.

The proposed algorithm can be easily extended with additional data sources and with a larger
road network. A common data source used in urban traffic estimation is real-time traffic incident
reports. This information can be incorporated into the hybrid prediction step (Section 8.2.2), such
that the algorithm assigns higher weights to recent travel time observations than historical travel
time estimations on pathlets near the incident location. With enough training data, we may even
learn congestion patterns caused by different types of unexpected events. When extending the
current framework to a city scale, we can partition the city map into districts and learn the con-
gestion patterns in each district in parallel. To predict the travel time of a cross-district trajectory,
we will first use Algorithm 2 to predict the pathlet congestion states in each district and use a
similar way as adjacent pathlet smoothing (Section 8.2.2) to make sure the predicted congestion
states of boundary pathlets are consistent.

For future works, we will also address some of the limitations in our method. For example,
we can improve the prediction for longer trips by taking in a stream of real-time trajectory data
from all probe vehicles during the trip and updating the prediction results periodically. Another
potential improvement is considering different GPS noise levels in the collected trajectories; i.e.,
many modern GPS loggers also output the number of satellites used to produce each measurement,
which is strongly correlated with its GPS noise. This value can be used as a weighting constant to
the travel time observations, when we compute the travel time distribution of pathlets.

ACKNOWLEDGMENT

The authors would like to thank Xiangxiang Xu and Professor Lin Zhang from Tsinghua-Berkeley
Shenzhen Institute for providing the Gotcha dataset. Map data copyrighted OpenStreetMap con-
tributors and available from https://www.openstreetmap.org.

REFERENCES

OpenStreetMap contributors. 2015. Planet Dump. Retrieved from https://planet.osm.org. https://www.openstreetmap.org.

John E. Angus. 1994. The probability integral transform and related results. SIAM Rev. 36, 4 (1994), 652–654.

Chen Chen, Hao Su, Qixing Huang, Lin Zhang, and Leonidas Guibas. 2013b. Pathlet learning for compressing and planning

trajectories. In Proceedings of the ACM SIGSPATIAL International Conference on Advances in Geographic Information

Systems. ACM, 392–395.

Hao Chen, Hesham A. Rakha, and Catherine C. McGhee. 2013a. Dynamic travel time prediction using pattern recognition.

In Proceedings of the ITS World Congress 2013.

Mei Chen and Steven Chien. 2001. Dynamic freeway travel-time prediction with probe vehicle data: Link based versus path

based. Transport. Res. Rec.: J. Transport. Res. Board 1768 (2001), 157–161.

Jocelyn Chi, Eric Chi, and Richard Baraniuk. 2016. k-POD: A method for k-means clustering of missing data. Amer. Stat.

70, 1 (2016), 91–99.

Corrado De Fabritiis, Roberto Ragona, and Gaetano Valenti. 2008. Traffic estimation and prediction based on real time

floating car data. In Proceedings of the International Conference on Intelligent Transportation Systems (ITSC’08). IEEE,

197–203.

Jianhe Du and Lisa Aultman-Hall. 2007. Increasing the accuracy of trip rate information from passive multi-day {GPS} travel

datasets: Automatic trip end identification issues. Transport. Res. Part A: Policy Pract. 41, 3 (2007), 220–232.

Greg Hamerly and Charles Elkan. 2003. Learning the K in K-means. In Neural Information Processing Systems. MIT Press,

2003.

Aude Hofleitner and Alexandre Bayen. 2011. Optimal decomposition of travel times measured by probe vehicles using a

statistical traffic flow model. In Proceedings of the International Conference on Intelligent Transportation Systems (ITSC’11).

IEEE, 815–821.

Aude Hofleitner, Ryan Herring, Pieter Abbeel, and Alexandre Bayen. 2012. Learning the dynamics of arterial traffic from

probe data using a dynamic Bayesian network. IEEE Trans. Intell. Transport. Syst. 13, 4 (2012), 1679–1693.

Yijuan Jiang and Xiang Li. 2013. Travel time prediction based on historical trajectory data. Ann. GIS 19, 1 (2013), 27–35.

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 1, Article 4. Publication date: May 2019.

https://www.openstreetmap.org
https://planet.osm.org
https://www.openstreetmap.org

Personalized Travel Time Prediction Using a Small Number of Probe Vehicles 4:27

Gurunath Kedar-Dongarkar and Manohar Das. 2012. Driver classification for optimization of energy usage in a vehicle.

Procedia Comput. Sci. 8 (2012), 388–393.

Georgios Kellaris, Nikos Pelekis, and Yannis Theodoridis. 2013. Map-matched trajectory compression. J. Syst. Softw. 86, 6

(2013), 1566–1579.

Yang Li, Dimitrios Gunopulos, Cewu Lu, and Leonidas Guibas. 2017. Urban travel time prediction using a small number

of GPS floating cars. In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic

Information Systems (SIGSPATIAL’17). ACM, New York, NY, Article 3, 10 pages.

John-Michael McNew. 2012. Predicting cruising speed through data-driven driver modeling. In Proceedings of the 15th

International IEEE Conference on Intelligent Transportation Systems (ITSC’12). IEEE, 1789–1796.

Xiaoguang Niu, Ying Zhu, and Xining Zhang. 2014. DeepSense: A novel learning mechanism for traffic prediction with taxi

GPS traces. In Proceedings of the IEEE Global Communications Conference. IEEE, 2745–2750.

Mahmood Rahmani, Erik Jenelius, and Haris N. Koutsopoulos. 2013. Route travel time estimation using low-frequency

floating car data. In Proceedings of the International Conference on Intelligent Transportation Systems. IEEE, 2292–2297.

Gilles Reymond, Andras Kemeny, Jacques Droulez, and Alain Berthoz. 2001. Role of lateral acceleration in curve driving:

Driver model and experiments on a real vehicle and a driving simulator. Human Factors 43, 3 (2001), 483–495.

Bin Shi, Li Xu, Jie Hu, Yun Tang, Hong Jiang, Wuqiang Meng, and Hui Liu. 2015. Evaluating driving styles by normalizing

driving behavior based on personalized driver modeling. IEEE Trans. Syst., Man, Cyber.: Syst. 45, 12 (2015), 1502–1508.

Penghui Sun, Shixiong Xia, Guan Yuan, and Daxing Li. 2016. An overview of moving object trajectory compression algo-

rithms. Mathematical Problems in Engineering 2016, Algorithms for Compressive Sensing Signal Reconstruction with

Applications (Special Issue), Article 6587309 (2016).

Hongjian Wang, Yu-Hsuan Kuo, Daniel Kifer, and Zhenhui Li. 2016. A simple baseline for travel time estimation using

large-scale trip data. In Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic

Information Systems. ACM, 61.

Wenshuo Wang, Junqiang Xi, and Huiyan Chen. 2014a. Modeling and recognizing driver behavior based on driving data:

A survey. Mathematical Problems in Engineering 2014, Mathematical Modeling, Analysis, and Advanced Control of

Complex Dynamical Systems (Special Issue), Article 245641 (2014).

Yilun Wang, Yu Zheng, and Yexiang Xue. 2014b. Travel time estimation of a path using sparse trajectories. In Proceedings

of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 25–34.

Chun-Hsin Wu, Jan-Ming Ho, and Der-Tsai Lee. 2004. Travel-time prediction with support vector regression. IEEE Trans.

Intell. Transport. Syst. 5, 4 (2004), 276–281.

Longgang Xiang, Meng Gao, and Tao Wu. 2016. Extracting stops from noisy trajectories: A sequence oriented clustering

approach. ISPRS Int. J. Geo-Inform. 5, 3 (2016), 29.

Tao Xu, Xiang Li, and Christophe Claramunt. 2017. Trip-oriented travel time prediction (TOTTP) with historical vehicle

trajectories. Frontiers of Earth Science 12, 2 (2017), 1–11.

Xiangxiang Xu, Pei Zhang, and Lin Zhang. 2014. Gotcha: A mobile urban sensing system. In Proceedings of the ACM Con-

ference on Embedded Networked Sensor Systems (SenSys’14). ACM, 316–317.

M. Kerber, L. Zhang, Y. Li, Q. Huang, and L. Guibas. 2013. Large-scale joint map matching of GPS traces. In Proceedings of

the ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL’13).

Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, Guangzhong Sun, and Yan Huang. 2010. T-drive: Driving

directions based on taxi trajectories. In Proceedings of the ACM SIGSPATIAL International Conference on Advances in

Geographic Information Systems (SIGSPATIAL’10). ACM, 99–108.

Xianyuan Zhan, Samiul Hasan, Satish V. Ukkusuri, and Camille Kamga. 2013. Urban link travel time estimation using

large-scale taxi data with partial information. Trans. Res. Part C: Emerg. Technol. 33, 8 (2013), 37–49.

Xianyuan Zhan, Yu Zheng, Xiuwen Yi, and Satish V. Ukkusuri. 2017. Citywide traffic volume estimation using trajectory

data. IEEE Trans. Knowl. Data Eng. 29, 2 (Feb. 2017), 272–285.

Faming Zhang, Xinyan Zhu, Tao Hu, Wei Guo, Chen Chen, and Lingjia Liu. 2016. Urban link travel time prediction based

on a gradient boosting method considering spatiotemporal correlations. ISPRS Int. J. Geo-Inform. 5, 11 (2016), 201.

Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma. 2009. Mining interesting locations and travel sequences from GPS

trajectories. In Proceedings of the Conference on World Wide Web. ACM, 791–800.

Received May 2018; revised January 2019; accepted January 2019

ACM Transactions on Spatial Algorithms and Systems, Vol. 5, No. 1, Article 4. Publication date: May 2019.

