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Generalizing to Unseen Domains with Wasserstein
Distributional Robustness under Limited Source

Knowledge
Jingge Wang, Liyan Xie, Yao Xie, Shao-Lun Huang and Yang Li

Abstract—Domain generalization aims at learning a universal
model that performs well on unseen target domains, incorporat-
ing knowledge from multiple source domains. In this research,
we consider the scenario where different domain shifts occur
among conditional distributions of different classes across do-
mains. When labeled samples in the source domains are limited,
existing approaches are not sufficiently robust. To address this
problem, we propose a novel domain generalization framework
called Wasserstein Distributionally Robust Domain General-
ization (WDRDG), inspired by the concept of distributionally
robust optimization. We encourage robustness over conditional
distributions within class-specific Wasserstein uncertainty sets
and optimize the worst-case performance of a classifier over
these uncertainty sets. We further develop a test-time adaptation
module leveraging optimal transport to quantify the relationship
between the unseen target domain and source domains to
make adaptive inference for target data. Experiments on the
Rotated MNIST, PACS and the VLCS datasets demonstrate
that our method could effectively balance the robustness and
discriminability in challenging generalization scenarios.

Index Terms—Domain generalization, distributionally robust
optimization, optimal transport, Wasserstein uncertainty set.

I. INTRODUCTION

IN many practical learning applications, labeled training
data are only available from fragmented source domains.

It is thus a challenge to learn a robust model for future
data that could come from a new domain, with unknown
domain shift. One commonly acknowledged solution to this
challenge is domain generalization [1], which aims at learning
a model that generalizes well to target domains based on
available training data from multiple source domains and in a
total absence of prior knowledge about the target domain. A
surge of popularity has been seen recently in the application
of domain generalization in various fields, such as computer
vision [2]–[8], natural processing [9]–[12], and reinforcement
learning [13], etc.

Numerous methods have been developed for learning a
generalizable model by exploiting the available data from
the source domains, where the shifts across these source
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domains are implicitly assumed to be representative of the
target shift that we will meet at test time. The well-known ap-
proaches include learning domain-invariant feature representa-
tions through kernel functions [1], [14]–[19], or by distribution
alignment [20]–[22], or in an adversarial manner [8], [23]–
[26]. The learned invariance across source domains, however,
may not be typical if the unseen target shift is of extreme
magnitude. In this case, forcing distributions to align in a
common representation space may result in a biased model
that overfits the source domains, and only performs well for
target domains that are similar to certain source domains.

Instead, to explicitly model unseen target domain shifts,
meta-learning-based domain generalization methods like
MLDG [13] divides the source domains into non-overlapping
meta-train and meta-test domains, which fails to hedge against
the possible target shift beyond the distribution shifts observed
in source domains. Also, these approaches require sufficient
source training data to make good meta-optimization within
each mini-batch. Possible domain shift could also been mod-
eled by enhancing the diversity of data based on some data
augmentations [27], generating data in an adversarial manner
[7], [28], [29] or constructing sample interpolation [30], [31].
Learning with limited labeled original samples in this way
will weaken their performance, since the new generated data
will dominate and the domain shift caused by the artificial
data manipulations will largely determine the generalization
performance.

In this work, we propose a domain generalization frame-
work to explicitly model the unknown target domain shift
under limited source knowledge, by extrapolating beyond the
domain shifts among multiple source domains in a probabilis-
tic setting via distributionally robust optimization (DRO) [32].
To model the shifts between training and test distributions,
DRO usually assumes the testing data is generated by a
perturbed distribution of the underlying data distribution, and
the perturbation is bounded explicitly by an uncertainty set. It
then optimizes the worst-case performance of a model over the
uncertainty set to hedge against the perturbations [33]–[36].
The uncertainty set contains distributions that belong to a non-
parametric distribution family, which is typically distributions
centered around the empirical training distributions defined via
some divergence metrics, e.g., Kullback–Leibler divergence
[32], or other f -divergences [37]–[40], or Wasserstein distance
[33], [41]–[44], etc. These pre-defined distance constraints
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of uncertainty sets will confer robustness against a set of
perturbations of distributions.

As a promising tool that connects distribution uncertainty
and model robustness, DRO has been incorporated into domain
generalization in some works. Volpi et al. [7] augmented the
data distribution in an adversarial manner, which appends
some new perturbed samples from the fictitious worst-case
target distributions at each iteration, and the model is updated
on these samples. Duchi et al. [40] solves the DRO to learn
a model within a f -divergence uncertainty set and learns the
best radius of the set in a heuristic way by validating on part
of the training data. Let X denote the input feature and Y
denote the label. While the studies by [7] and [40] discuss the
distributional shifts directly in the joint distribution P (X,Y ),
our work takes a distinct approach by decomposing the joint
distribution and establishing class-specific distributional un-
certainty sets, which enables us to manage possible varying
degrees of distributional perturbations for each class in a more
explicit manner.

When labeled training source samples are limited in source
domains, the distributional perturbations for each class could
vary widely. In such a scenario, unifying these varying degrees
of domain perturbations within a single shared uncertainty
set as have been done for the joint distribution is potentially
overlooking the inherent differences among classes. As such,
to explicitly examine the distributional shift among classes, we
decompose the joint distribution P (X,Y ) = P (X|Y )P (Y )
and address each part independently. Our primary focus lies
in managing the class-conditional shift [45], under the as-
sumption that there is no shift in the class prior distribution,
i.e., the distribution P (Y ) stays consistent across all source
domains. Furthermore, we also illustrate how our research
can be readily expanded to situations that involve a shift in
the class prior distribution. To be more specific, we encode
the domain perturbations of each class within a class-specific
Wasserstein uncertainty set. Compared with Kullback–Leibler
divergence, Wasserstein distance is well-known for its ability
to measure divergence between distributions defined on dif-
ferent probability space, which may happen when the limited
samples have no overlap. While the classic DRO with one
Wasserstein uncertainty set can be formulated into a tractable
convex problem [46], tractability results for DRO with multiple
Wasserstein uncertainty sets for each class are also available
[34].

It is crucial to set appropriate uncertainty sets based on
training data from multiple source domains for the success of
DRO, since they control the conservatism of the optimization
problem [43]. A richer uncertainty set may contain more true
target distributions with higher confidence, but comes with
more conservative and less practical solution. More precise un-
certainty set incentivizes higher complexity and more difficult
solution. Therefore, uncertainty sets should be large enough
to guarantee robustness, but not so large as to overlap with
each other. We manage to control the discriminability among
class-specific uncertainty sets with additional constraints while
ensuring the largest possible uncertainty.

When performing classification on data from target do-
mains, we conduct a test-time adaptation strategy to further

reduce the domain shift and make inference for testing data
adaptively. We employ optimal transport weights to apply the
optimal classifier learned from the source distributions on the
test sample, which we prove to be equivalent to transporting
the target samples to source domains before making the
prediction.

In summary, our main contributions include:
• We propose a domain generalization framework that

solves the Wasserstein distributionally robust optimiza-
tion problem to learn a robust model over multiple
source domains, where class-conditional domain shifts
are formulated in a probabilistic setting within class-
specific Wasserstein uncertainty sets.

• To improve upon the original Wasserstein distributionally
robust optimization method with heuristic magnitude of
uncertainty, we design a constraint that balances robust-
ness and discriminability of uncertainty sets.

• We develop a test-time optimal transport-based adapta-
tion module to make adaptive and robust inferences for
samples in the target domain. A generalization bound on
the target classifier is presented. Experiments on several
multi-domain vision datasets show the effectiveness of
our proposed framework comparing with the state-of-the-
arts.

II. PRELIMINARIES AND PROBLEM SETUP

For the common K-class classification problem, denote
the feature space as X ⊂ Rd and the label space as Y =
{1, . . . ,K}. Let ϕ : X → ∆K be the prediction function
which assigns each feature vector x as class k with likelihood
ϕk(x). Here ∆K := {ξ ∈ RK : ξi ≥ 0,

∑K
i=1 ξi = 1} denotes

the probability simplex. Based on the prediction function
ϕ, the corresponding classifier Φ maps each feature vector
x to the class Φ(x) = argmaxk {ϕk(x)} (ties are broken
arbitrarily). In the following, we will also use ϕ to represent
the classifier.

Given training samples {(x1, y1) , . . . , (xn, yn)} drawn i.i.d
from the true data-generating distribution over X × Y , we
denote the empirical class-conditional distributions for each
class as

Q̂k :=
1

|i : yi = k|

n∑
i=1

δxi
1{yi = k}, k = 1, . . . ,K.

Here, δx indicates a Dirac measure centered at x and 1{·}
is the indicator function. Therefore, Q̂k can be viewed as the
empirical distribution for training samples within the class k.
In light of [34], [35], the test distribution of each class is
likely to be distributions centered around the empirical class-
conditional distribution Q̂k within the uncertainty set defined
using, for example, the Wasserstein distance.

The Wasserstein distance [47], [48] of order p between any
two distributions P and Q, is defined as:

Wp (P,Q) =

(
min

γ∈Γ(P,Q)
E(x,x′)∼γ

[
∥x− x′∥p

])1/p

, (1)

where Γ(P,Q) is the collection of all joint distributions with
the first and second marginals being the distribution P and Q,
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respectively. We consider the Wasserstein distance of order
p = 2, and the corresponding norm ∥·∥ is set as Euclidean
distance. Thus, we have the test distribution of each class k
belongs to the following set:

Pk =
{
Pk ∈ P(X ) : W2

(
Pk, Q̂k

)
≤ θk

}
, (2)

where θk ≥ 0 denotes the radius of the uncertainty set
and P(X ) denotes the set of all probability distributions
over X . A robust classifier Φ (or equivalently the prediction
function ϕ) can be obtained by solving the following minimax
optimization problem:

min
ϕ:X→∆K

max
Pk∈Pk,1≤k≤K

Ψ(ϕ;P1, . . . , PK) , (3)

where Ψ(ϕ;P1, . . . , PK) is the total risk of the classifier
ϕ on certain distributions P1, . . . , PK . The inner maximum
problem refers to the worst-case risk over uncertainty sets
P1, . . . ,PK . Suppose (ϕ∗;P ∗

1 , . . . , P
∗
K) is an optimal solution

pair to the saddle-point problem (3), then P ∗
1 , . . . , P

∗
K are

called the least favorable distributions (LFDs) [49], and ϕ∗

induces the optimal classifier that minimizes the worst-case
risk.

The likelihood that a sample is misclassified is usually taken
as the risk, i.e., 1 − ϕk(x) for any sample x with real label
k. Specially, when assuming the simple case with equal class
prior distributions P(y = k) = 1/K, k = 1, . . . ,K for all
classes, the total risk of misclassifying data from all K classes
is

Ψ(ϕ;P1, . . . PK) =

K∑
k=1

E
x∼Pk

[1− ϕk(x)] . (4)

However, in a more general classification problem, to compen-
sate for the possible class imbalance scenario, a series of class-
weighting methods assign different weights to misclassifying
samples from different classes [50], [51]. One of the most nat-
ural approaches is to incorporate the class prior distributions
P(y = k) of each class into the risk function [52], [53] as

Ψ(ϕ;P1, . . . PK) =

K∑
k=1

P(y = k) E
x∼Pk

[1− ϕk(x)] , (5)

which is a general form of (4).
In domain generalization problems, we have access

to R source domains {Dsr}Rr=1, with training samples{
(x1,y1) , . . . ,

(
xnr ,ynr

)}
from the r-th source domain

drawn i.i.d from the joint distribution P sr on X ×Y . The goal
is to learn a robust classifier that performs well on the unseen
target domain Dt, which contains instances from the joint
distribution P t. For each class k, denote the empirical class-
conditional distributions in source domain Dsr and target do-
main Dt as Q̂sr

k and Q̂t
k, respectively. Instead of constructing

uncertainty sets relative to the empirical (training) distributions
of a single domain as in the classic DRO formulation, we
need to set the uncertainty sets using distributions Q̂sr

k from
multiple source domains, which is detailed in the next section.

III. WASSERSTEIN DISTRIBUTIONALLY ROBUST DOMAIN
GENERALIZATION

In this section, we present our proposed framework for do-
main generalization that leverages the empirical distributions
from multiple source domains as shown in Figure 1a, and
the process of distributionally robust optimization is shown
in Figure 1b. The adaptive inference for the target domain is
shown in Figure 1c. Here we show binary classification for
simplicity.

More specifically, we first extrapolate the class-conditional
source distributions to a Wasserstein uncertainty set for each
class. Figure 1a illustrates the construction of uncertainty
sets of two classes. Their closeness is further controlled by
the parameter δ to ensure discriminability. A convex solver
then solves the distributionally robust optimization over these
uncertainty sets, obtaining the least favorable distributions
(LFDs), which are represented as probability mass vectors
depicted in Figure 1b. Figure 1c shows the inference process
for target samples, where optimal transport [54] is used to
re-weight LFDs adaptively.

Details of the construction of uncertainty sets and the
additional Wasserstein constraints could be found in Sections
III-A and III-B. Section III-C discusses the re-formulation of
the Wasserstein robust optimization. Adaptive inference for
samples in the target domain is presented in section III-D.
In III-E, we further analyze the generalization bound of the
proposed framework.

A. Construction of Uncertainty Sets

To measure distributionally divergence, we chose Wasser-
stein distance since it can handle divergences between dis-
crete and continuous distributions, which is essential for our
use of empirical (discrete) distributions as the center of the
uncertainty sets. We construct the uncertainty sets controlled
mainly by two terms: the reference distribution that represents
the center of the uncertainty set, and the radius parameter
that controls the size of the set, i.e., an upper bound of
the divergence between the reference distribution and other
distributions in the set. We use Wasserstein barycenter [55]
as the reference distribution, which is the average of multiple
given distributions and is capable of leveraging the inherent
geometric relations among them [20]. Given empirical class-
conditional distributions Q̂s1

k , . . . , Q̂sR
k for each class k from

R different source domains, the Wasserstein barycenter for
class k is defined as

B∗
k = argmin

Bk

R∑
r=1

1

R
W2(Bk, Q̂

sr
k ), k = 1, . . . ,K, (6)

which could be a proxy of the reference distribution for each
uncertainty set. Suppose each barycenter supports on b samples
uniformly, i.e., Bk =

∑b
i=1

1
b δx(k)

i
, where {x(k)

i }bi=1 are b

barycenter samples for class k, then (6) only optimizes over
the locations x

(k)
i of the uniform distribution on the feature

space, which could be efficiently computed using POT package
[56].

To ensure that the uncertainty sets are large enough to avoid
misclassification for unseen target samples, the maximum of
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(c) Adaptive inference using optimal transport.
Fig. 1. An overview of our WDRDG framework, consisting of three components: (a) Wasserstein uncertainty set construction for each class based on
the empirical Wasserstein barycenters and radius obtained from given source domains. One constraint is added to control the discriminability of LFDs; (b)
distributionally robust optimization to solve for the least favorable distributions; (c) adaptive inference for target testing samples based on probability mass
on LFDs and coupling matrix from optimal transportation between barycenter samples and target samples.

all R Wasserstein distances between class-conditional distri-
butions of each source domain Q̂sr

k and the barycenter B∗
k , is

used as the radius for each class k:

θ∗k = max
r=1,...,R

W2

(
B∗

k , Q̂
sr
k

)
. (7)

In this way, we can construct the Wasserstein uncertainty set
Pk of radius θ∗k centered around B∗

k for each class k following
(2):

Pk =
{
Pk ∈ P(X̂ ) : W2 (Pk, B

∗
k) ≤ θ∗k

}
. (8)

Figure 1a shows the construction process of the uncertainty
sets for two classes.

B. Balance Robustness and Discriminability

When the source training samples are limited, the class-
conditional distributions may vary widely in practice. In this
situation, the radius computed from (7) tends to be overly
large, and the uncertainty sets of different classes may overlap
with each other, leading to indistinguishable LFDs for opti-
mization problem (3). As shown in Figure 2, overlap between
each pair of class-specific uncertainty sets exist as the sum
of their radius is larger than the Wasserstein distance between
the corresponding barycenters.

Discriminability of LFDs is necessary since this leads to
a well-defined problem of (3), which indirectly controls the
discriminability of data from different classes. We add one
more constraint to obtain significantly different LFDs that
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Fig. 2. Comparison between θ∗i + θ∗j and the Wasserstein distance
W2(B∗

i , B
∗
j ) for all 10 unique pairs (i, j) among all 5 classes of the

VLCS dataset. The sum of uncertainty radius of any two classes is larger
than the Wasserstein distance between the corresponding barycenters. The
oversized radius will lead to overlapping class-specific uncertainty sets, and
the distributions within them will be indistinguishable.

are discriminable, characterized by the Wasserstein distance
between each pair of LFDs (P ∗

u , P
∗
v ) within K classes:

W2 (P
∗
u , P

∗
v ) ≥ δ, 1 ≤ u < v ≤ K, (9)

where δ > 0 is the threshold that indicates the discriminability,
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Algorithm 1 Wasserstein distributionally robust domain gen-
eralization.
Input: {Q̂sr

k }Rr=1 - empirical class-conditional distributions
for each class k in all K classes from source domains
{Dsr}Rr=1;
b - number of barycenter samples for each class;
δ - discriminability threshold parameter.

Output: ϕ(xt
j) - predictions for each of the unseen target

samples {xt
j}

nt
j=1.

1: for each class k do
2: Obtain barycenter B∗

k by (6);
3: Obtain radius θ∗k using (7).
4: Construct uncertainty sets Pk centered around B∗

k with
radius θ∗k as formed in (2).

5: end for
6: Solve the optimization (11) for the optimal LFDs P ∗

k .
7: The inference for each target sample is given by (14).

which is a hyperparameter that could be tuned on the valida-
tion set. In this way, robustness is ensured by large enough
Wasserstein uncertainty sets, and the threshold δ guarantees
discriminability among the uncertainty sets.

C. Distributionally Robust Optimization

Incorporating the constraints (9) into (3), we aim to solve
the following minimax problem

min
ϕ:X→∆K

max
Pk∈Pk, 1≤k≤K

W(Pu,Pv)≥δ, 1≤u<v≤K

Ψ(ϕ;P1, . . . , PK) .
(10)

We establish the following theorem, stating a convex approx-
imation of problem (10).

Theorem 1: Suppose the Wasserstein barycenter B∗
k for each

class as defined in (6) is supported on b samples. Let Sb be
the union of the support of {B∗

1 , . . . , B
∗
K} which contains

nb = Kb samples {xb
i , i = 1, . . . , nb} in total. The class

prior distributions of each class is denoted as P(y = k).
Denote each distribution within the uncertainty set Pk as
Pk ∈ Rnb

+ . Let C ∈ Rnb×nb
+ be the pairwise distance matrix

of nb samples, Ci,j = ∥xb
i − xb

j∥2, γk ∈ Rnb×nb
+ be the

coupling matrix between B∗
k and Pk, and βu,v ∈ Rnb×nb

+ be
the coupling matrix between any two distributions Pu, Pv in
different classes. When using the Wasserstein metric of order
2, the least favorable distributions P ∗

k of the problem (10)
could be obtained by solving:

max
P1,...,PK∈Rnb

+

γ1,...,γK∈Rnb×nb
+

βu,v∈Rnb×nb
+

1−
nb∑
i=1

max
1≤k≤K

P(y = k)Pk

(
xb
i

)

s.t. ⟨γk,C⟩F ≤ (θ∗k)
2, ⟨βu,v,C⟩F ≥ δ2,

γk1nb
= B∗

k , γ
T
k 1nb

= Pk,

βu,v1nb
= Pu, β

T
u,v1nb

= Pv,

∀1 ≤ k ≤ K, 1 ≤ u < v ≤ K,

(11)

and the optimal prediction function of (10) satisfies ϕ∗
k(x

b
i ) =

P ∗
k

(
xb
i

)
/
∑K

k=1 P
∗
k

(
xb
i

)
for any xb

i ∈ Sb.

The constraints on γk restrict each target class-conditional
distribution to its respective uncertainty set of radius θ∗k.
The constraints on βu,v restrict the Wasserstein distance
between each pair of class-conditional distributions in the
target domain following (9). Based on the above theorem, the
classification for any sample in the sample set Sb is given by
Φ(xb

i ) = argmax1≤k≤K P ∗
k (x

b
i ). The proof can be found in

the supplementary material.

D. Adaptive Inference by Test-time Adaptation

Since the barycenters are the weighted average of distribu-
tions from multiple source domains, the barycenter samples
in the support set Sb could be viewed as samples from a
generalized source domain denoted as Db. For any sample
in Db, the likelihood that it is assigned to each class could be
decided based on ϕ∗ by a non-parametric inference method
such as KNN [35]. When making predictions for samples from
an unseen target domain Dt, the domain shift between Db

and Dt needs to be considered. We adopt optimal transport to
reduce the domain shift adaptively by the following test-time
adaptation process.

Suppose µ̂b =
∑nb

i=1
1
nb
δxb

i
and µ̂t =

∑nt

j=1
1
nt
δxt

j
are the

empirical marginal distributions of the feature vectors from
the generalized source domain Db and a target domain Dt,
respectively. Denote the coupling matrix of transporting from
target to the generalized source distribution using optimal
transport [54] as γ = [γ1, . . . , γnt

]T ∈ Rnt×nb , where each
vector γj ∈ Rnb , j = 1, . . . , nt, represents the transported
mass from the j-th target sample to each of the nb barycenter
samples. In most optimal transport-based domain adaptation
methods, each target sample xt

j , j = 1, . . . , nt, is first
transported to x̂t

j in the generalized source domain Db by
the barycentric mapping:

x̂t
j =

nb∑
i=1

ntγj,ix
b
i , j = 1, . . . , nt, (12)

then having its label inferred based on the classifier learned
on the labeled samples. Instead of such a two-step process,
we propose an equivalent single-step inference process. The
following proposition states the equivalence, and the proof can
be found in the supplementary.

Proposition 1: Given the coupling matrix γ ∈ Rnt×nb .
Suppose we transport the target sample xt

j from the empirical
target distribution µ̂t =

∑nt

j=1
1
nt
δxt

j
to the generalized source

domain empirical distribution µ̂b =
∑nb

i=1
1
nb
δxb

i
by the

barycentric mapping as shown in (12), and obtain the class
likelihood by re-weighting ϕ∗

k(x
b
i ) of all the samples xb

i ∈ Sb

using the weight function w
(
x̂t
j ,x

b
i

)
= ntγj,i. Then the

resulting classifier is equivalent to directly re-weighting LFDs
on the barycenter samples using the coupling matrix. The
equivalent classification result is:

Φ(xt
j) = argmax

1≤k≤K

nb∑
i=1

γj,iP
∗
k (x

b
i ). (13)

This proposition illustrates that domain difference between tar-
get domain and generalized source domain can be eliminated
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by adaptively applying the coupling matrix in the inference
stage, without actually transporting the target samples to the
generalized source domain. With LFDs P ∗

k supported on
barycenter sampless from solving (11) and Proposition 1,
the classification of each target sample could be obtained by
assigning each class with probability based on the re-weighted
LFDs

∑nb

i=1 ntγj,iP
∗
k (x

b
i ). The final decision Φ(xt

j) is made
by choosing the class that maximizes the probability.

Denote the LFDs for all classes as P = [P ∗
1 , . . . , P

∗
K ]

T ∈
RK×nb . Based on Proposition 1, the predicted class likelihood
of each target sample xt

j can be rewritten as

ϕ(xt
j) =

γj
TP T

γj
TP T1K

=
[
ϕ1(x

t
j), . . . , ϕK

(
xt
j

)]
, (14)

where 0 ≤ ϕk

(
xt
j

)
≤ 1,

∑K
k=1 ϕk

(
xt
j

)
= 1. The al-

gorithm is summarized in Algorithm 1. Further adding the
optimal-transport based adaptive inference leads to our com-
plete framework Wasserstein Distributionally Robust Domain
Generalization (WDRDG).

E. Generalization Analysis

We further analyze the generalization risk of our proposed
method. Our analysis considers the domain shift between the
target domain and the generalized source domain.

Based on (14), the classification decision for the test sample
x̂t
j in the target domain is based on the weighted average

argmax
1≤k≤K

nb∑
i=1

w
(
x̂t
j ,x

b
i

)
P ∗
k (x

b
i ). (15)

Consider a binary classification problem with label set
{0, 1}. Let ϕ(x) = [ϕ0(x), ϕ1(x)] represents the prediction
vector of x belonging to either classes. The true labeling
function is denoted as f : X → {0, 1}. Considering the simple
case that all classes are balanced, the expected risk that the
correct label is not accepted for samples in any distribution µ
is denoted as ϵµ (ϕ) = Ex∼µ[1− ϕf(x)(x)]. We now present
the following theorem stating the generalization bound.

Theorem 2: Suppose the distributionally robust prediction
function ϕSb learned from the sample set Sb is M -Lipschitz
continuous for some M ≥ 0. Let µb and µt be the probability
distributions for the generalized source and target domain,
respectively. Then the risk on the target distribution µt follows

ϵµt
(ϕSb) ≤ ϵµb

(ϕSb) + 2M · W1 (µb, µt) + λ, (16)

where λ = min
ϕ:X→[0,1],∥ϕ∥Lip≤M

(ϵµt
(ϕ) + ϵµb

(ϕ)).

The first term is the risk on the barycenter distribution µb.
The second term shows that the divergence between the
barycenter distribution and target distribution, measured by
the Wasserstein distance (of order 1). This theorem shows that
the generalization risk on the target domain is affected by the
Wasserstein distance between the barycenter distribution and
the target distribution, which represents the gap between the
generalized source domain and the target domain.

By applying the concentration property of the Wasserstein
distance [57], we can measure the generalization risk based
on empirical Wasserstein distances similar to Theorem 3

in [58]. Under the assumption of Theorem 2, if the two
probability distributions µb and µt satisfy T1(ξ) inequality
[57], then for any d′ > d and ξ′ < ξ, there exists some
constant N0 depending on d′ such that for any ε > 0 and
min(nb, nt) ≥ N0 max

(
ε−(d

′+2), 1
)

, with probability at
least 1−ε the following holds for the risk on the target domain

ϵµt(ϕ
Sb) ≤ϵµb

(ϕSb) + 2MW1 (µ̂b, µ̂t) + λ

+ 2M

√
2 log

(
1

ε

)
/ξ′

(√
1

nb
+

√
1

nt

)
.

Here d denotes the dimension of the feature space. The last
term illustrates the importance of getting more labeled samples
from the generalized source domain. This result show that
reducing the Wasserstein distance between the barycenters and
target distributions will lead to tighter upper bound for the
risk of the learned model on the target domain. Therefore, it
provides a theoretical motivation to our design of the test-time
adaptation, which reduces such domain gap by optimal trans-
port. Details of the proof could be found in the supplementary
material.

IV. EXPERIMENTS

A. Datasets

To evaluate the effectiveness of our proposed domain
generalization framework, we conduct experiments on three
datasets: the VLCS [59] dataset, the PACS [60] dataset, and
the Rotated MNIST [61] dataset.
VLCS dataset This domain generalization benchmark con-
tains images from four image classification datasets: PASCAL
VOC2007 (V), LabelMe (L), Caltech-101 (C), and SUN09 (S),
denoted as domains DV , DL, DC , and DS , respectively [62].
There are five common categories: bird, car, chair, dog and
person.
PACS dataset The PACS dataset contains images of four
domains: Photos (P), Art painting (A), Cartoon (C) and
Sketch (S) [60]. There are in total 7 types of objects in this
classification task, i.e., dog, elephant, giraffe, guitar, horse,
house, and person.
Rotated MNIST dataset We constructed the Rotated MNIST
dataset with four domains, r0, r30, r60 and r90 following
the common settings [61]. r0 denotes the domain containing
original images from the MNIST dataset, and we rotated each
image in the original MNIST dataset by 30, 60 and 90 degrees
clockwise, respectively to generate the dataset of r30, r60
and r90. Some example images are shown in Figure 3. We
randomly sampled among digits [1, 2, 3].

B. Experimental Configuration

We evaluate each method on the multi-domain datasets via
the leave-one-domain-out experiments, i.e., we train a model
based on the source domains and test on the hold-out unseen
target domain. For example, when the target domain is DV ,
then the transfer direction is from three source domains to a
target domain, i.e., DL, DC , DS → DV , and the average of
test accuracies of four cross-domain experiments is taken as
the average generalization result.
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(a) r0 (b) r30

(c) r60 (d) r90
Fig. 3. Visualization of example images from four domains of the Rotated
MNIST dataset with rotation angles of 0◦, 30◦, 60◦, 90◦.

We mainly consider the scenario when we have only limited
labeled data from the source domains. For each domain,
we randomly select some images to form the training set
and validation set for the cross-domain classification. For the
training set, we set the number of training images per category
per domain to be a number in the set {2, 3, 5, 10, 15, 20, 25}.
We randomly sample 10 images per category for the validation
set of each source domain. We repeat the above sampling
process 5 times for all datasets, so that the experiments are
based on 5 trials. The average results of all 5 trials are finally
reported.

Frozen features pretrained on neural networks are taken
as our input. For the Rotated MNIST dataset, the Resnet-
18 [63] pretrained on the ImageNet is used to extract 512-
dimensional features as the inputs. For the VLCS dataset,
the pretrained 4096-dimensional DeCAF features [64] are
employed as the inputs of our algorithm following previous
works [22], [65]. For the PACS dataset, we use the ImageNet
pre-trained AlexNet [66] as the backbone network to extract
the 9216-dimensional features. The Wasserstein distance of
order 2 is used for all experiments, and calculated with the
POT package [56].

We conduct a comparative experiments of the proposed
WDRDG pipeline against some traditional baselines (CIDG
[18], MDA [19]) that base on learning the domain-invariant
feature transformation. DrkNN [67] is compared since it also
tackles the challenging problem of learning a robust classifier
from a few samples. For CIDG, MDA, and DrkNN, a simple
1-NN is adopted as a classifier. The k-NN learned on the
pretrained feature is compared as another simple baseline. For
the proposed WDRDG, we use the CVXPY package [68] with
the MOSEK [69] solver to solve the constrained distribution-
ally robust optimization problem (11). The discriminability
threshold δ is taken as a hyperparameter chosen via validation.

To alleviate the dependence on hyperparameters learned
from a limited validation dataset, we further extend our
approach by integrating a differentiable optimization layer [70]
to solve the Wasserstein distributionally robust optimization
problem in an end-to-end trainable neural networks architec-
ture, following [35]. Instead of relying on the static optimiza-
tion with fixed hyperparameters using the convex solver, the
solution to the optimization problem can now be backprop-
agated, allowing for dynamic updating of parameters during
optimization. In this extended version denoted as WDRDG++,
we implement the differentiable convex optimization layers

based on cvxpylayers package [71] to make differentiable
optimization. Two learnable parameters, uncertainty set radius
θk and discriminability threshold parameter δ become trainable
now. The radius in equation (7) is used as the initialization for
the parameter θk.

Additionally, we evaluate our pipeline, by benchmarking it
against some state-of-the-art methods, including MLDG [13],
ADA [7], GroupDRO [72], VREx [73], and EQRM [74]. For
these methods, a simple multi-layer perceptron network is
adopted to be the trainable classifier on the pretrained feature.

C. Results and Discussion
In this section, we present the results for domain gener-

alization on all three datasets. When each domain serves as
the target domain, the results are shown in Figure 4, with the
plotted lines representing the average performance over 5 trials
and the shaded area representing the corresponding standard
deviation.

For the VLCS dataset, we report the results in the first row
in Figure 4. In all four cases when each domain serves as the
unseen target domain, our method achieves better classification
accuracy and standard deviation than other methods when the
training sample size for each class is very few, i.e., 2, 3, or 5.
The advantage of WDRDG over MLDG then levels off as the
sample size reaches to over 10 per class. The performance
improvement of WDRDG against MLDG reaches as high
as 6.53%, 11.89%, 46.79%, 22.54% with only 2 training
samples for each class when the target domain is PASCAL
VOC2007, LabelMe, Caltech-101, and SUN09, respectively.
For WDRDG++, it achieves at least 21.64%, 4.61%, 15.05%,
22.43% better performance than other sota baselines when
there are only 2 samples per class. These results confirm that
our method is efficient for few-shot cases.

The second row of Figure 4 reports the classification ac-
curacy results for the PACS dataset. The proposed WDRDG
achieves the best results in accuracy and standard deviation
when the target domain is Art Painting, Cartoon, or Sketch
using different training sample size, and MLDG outperforms
WDRDG when the target domain is Photos with the sample
size 15 for each class. WDRDG outperforms MLDG by up
to 19.81%, 20.95%, 18.68%, 20.35% for each target domain
when the training sample size is 2, while WDRDG++ out-
performs other baselines by at least 9.24%, 14.65%, 35.26%,
12.39%. This validates the effect of our method when the
training sample size is limited. The improvement of WDRDG
over other methods on the PACS dataset is relatively larger
compared with the improvements on the VLCS dataset. This
improvement is especially obvious over MDA and CIDG when
the target domain is Sketch, shown in the fourth column of the
second row in Figure 4. This may because that the differences
among domains are greater in PACS where the image styles are
obviously different compared with in VLCS, where samples
from different domains are real-world images collected from
different perspectives or scales. This demonstrates that our
WDRDG could better handle scenarios with larger unseen
domain shift.

The results for the Rotated MNIST dataset in the third row
of Figure 4 also yield similar conclusions. As the training
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Fig. 4. Performance comparison for the VLCS, PACS and Rotated MNIST dataset under different size of training samples per class. Each row shows the
results for a dataset, and each column shows the generalization result for a certain target domain. Average performance of five methods are represented by
different colors, and the corresponding shadow shows the standard deviation of 5 experimental trials. Our WDRDG framework outperforms KNN, MDA
and CIDG with higher accuracy and smaller standard deviation. Also, it has more advantage over MLDG especially when the source training sample size
is limited. For example, WDRDG outperforms MLDG by up to 46.79% when the target domain is Caltech-101 in the VLCS dataset, by up to 20.95% for
target domain Art Painting in the PACS dataset, and by up to 20.71% for target domain r0 in the Rotated MNIST dataset with training sample size of 2 for
each class.

sample size increases, almost all methods converges to the
same accuracy for different target domain. When the training
sample size is smaller, i.e., the training sample per class for
each source domain is 2, 3, 5, the advantage of our proposed
framework is more obvious. WDRDG outperforms MLDG by
20.71%, 9.73%, 2.73%, 3.66% when the training sample size
is 2 for each class for target domain r0, r30, r60, and r90,
respectively. WDRDG++ outperforms others by at least 9.5%,
6.29%, 2.83%, 13.49%. When the training sample size is big,
e.g., the training sample per class for each source domain is
25, even simple KNN method performs well. This is consistent
with the analysis in the above two datasets.

Figure 5 reports the average performance of different target
domains on the three datasets. Overall, our method is the
most stable under different numbers of training samples, with
narrower shadow band of standard deviation. As the size of
training samples gets bigger, all methods have the tendency
of performing better. In most cases, WDRDG++ achieves the
best average performance under different training sample size

compared with other methods with smaller standard deviation.
In addition, our method shows more advantage over others in
few-shot settings. When given training samples are limited
to less than 10 (i.e., 2, 3, 5 in our experiments) per class,
WDRDG++ provides at least 17.72%, 24.92%, 8.52% better
generalization ability than others on the VLCS, PACS and
Rotated MNIST dataset, respectively. We also did further
exploration of how larger training sample sizes impact the
generalization capability. More details could be found in the
the supplementary material.

D. Ablation Study for the Test-time Adaptation

To explore the effectiveness of the test-time adaptation
based on optimal transport, we compare WDRDG with and
without this adaptive inference module. For the non-adaptive
inference, the nearest neighbor for any test sample from the
target domain is found by the simple 1-NN over barycenter
samples. We compare the results of using training sample size
of 5, 10, 15 per class for each source domain.
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Fig. 5. Average generalization performance of different methods on the VLCS, PACS and Rotated MNIST dataset. As the training sample size increases,
all methods obtain better performance. Our WDRDG++ framework outperforms other baselines, especially in few-shot settings. When the sample size is less
than 10 per class, WDRDG++ provides at least 17.72%, 24.92%, 8.52% better generalization ability than others on the VLCS, PACS and Rotated MNIST
dataset, respectively.

TABLE I
THE EFFECT OF THE OPTIMAL TRANSPORT-BASED TEST-TIME ADAPTATION (TTA) FOR ADAPTIVE INFERENCE. ADDING THE TTA MODULE RESULTS IN

BETTER PERFORMANCE.

#training sample Method V L C S Average P A C S Average r0 r30 r60 r90 Average

5 WDRDG (w/o. TTA) 0.516 0.372 0.554 0.356 0.450 0.504 0.350 0.471 0.237 0.391 0.593 0.640 0.577 0.553 0.591
WDRDG (w. TTA) 0.582 0.448 0.494 0.458 0.496 0.514 0.403 0.441 0.399 0.439 0.647 0.732 0.663 0.613 0.664

10 WDRDG (w/o. TTA) 0.540 0.402 0.516 0.334 0.448 0.559 0.374 0.480 0.259 0.418 0.567 0.690 0.647 0.557 0.615
WDRDG (w. TTA) 0.546 0.410 0.546 0.450 0.488 0.556 0.421 0.519 0.409 0.476 0.654 0.753 0.703 0.633 0.686

15 WDRDG (w/o. TTA) 0.510 0.378 0.67 0.39 0.487 0.549 0.404 0.491 0.251 0.424 0.567 0.653 0.677 0.533 0.608
WDRDG (w. TTA) 0.568 0.438 0.564 0.440 0.503 0.533 0.477 0.475 0.462 0.487 0.660 0.753 0.721 0.636 0.693

From the results in Table I, we can make several observa-
tions. Our WDRDG framework with the adaptive inference
module results in better average performance for all three
datasets, with up to 10.22% higher mean accuracy for the
VLCS dataset with 5 training samples per class, 14.86%
performance improvement for the PACS dataset with 15
training samples per class, and 13.98% improvements for the
Rotated MNIST dataset with 15 training samples per class.
Note that when the target domain is Sketch on the PACS
dataset, the improvements are especially obvious compared
with other targets, reaching 68.35%, 57.92%, and 84.06%
when the training sample size for each class is 5, 10, 15,
respectively. Similar results could be found on the Rotated
MNIST dataset when the target domain is r0 or r90 when
the training sample size per class is 10 or 15, with up
to 19.32% performance improvements. This improvement is
more obvious compared with other targets r30 or r60, which
obtains up to 15.31% performance improvements using the
adaptive inference module. One thing they share in common
is these target domains are more different with given source
domains, which shows larger unseen distribution shifts. Sim-
ilar experiments are conducted on Rotated MNIST dataset
with regard to WDRDG++, as show in Table II, TTA brings
significant performance improvements for WDRDG++. This
validates the robustness of our adaptive inference module for
even harder, unseen target domains.

E. Impact of the Discriminability Threshold δ

We conducted analysis on the Rotated MNIST dataset to
evaluate the impact of the threshold parameter δ on the robust-

TABLE II
THE EFFECT OF THE OPTIMAL TRANSPORT-BASED TEST-TIME

ADAPTATION (TTA) ON THE ROTATED MNIST DATASET. TTA MODULE
PROVIDES PERFORMANCE IMPROVEMENTS FOR WDRDG++.

# sample Method r0 r30 r60 r90 Average

5 WDRDG++ (w/o. TTA) 0.738 0.771 0.753 0.576 0.710
WDRDG++ (w. TTA) 0.806 0.814 0.814 0.719 0.788

10 WDRDG++ (w/o. TTA) 0.774 0.728 0.771 0.600 0.718
WDRDG++ (w. TTA) 0.821 0.805 0.821 0.745 0.798

15 WDRDG++ (w/o. TTA) 0.779 0.758 0.755 0.603 0.724
WDRDG++ (w. TTA) 0.806 0.804 0.828 0.737 0.794
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Fig. 6. Optimal δ values for different sample sizes. As the sample size in-
creases, the optimal δ decreases, indicating more strict constraint requirements
for the challenging scenarios with few training samples.

ness of our algorithm’s performance, particularly concerning
varying sample sizes. Specifically, we recorded the optimal δ
values with the uncertainty radius parameter fixed. The results
demonstrate that as the sample size increases, the required
δ stabilizes and decreases, indicating that the necessity for
strict δ constraints diminishes with larger sample sizes. This
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Fig. 7. Visualization of random sample size for each class in source domains when a different domain serves as the target domain in the Rotated MNIST
dataset. For each source domain, the number of samples for different classes are shown in different colors. There are cases when different classes have similar
sample number, e.g., Class 1 and 2 of source domain r0 when target domain is r30, and also cases when different classes have quite different number of
samples, e.g., in source domain r90 when target domain is r0.

trend can be attributed to smaller sample sizes producing less
accurate barycenters, which are more prone to overlap, thus
necessitating a larger optimal δ. With more training samples,
the uncertainty set becomes a better estimate of the true
distribution, reducing the importance of the distinguishable
threshold parameter.

r0 r30 r60 r90 average0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

WDRDG MLDG CIDG MDA KNN

Fig. 8. The performance of WDRDG and four compared methods on the
Rotated MNIST dataset with different class prior distributions across source
domains. WDRDG outperforms other baselines by at least 0.51%, 3.90%,
1.53% when the target domain is r0, r30, r60, respectively, and achieves
similar accuracies with MLDG but with smaller deviation when the target
domain is r90.

F. Analysis of Imbalanced Classes among Source Domains

In previous experiments, we actually assume the training
sample size per class in the source domains are the same under
the setting of no class prior distribution shift, i.e., the distribu-
tion of P (Y ) is the same across all source domains. To show
the feasibility of extending our framework to scenarios with
class prior distribution shift, we further conduct experiments
when the categories in source domains are imbalanced, i.e.,
there are shifts among P (Y ) of different domains.

We randomly sample the training sample size for each
class from [5, 25) on the Rotated MNIST dataset here. The
distribution of sample number for each class when each
domain is chosen as the target domain is shown in Figure
7. There are cases when different classes have similar sample
number, e.g., in source domain r90 when the target domain
is r30, or in source domain r60 when the target domain
is r0. In other source domains, different classes may have
quite different number of samples, e.g., in source domain
r90 when target domain is r0, or in source domain r0 when

target domain is r60. We compare our framework WDRDG
with other methods, and the results are shown in Figure 8.
When the target domain is r90, our method achieves similar
accuracies with MLDG but with smaller deviation, while in
other cases WDRDG outperforms other baselines by at least
0.51%, 3.90%, 1.53% when the target domain is r0, r30,
r60, respectively. Our framework outperforms other methods
on average with smaller standard deviation, which validates
the generalization ability of our framework when the source
domains have class prior distribution shift.

V. CONCLUSION

In this research, we proposed a novel framework for domain
generalization to enhance model robustness when labeled
training data of source domains are limited. We formulated
the distributional shifts for each class with class-specific
Wasserstein uncertainty sets and optimized the model over
the worst-case distributions residing in the uncertainty sets via
distributionally robust optimization. To reduce the difference
between source and target domains, we proposed a test-
time domain adaptation module through optimal transport to
make adaptive inference for unseen target data. We found
that our domain generalization framework with this adaptive
inference module works better when target domains are more
different compared with source domains. Experimental results
on Rotated MNIST, PACS and VLCS datasets demonstrate that
our proposed WDRDG framework could learn a robust model
for unseen target domains based on limited source data, and
we also showed that its advantage is more obvious in few-
shot settings. To perfect this work in the future, we would
study the usage of class priors in constructing more realistic
uncertainty sets, and explore measurable relationship among
source domains to better leverage the source distributions to
model possible target distributions.
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