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A Transferability-Based Method for Evaluating
the Protein Representation Learning

Fan Hu , Weihong Zhang , Huazhen Huang, Wang Li, Yang Li , and Peng Yin

Abstract—Self-supervised pre-trained language models
have recently risen as a powerful approach in learning pro-
tein representations, showing exceptional effectiveness in
various biological tasks, such as drug discovery. Amidst
the evolving trend in protein language model development,
there is an observable shift towards employing large-scale
multimodal and multitask models. However, the predom-
inant reliance on empirical assessments using specific
benchmark datasets for evaluating these models raises
concerns about the comprehensiveness and efficiency of
current evaluation methods. Addressing this gap, our study
introduces a novel quantitative approach for estimating the
performance of transferring multi-task pre-trained protein
representations to downstream tasks. This transferability-
based method is designed to quantify the similarities in
latent space distributions between pre-trained features and
those fine-tuned for downstream tasks. It encompasses a
broad spectrum, covering multiple domains and a variety
of heterogeneous tasks. To validate this method, we con-
structed a diverse set of protein-specific pre-training tasks.
The resulting protein representations were then evaluated
across several downstream biological tasks. Our experi-
mental results demonstrate a robust correlation between
the transferability scores obtained using our method and
the actual transfer performance observed. This significant
correlation highlights the potential of our method as a more
comprehensive and efficient tool for evaluating protein rep-
resentation learning.
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I. INTRODUCTION

PROTEINS are central to fundamental biological processes,
making the development of effective protein representa-

tions crucial in computational biology. These representations
serve to condense complex raw data into a more manage-
able, often low-dimensional space, capturing essential features
for tasks like predictive modeling or interpretive exploration.
Such a process is instrumental in enhancing model perfor-
mance [1] and is pivotal for understanding protein functions
in complex diseases and developing corresponding therapeutic
medications.

Recently, the use of self-supervised pre-trained language
models has become a prominent approach in protein repre-
sentation learning. Demonstrating remarkable efficacy, these
models have delivered exceptional performance across various
biological tasks [2], [3], [4], [5], [6]. This method leverages
transfer learning, beginning with extensive pre-training on large
datasets to learn linguistic patterns and knowledge, subsequently
applying this learned knowledge to specific downstream tasks
[7], [8], [9].

Despite these advancements, there remains a degree of un-
certainty regarding the extent to which pre-training enhances
protein representation. This uncertainty stems from findings
that some existing methods are suboptimal [10]. Traditional
studies focus primarily on predictive performance in specific
downstream benchmark tasks. While these benchmarks are valu-
able, they demand considerable computational resources and
fail to comprehensively measure the models’ transferability to
a wide range of downstream tasks. This gap limits our ability
to design more informed and effective strategies for protein
representation. Consequently, there is an urgent need for a
method that quantifies the transferability of pre-trained protein
representations, effectively bridging the gap between theoretical
expectations and practical outcomes. This need opens up two
interrelated areas of inquiry:

A. Protein Representation Learning

All representation learning should prioritize the training ob-
jectives, which guide the direction of model optimization and de-
termine the relevant information to be extracted. The pre-training
objectives of existing protein language models are derived from
similar tasks in natural language processing (NLP) [11], [12],
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such as masked language modeling (MLM) and next token
prediction. Typically, a protein language model is based on the
NLP similar distributional hypothesis, which assumes amino
acids that frequently appear in the same contexts may have
equivalent semantic information.

However, due to the complex characteristics of proteins, it
is challenging to infer complete semantics from sequence data
alone. There have been numerous attempts to incorporate struc-
tural information (such as a protein contact map) or functional
knowledge (such as Gene Ontology, GO) into protein language
models [6], [13], [14], [15], [16]. In addition to integrating
modalities beyond protein sequences, these methods also incor-
porated new pre-training tasks, such as contact map prediction
and protein function prediction.

The current mainstream methods are based on the “Pre-train
and Fine-tune” paradigm. Specifically, protein representations
are pre-trained on large-scale data and then fine-tuned for down-
stream tasks. However, a gap exists between the pre-training and
fine-tuning processes. It remains uncertain whether the unique
features required by a particular downstream task are effectively
captured during the pre-training phase. The pre-train-fine-tune
paradigm could potentially hinder performance if the most
crucial information is omitted during the pre-training phase.
Therefore, a method capable of quantifying the transferability
from a pre-trained protein representation to downstream tasks is
essential.

B. Transferability

In transfer learning, the goal is to leverage knowledge or
models acquired in one situation (source task) to improve per-
formance in a different but related situation (target task). A
transferability method quantitatively assesses how much of the
knowledge transferred from the source task to the target task. It
essentially acts as a roadmap for implementing transfer learning
in practical applications, such as aiding in the selection of highly
transferable tasks for joint training.

Research on transferability primarily falls into two categories:
empirical and analytical studies. Empirical studies involve re-
training the source model on new tasks and assessing task rela-
tionships using metrics like validation accuracy [17], [18]. This
approach, while direct, can be computationally intensive and de-
pendent on the specific models used. For example, Task2vec [18]
is an empirical method where target data is processed through
a probe network to compute a task embedding, predicting task
similarities. However, such methods often require significant
computational resources.

On the other hand, analytical methods provide a more com-
putationally efficient way to estimate transferability. [19], [20],
[21], [22]. These methods do not rely on retraining models but
instead use mathematical and statistical techniques to predict
how well knowledge from one task can transfer to another. For
example, OTCE [23] [24], a recent analytical method, employs
Wasserstein distance to estimate domain differences and con-
ditional entropy to characterize task differences. Similarly, Liu
et al. developed a method that calculates the similarity between

two tasks by embedding them into a vector space and using
the Euclidean distance as a surrogate for the 2-Wasserstein
distance [22].

However, these methods focus primarily on image and text
classification so far. In these fields, the domain difference (e.g.,
different image styles) and task difference (e.g., classification
from 3-category to 5-category) are much smaller than in the
biological area (Fig. 2). More importantly, existing transfer-
ability methods are designed for simple classification tasks and
are unsuitable for more complex and heterogeneous tasks (e.g.,
regression, long-tail multi-class) in the biological area.

To address these challenges, we propose a novel strategy to
analytically predict the transfer performance of a multi-task pre-
trained protein representation to downstream biological tasks.
Specifically, this method quantitatively measures the similarities
across multiple domains and heterogeneous tasks. To validate
the effectiveness of the method, we devised a series of combi-
nations of protein-specific pre-training tasks, yielding various
pre-trained protein representations. These representations were
then evaluated on several downstream biological benchmarks.
As expected, a strong correlation (Spearman’s R = 0.709) was
observed between predicted transferability and actual transfer
performance.

The following are the main contributions of this paper:
1) We propose a strategy for quantifying the transferability

from a pre-trained protein representation to downstream
tasks, particularly in situations involving multiple het-
erogeneous tasks, which are extremely common in the
biological area.

2) This method is capable of predicting transfer perfor-
mance without the need for labor-intensive fine-tuning on
downstream tasks. The effectiveness of this method has
been confirmed by the high performance on the extensive
experiments. This method can be utilized to guide the
design of protein representation pre-training, particularly
in the selection of pre-training objectives.

II. MATERIALS AND METHODS

A. Datasets

1) Pretraining Data: We assembled a multimodal protein
dataset, comprising approximately 1 million entries, for pre-
training. This dataset included three types of data: sequence,
structure, and functional annotation. Specifically, the sequence
and GO annotation were procured from UniProtKB Swiss-
Prot (https://www.uniprot.org/), while the structure data was
sourced from the AlphaFold Protein Structure Database (Al-
phaFold DB: https://alphafold.ebi.ac.uk/download) and the
RCSB PDB (https://www.rcsb.org/). We collected fine-grained
domain knowledge of proteins, including regions, motifs, and
domains, from UniProtKB. Further details can be found in our
previous study [6].

2) Downstream Benchmark: The selection of downstream
tasks was guided by the objective to encompass a broad spectrum
of protein-related tasks, each representing a distinct category of
protein analysis. Specifically, we categorized these tasks into
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three major groups based on their nature: 1) Protein properties:
This category includes tasks such as predicting stability, fluores-
cence, and signal peptide [3]. 2) Protein structure-related tasks:
This group encompasses tasks related to predicting secondary
structures, remote homology, and fold classes [3]. 3) Protein
interactions with other molecules: This category encompasses
tasks like PDBbind [25] and Kinase [26], which involve interac-
tions between proteins and other molecules. In selecting specific
downstream tasks, we aimed to include widely-used benchmark
datasets within each of these categories. The preprocessing code
for these datasets, along with comprehensive annotations, is
available for public access on our GitHub repository at https:
//github.com/SIAT-code/OTMTD.

B. Model Architecture and Pretraining Objectives

The model architecture is identical to that used in our previous
study [6]. Briefly, the input protein sequences, structures, and
GO annotations were processed by their respective encoders
to obtain initial embeddings. Protein sequence and structure
embeddings were aligned at the token level. This embedding
was then globally aligned with the GO annotation embedding
to produce the protein multimodal embedding. Subsequently,
this protein multimodal embedding was pre-trained on a series
of combinations of pre-training objectives to obtain various
protein representations, which were then evaluated on a number
of downstream biological tasks.

More specifically, five protein-specific pre-training objectives
were used, including prediction of masked amino acids (MLM),
prediction of masked GO terms (GO), and predictions of amino
acids and locations within protein regions (R), motifs (M), and
domains (D). For the MLM and GO tasks, a specific percentage
of amino acids and Gene Ontology terms were masked, with the
pre-training objectives being their accurate prediction. For the
Regions, Motifs, and Domains tasks, we employed a strategy
akin to the named entity recognition approach used in natural
language processing. Specifically, we considered each category
(e.g., motif 1, domain 2) as a named entity, subdividing each
entity into combinations of individual amino acids, which were
then classified. Then we pre-trained four models by taking
different combinations of objectives: (1) MLM + RMD, (2)
MLM + GO + D, (3) GO + RMD, (4) RMD.

C. Optimal Transport-Based Multi-Task Distance

In this section, we introduce the Optimal Transport-based
Multi-Task Distance (OTMTD), a novel approach for evaluating
the transferability of multi-task pre-trained protein represen-
tations to various biological tasks. Unlike previous methods,
OTMTD incorporates both feature and heterogeneous label in-
formation (e.g., regression, long-tail multi-class), offering an
efficient and effective way to measure transferability across
diverse and complex biological tasks. Here’s a step-by-step
breakdown of how OTMTD works:

As depicted in Fig. 1, our approach begins with the protein
feature representations and multi-task labels from pre-training,
coupled with those of a downstream task. Initially, we use
multi-dimensional scaling (MDS) to transform the label-to-label

data into a simplified, embedded format. This streamlined label
embedding is then merged with its corresponding feature rep-
resentation to create a joint distribution. The next step involves
implementing the Wasserstein Task Embedding framework [22],
which projects this joint distribution into an embedding space. In
this space, the Euclidean distances between task embeddings are
indicative of transferability, reflecting the potential for effective
knowledge transfer from pre-training to the downstream task.
More specifically:

Preliminary The Kantorovich Optimal Transport problem can
be seen as a method to optimally reshuffle the mass of one
distribution (e.g., data points representing protein structures)
into another, ensuring the least amount of ‘work’ is done. ‘Work’
here is quantified as the product of the mass moved and the
distance it is moved. Specifically, let𝒳 be a metric space, along
with continuous or discrete probability measuresα ∈ 𝒫(𝒳) and
β ∈ 𝒫(𝒳) [23]. The Kantorovich OT problem is defined as:

OT (α, β)
Δ
= min
π∈Π(α,β)

∫
𝒳×𝒳

c (x, y) dπ (x, y) , (1)

Here, c(., .) : 𝒳×𝒳→ R
+ is a cost function, and Π(α, β)

is a set of couplings consisting of joint distributions over the
product space 𝒳×𝒳 with marginals distributions α, β that
satisfy:

Π(α, β)
Δ
= {π ∈ 𝒫 (𝒳×𝒳) |P1#π = α, P2#π = β} .

(2)
When using the ground cost c (x, y) = d𝒳 (x, y)p for some

p ≥ 1, we can define the p-Wasserstein distance as:

Wp (α, β)
Δ
= OT (α, β)1/p. (3)

In practice, it is almost infeasible to obtain the true marginal
distributions. Discrete empirical measures α̂ =

∑m
i=1 aiδxi and

β̂ =
∑n
i=1 biδyj are usually used instead, where a and b are

vectors in the probability simplex.
MDS [27] is a dimension reduction method that projects

points in Euclidean space into a subspace that best preserves
their pairwise squared distances. Recent studies have demon-
strated that MDS is also effective for Wasserstein distance
[28]. In the case of metric MDS, given a set of high di-
mensional samples 𝒳 = {xn}Nn=1 and their distance matrix
D = {d(xi, xj)|i, j ∈ [1, n]} ∈ R

N×N , the goal is to find an
isometrical map ψ : 𝒳→ R

l such that:

min
ψ

√√√√∑i, j(d (xi, xj) , ‖(ψ (xi) , ψ (xj) ‖)2∑
i,j d(xi, xj)

2 . (4)

Label Embedding We define label-to-label distance as the
p-Wasserstein Distance between their corresponding feature
representations. Formally, let N𝒟 := {x ∈ 𝒳|(x, y) ∈ 𝒟} be
the set of feature representations with label y, and let ny be
its cardinality. Then the distance between label y, y′ can be
denoted as:

ℒ (y, y′) =W p
p (αy, αy′) . (5)

In our experiment, we use p = 2. After obtaining the label-
to-label distances of all combinations of label pairs, we perform
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Fig. 1. Quantitative selection of the optimal pre-training model for downstream biological tasks. (a) Incorporation of multi-modal protein data with
various pre-training objectives, yielding a variety of pre-trained protein representations. (b) Performance variation of these different pre-trained
protein representations on the same downstream task. (c) Introduction of a novel method for quantifying the transferability from a pre-trained protein
representation to downstream tasks, which can aid in the selection of pre-training objectives.

MDS to embed the label distribution into a low dimensional
subspace R

l. Suppose ψ∗ is the best map that preserves label
information, then we have:

ℒ (y, y′) ≈ ‖ψ∗ (αy)− ψ∗ (αy′) ‖22. (6)

For the multi-task pre-training scenario, let {Y iPT }mi = 1 be the
set of heterogeneous labels of pre-training and let YDS be the
label of a downstream task. Let 𝒳PT, 𝒳DS be the feature rep-
resentations of pre-training and downstream task respectively.
We define the label distance between the multiple pretraining
tasks and the downstream task as the average of MDS embedded
label-to-label distance:

ℒ
(
yDS ,

{
yiPT

}m
i = 1

)
=

1

m

m∑
i = 1

ℒ
(
yDS , y

i
PT

)

=
1

m

m∑
i=1

∥∥∥ψ∗ (αyDS
)− ψ∗

(
αyiPT

)∥∥∥2
2

(7)

Considering that:

dτ
(
(xDS , yDS) ,

(
xPT ,

{
yiPT

}m
i=1

))

≈
(
‖xDS − xPT ‖22 +

1

m

m∑
i=1

∥∥ψ∗ (αyDS
)− ψ∗ (αiyPT

)∥∥2
2

) 1
2

=

∥∥∥∥∥[xDS , ψ∗ (αyDS
)]−

[
xPT ,

1

m

m∑
i=1

ψ∗ (αiyPT

)]∥∥∥∥∥
2

(8)

Here, [., .] denotes concatenation operation. We concatenate
the feature representation and label embedding together to yield
a global embedding over joint distribution τ ⊆ R

d+l, where d, l
are the dimensions of feature and label embedding respectively.
Note that for the pre-training with multiple tasks, the concate-
nation operation is performed on the feature embedding and the
average of multiple label embeddings.

Barycentric Projection Once we have the global embedding,
we utilize barycentric projection to project it to a Wasserstein
embedding in a Hilbert subspace, where the Euclidean distance
between these embeddings reveals the transferability. Let Z0 be
a fixed reference, then the optimal transport map that projectsZ0

to a global embedding Zi, i.e., the Monge map, is approximated
from the optimal transport plan via [29]:

Ti = N (π∗
iZi) ∈ R

N0×(d+l), (9)

Here, π∗
i is the optimal transport plan from Z0 to Zi, N0 is

the number of samples in the reference. Finally, the Wasserstein
embedding for input Zi can be calculated by:

Φ (Zi) =
Ti − Z0√

N
∈ R

N0×(d+l). (10)
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TABLE I
DATASETS AND TRANSFORMER-BASED EMBEDDERS USED IN THREE FIELDS

Fig. 2. Comparison of the differences in cross-domain cross-task
transfer in the CV, NLP, and computational biology. Three transfer exam-
ples from different fields are displayed. In CV, the task involves the clas-
sification of handwritten character digits to daily wear items. In NLP, the
task is the classification of news articles to question-answering tasks. In
computational biology, the task is a multi-task protein pre-training task
leading to a protein-drug interaction prediction task.

The transferability between multi-task pre-training and the
downstream task can be quantitatively measured by computing
the Euclidean distance between their vectors derived from the
flattened Wasserstein embeddings.

III. RESULTS

A. Greater Domain and Task Differences Within the
Biological Area

To our knowledge, studies on transferability have primarily
focused on computer vision (CV) and natural language process-
ing (NLP), which are intuitively simpler to comprehend and vi-
sualize. We hypothesized that quantifying transferability in com-
putational biology is more challenging than in other fields, and
that current methods may not be optimal. To intuitively visualize
this gap, we quantitatively calculated and compared the cross-
domain and cross-task distances of these fields. Specifically, we
collected multiple cross-domain and cross-task datasets from the
CV, NLP, and biological fields. These datasets were uniformly
embedded with a field-specific Transformer model to generate
field-specific embeddings (Table I). We then calculated the
transfer distance of embedding combinations separately for each
field. As shown in Fig. 2, the inter-dataset distance in the Bio
field is approximately 1.5 orders of magnitude greater than in the

Fig. 3. Transferability of various pre-trained protein representations to
downstream tasks. The pre-trained protein representation groups in-
clude MLM+RMD, GO+RMD, MLM+GO+D, and RMD. A control group,
denoted as ‘random’, employed randomly initialized model weights.
These groups were fine-tuned on several biological benchmarks, includ-
ing (a) secondary structure, (b) stability, (c) fluorescence, (d) PDBbind,
and (e) Kinase.

CV and NLP fields. These results validated our hypothesis that
quantifying transferability in the biological field is more difficult
than in other fields. Clearly, the large amount of redundant
information in natural images facilitates the transferability of
CV tasks. The semantic and syntactic differences between text
sequences in natural language are moderate, whereas protein
sequences not only possess heterogeneous semantic information
but also carry an abundance of biological evolutionary knowl-
edge, thereby exhibiting the greatest variability.

B. Pretraining and Finetuning of Protein Representations

In this study, we utilized a multi-modal model architecture that
integrated information from protein sequence, protein structure,
and Gene Ontology. We implemented five pre-training tasks:
Masked Language Modeling (MLM), Region (R), Domain (D),
Motif (M), and Gene Ontology (G). Leveraging these tasks, we
devised a series of combinations and pre-trained a variety of
models (i.e., the model structure remained consistent, but the
pre-training tasks varied). Each model was subjected to pre-
training on an RTX 3090 GPU for 150 epochs, spanning nearly
28 days. This procedure resulted in four unique pre-trained
protein representations: MLM+RMD, G+RMD, MLM+G+D,
and RMD.

These pre-trained protein representations were then fine-
tuned on five downstream tasks, including three protein property
benchmarks (Secondary Structure, Stability, and Fluorescence)
and two protein-ligand interaction benchmarks (PDBbind and
Kinase). Additionally, we established a random control group in
which the fine-tuning phase was conducted with model weights
initialized randomly. Fig. 3 illustrates the varying performance
levels of these pre-trained protein representations on down-
stream tasks. The protein representation that was randomly
initialized consistently showed the lowest performance on all
downstream tasks during the fine-tuning processes, indicating
that the other protein representations gained advantages from
pre-training. The MLM+RMD group outperformed others on
many downstream tasks. For example, the MLM+RMD group
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TABLE II
EFFICACY COMPARISON BETWEEN FINE-TUNING AND OTMTD WHEN EVALUATING PRETRAINED PROTEIN REPRESENTATIONS ON DOWNSTREAM TASKS

achieved nearly Pearson’s R = 0.35 before fine-tuning on
PDBbind (at epoch 0), compared to the near-zero value of
the random group. After fine-tuning, these values increased to
nearly 0.65 and 0.51, respectively (at epoch 150). These findings
suggest that the knowledge gained during the corresponding
pre-training was effectively transferred to the downstream tasks.

C. Efficiency of OTMTD Compared to
Fine-Tuning Evaluation

To quantitatively compare the efficiency of our proposed
quantitative method with the empirical approach for assess-
ing the transferability of pretraining to downstream tasks, we
recorded the computation time for both methods. We conducted
each method’s experiments 5 times using 5 different random
seeds and calculated the mean and standard deviation of the
time cost. As detailed in Table II, the quantitative method
demonstrates significantly higher efficiency compared to the
empirical method. Specifically, the average time costs for the
five downstream tasks under the four pretraining models are
2.00, 2.81, 2.25, 2.01, 2.88, 1.94, 2.92, and 2.02 minutes when
using the quantitative method. In contrast, the corresponding
time costs using the empirical method are substantially higher,
ranging from 140.75 to 897 minutes. Notably, for data-intensive
downstream tasks like Kinase, where fine-tuning often requires
considerably more time, the quantitative OTMTD’s time costs
are remarkably close to those of the stability task, despite the
former’s data volume being over three times larger. Overall,
these results underscore the superior efficiency of the quan-
titative method, highlighting its practical value in evaluating
transferability and its potential to efficiently guide the selection
of optimal pretraining tasks.

D. High Accuracy of OTMTD on Biological Benchmarks

The relative change in accuracy or correlation coefficient on
the test set served as a proxy for empirical transferability from
multi-task pre-training to the downstream task. We repeated the
fine-tuning experiments five times using distinct random seeds.
We analytically computed the OTMTD scores for each pair of
pre-trained representations and downstream tasks, yielding a
total of 20 points in Fig. 4. The performance of the proposed
OTMTD was evaluated using the Spearman correlation coeffi-
cient. The horizontal axis in Fig. 4 represents the transfer dis-
tance (OTMTD) between the pre-training representation and the

Fig. 4. Performance of the proposed OTMTD in relation to various
biological benchmarks. The horizontal axis represents the transfer dis-
tance (OTMTD) between the pre-training representation and the down-
stream task (e.g., MLM+RMD to FL). The vertical axis represents the
corresponding actual performance. A higher Spearman’s ρ indicates a
stronger correlation between predicted transferability and actual perfor-
mance. The pre-training objectives include MLM (masked amino acid),
G (masked Gene Ontology), and RMD (domain/motif/region placement
capture). The biological benchmarks include ST (stability), FL (fluores-
cence), SS (secondary structure), PB (PDBbind), KI (Kinase), SP (signal
peptide), FC (fold classes), and RH (remote homology).

downstream task (e.g., MLM+RMD to FL), while the vertical
axis represents the corresponding actual performance (relative
change of performance from randomly initialized to pre-trained
representations).

A strong and statistically significant correlation of -0.709
Spearman’s ρ exists between OTMTD and empirical test results,
indicating that OTMTD is highly predictive of transferability
between heterogeneous biological multi-task pre-training rep-
resentation and downstream task. By utilizing this method, we
were able to efficiently compute the transfer distance and select
the optimal pre-trained protein representation for a specific
downstream task. This approach is more efficient than compar-
ing all models after fine-tuning on all downstream tasks. For
example, the transfer distance of MLM+RMD was predicted to
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Fig. 5. Performance of existing transferability methods. (a) H-score
[19]. (b) Wasserstein Distance [30]. (c) OTDD [31]. (d) OTCE [23], [24].
(e) Performance comparison. The annotations are identical to those in
Fig. 4.

be the shortest for the stability and PDBbind tasks, suggesting
that this representation could offer the most assistance for these
particular downstream tasks.

E. Comparison With Other Transferability Methods

To further validate our method, we compared OTMTD with
four classical methods, including H-Score [19], Wasserstein
Distance [30], OTDD [31], and OTCE [23], [24]. It’s important
to note that these methods do not support the calculation of
multi-task pre-training, so we used the average of transferability
measurements for each pair of single pre-training task and
downstream task pair. While the Wasserstein Distance only takes
feature information into account, the H-score, OTDD, and OTCE
also consider label information. It’s important to note that the
H-score incorporates label information implicitly, while OTDD
and OTCE explicitly combine label information with feature
information.

Fig. 5 illustrates that our OTMTD, with a Spearman’s ρ of
−0.709, outperforms the other methods, exceeding the perfor-
mance of the second-best method by 8.41%. Among the existing
methods, the H-score operates under the strict assumption that
the source and target domains are essentially identical, an as-
sumption that is often not met in the field of protein biology.
Coupled with its implicit use of label information, the H-score
fails to effectively capture the relationship between the predicted
transfer distance and the actual model performance, as evidenced

by a Spearman’s ρ of 0.194. OTDD and OTCE, with Spear-
man’s ρ values of −635 and −0.631 respectively, demonstrate
relatively moderate performance. However, they show a slight
performance degradation compared to the Wasserstein distance
(Spearman’s ρ = −0.654), which only considers feature infor-
mation. This indicates that OTDD and OTCE may not effectively
incorporate heterogeneous biological label information.

Taken together, OTMTD offers an efficient and accurate way
to predict the performance of protein pretrained representations
in various biological downstream tasks. This method signifi-
cantly reduces the need for time-consuming fine-tuning across
diverse tasks. Upon a detailed comparative analysis, OTMTD
demonstrates distinct advantages over other methods. For exam-
ple, while the H-Score is adept at assessing feature transferability
in general contexts, it falls short in addressing the complexities
and heterogeneities of biological datasets, a key focus area for
OTMTD. Our method’s tailored approach to the intricacies of
biological data ensures a more precise evaluation of transferabil-
ity in this domain. This specific advantage highlights OTMTD’s
unique contribution to computational biology, particularly in the
realm of protein representation learning, where understanding
the nuanced relationships within data is crucial.

IV. DISCUSSION

In the realm of computational biology and bioinformatics, the
advent of language models has significantly advanced our ability
to analyze and interpret protein data. However, existing studies
for evaluating pre-trained language models, such as TAPE [3]
and PROBE [5], primarily rely on empirical assessments on
benchmark datasets. While these benchmarks provide a conve-
nient means of evaluating protein language models, we contend
that they may not fully encapsulate the performance of these
models due to the diverse nature of protein properties. Differ-
ent downstream tasks underscore different protein properties,
and while large-scale data, large models, and masked language
modeling can capture general protein information, designing
specific pre-training tasks for specific downstream tasks can
better unearth hidden relationships, thereby enhancing model
performance and interpretability.

The advent of multi-modal models has further broadened
the capabilities of protein pre-training models. Most current
protein pre-training models are sequence-based, but rapid
technological advancements, such as AlphaFold2 [32], have
made other modalities, such as structural data and functional
annotations, increasingly available. This has added to the
complexity of the overall model structure and training, leading
to a significant increase in resource consumption. Evaluating
model performance solely on downstream benchmarks is
insufficient. Moreover, the simple addition of modalities does
not necessarily improve model performance on downstream
tasks. For instance, the fusion of GO annotation information in
ProteinBERT [15] did not outperform single sequence models
on secondary structure and remote homology tasks. Therefore,
how to dynamically and quantitatively evaluate the impact on
downstream tasks during the training process of multi-modal
models is of great importance.
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As we confront increasingly complex downstream tasks, the
application of transferability methods becomes crucial. The
model’s pre-training is optimized towards the pre-training task,
but there may be significant heterogeneity in the distribution
between the pre-training task and the downstream application
task. This heterogeneity could introduce bias and impact the
effectiveness of the transfer from pre-training to downstream
tasks. There is a substantial gap between the pre-training and
fine-tuning processes. Furthermore, the distributions of various
downstream tasks may significantly differ from the commonly
used downstream benchmark datasets for evaluating pre-trained
models, making it difficult to select the most suitable pre-training
model based on known results. In such cases, running all models
would undoubtedly be inefficient. Therefore, using transferabil-
ity quantitative methods to quickly screen for the optimal model
would be a more efficient choice.

In response to this challenge, we have introduced a novel
transferability-based method in this study. This method can be
used to compute the transfer distance and select the optimal
pre-trained protein representation for a specific downstream
task, which is more efficient than comparing all models after
fine-tuning on all downstream tasks. It addresses a critical
gap in the current understanding of how to effectively transfer
pre-trained protein representations to downstream tasks. Our
OTMTD is unique in its ability to predict the transfer per-
formance from a pre-trained protein representation to down-
stream tasks by assessing similarities between pre-training and
downstream features across domains and multiple heteroge-
neous tasks. This approach is a significant departure from tra-
ditional methods, which often struggle to accurately predict
transfer performance due to the complexity and heterogeneity of
protein data.

Our approach outperforms other transferability methods such
as H-Score, Wasserstein Distance, OTDD, and OTCE. These
methods primarily focus on image and text classification, where
the domain and task differences are much smaller than in
the biological area. Moreover, these methods are designed for
simple classification tasks and are unsuitable for more complex
and heterogeneous tasks in the biological area. Our method
overcomes these limitations by being able to handle multiple
heterogeneous tasks, which are extremely common in the biolog-
ical area. In addition to its effectiveness in protein representation
learning, our method exhibits a promising adaptability to other
domains within computational biology and bioinformatics. The
unique challenges in these fields, such as the analysis of genomic
sequences, structural bioinformatics, or systems biology, often
involve complex, multi-dimensional data that require sophisti-
cated interpretation. By leveraging the inherent flexibility of our
approach, which accommodates the complex nature of biologi-
cal data, we foresee its applicability extending to these diverse
areas. This adaptability not only underscores the versatility of
our method but also opens avenues for its application in a wider
range of bioinformatics tasks, thus providing a comprehensive
tool for assessing transferability across various subfields of
computational biology.

In conclusion, our study represents a significant advancement
in the field of computational biology and bioinformatics. Our

transferability-based approach enables efficient prediction and
assessment of protein pretrained representation performance in
downstream tasks, saving substantial fine-tuning time across
diverse tasks. This efficiency enhances the evaluation of protein
representation learning models and provides a more effective
quantitative method for their design. We are excited to see the
future applications and developments of our approach. This
work sets a new standard for the evaluation and application of
pre-trained protein representations, and we anticipate that it will
inspire further innovations in this rapidly evolving field.
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