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ABSTRACT

Multilabel learning, the problem of mapping each data in-
stance to a subset of labels, appears frequently in many real-
world applications. However, obtaining complete label an-
notation for every instance requires tremendous efforts, es-
pecially when the label set is large. As a result, multilabel
learning with missing labels remains as a common challenge.
Existing works either cannot handle missing labels or lack
nonlinear expressiveness and scalability to large label set. In
this paper, we present a novel end-to-end solution for multil-
abel learning with missing labels. Our algorithm, Maximal
Correlation Embedding Network learns a low dimensional
label embedding using an encoder-decoder architecture. It
exploits label similarity through a maximal correlation regu-
larization in the embedded label space to reduce the classi-
fication bias due to missing labels. A series of experiments
on popular multilabel datasets demonstrate that our approach
outperforms state of the art, both in complete data and par-
tially observed data.

Index Terms— Multilabel learning algorithms, multil-
abel classification, missing labels, embedding network, max
correlation regularization

1. INTRODUCTION

One of the most common machine learning problems in
multimedia is multi-class classification, where one object is
mapped to a single class label. However, most applications in
real life have a multilabel nature, i.e. object classes are not
mutually exclusive and one object can be assigned to multi-
ple labels. For example, in image annotation, an image can be
annotated with several tags. In text categorization, one docu-
ment can be attached with more than one topic. In the multil-
abel scenario, many labels are correlated. For instance, in an
image scene classification problem, with the prior knowledge
that one image is related to ocean, we can deduce that it’s
probably related to beach and definitely not to fitting room.
Therefore, how to effectively utilize label correlation is an
important question in multilabel learning.

In addition to the difficulty caused by label correlation,
multilabel learning faces another prominent challenge: miss-
ing labels. A sufficient amount of training data with accurate
labels is required in supervised learning, but it costs huge ef-
forts to obtain the full label set for each sample. Many times
people who annotate the data may drop some relevant labels
unconsciously. For example, an image containing concepts
building, plaza, sky, street may be only marked with building
and plaza but be left out with sky and street.

Existing works in multilabel classification are based on
task decomposition or low rank label transformation. For the
task decomposition approaches [1, 2], the multilabel problem
is decomposed into a set of binary classification problems.
However, they either ignore label correlations, or have poor
scalability to a large label set. Low rank label transformaton
approaches are widely used to handle label correlation. The
main idea is that the original label can be embedded into a
lower dimensional space in which the dependencies between
labels can be removed but all the principal information is re-
mained. These methods then obtain predictions by projecting
the compressed vectors back to the original label space. The
low rank constraint has been implemented in many different
ways, such as matrix decomposition [3,4] and alternating op-
timization [5, 6]. Nevertheless, these methods are rather lim-
ited in nonlinear expressiveness and some are not capable of
handling missing labels.

The missing label issue in multilabel classification has of-
ten been studied using label similarity in recent works. With
the aid of label similarity, the assignment of one certain label
can be inferred from its close labels corresponding with top
largest similarities. Some approaches aim to recover miss-
ing information by label propagations [7], label reconstruc-
tions [8] or transductive learning [9]. Others add a regulariza-
tion on the label manifold [10, 11]. Yet the nonlinear expres-
siveness in their proposed models is limited and some still do
not scale well to large-scale dataset.

To address the challenge of label correlation, missing la-
bel and scalability, we propose Maximal Correlation Embed-
ding Network (MCEN), an embedding network for multilabel
classification. It extracts label correlation by learning low di-



mensional label embeddings and solves the missing label is-
sue by regularizing label similarity in the embedded space.
The main advantages of our work are as follows:

1. We integrate the low rank label transformation into
an end-to-end model, which can be compatible with
all kinds of internal/fine-grained network architecture.
Therefore, our model has strong nonlinear representa-
tion ability and scalability to different label cardinality.

2. The proposed label similarity regularization can han-
dle missing label by maximizing the total correlation
among labels with theoretical support.

We did a wide range of experiments on several popular
multilabel datasets. In the situation with complete or missing
labels, our method performs better than the state of the art
consistently.

2. RELATED WORKS

Driven by the broad application prospects, a lot of works have
been done to pursuit a better performance in multilabel prob-
lems. For the traditional task decomposition methods, two
representative algorithms are Binary Relevance (BR) [1] and
Classifier Chain (CC) [2]. BR decomposes the task into multi-
ple independent binary classification problems and learns ev-
ery binary model separately. However, BR ignores the label
correlations and this may lead to dropping important informa-
tion. CC is an improved model based on BR, and it transfers
all the independent classifiers into a chain in a specified or-
der. For each binary model, the results from all the previous
classifiers are extended to the feature space as 0/1 attributes.
However, only partial label correlation is used for each classi-
fier in this model. Both BR and CC can not scale well to large
label set.

Low rank label transformation approaches overcome the
flaws of task decomposition. These methods can handle la-
bel correlations by restricting the dimension of latent label
space. Conditional Principal Label Space Transformation
(CPLST) [4] is a representative model using a low rank con-
straint. CPLST does dimension reduction for labels through
a transformation matrix, which is constrained to have lower
rank than the original label space. Implemented using SVD
decompositon, CPLST has a limitation that it is incapable to
handle missing labels since SVD requires a complete label
matrix. Besides, it can not deal with large-scale data. Hsiang-
Fu proposed a method named LEML [5] in the standard em-
pirical risk minimization framework. It’s also subjected to the
low rank constraint, and CPLST can be regarded as a special
case of LEML when squared-L2 loss is adopted. Although
LEML is more general, it can not deal with highly nonlin-
ear data. Even with the help of kernel extension, it’s nowhere
near as flexible and powerful as blocks in neural network such
as relu activation or CNN architecture. Another approach,

(a) Setting 1: hidden missing labels

(b) Setting 2: revealed missing labels

Fig. 1. Two settings for multilabel learning with missing la-
bels

LCML, has demonstrated the ability to handel both label cor-
relations and missing labels [6]. It’s built on a probabilis-
tic framework using label transformation concepts, but it also
lacks ability to express highly nonlinear space.

To make use of label similarity, Hao-Chen et al. [10] pre-
sented a regularization term to alleviate the label incomplete-
ness, and it’s based on the smoothness assumption involved
with label similarity and instance similarity. Yue et al. [11]
formulated a new regularization by forcing the predicted la-
bel matrix to maintain the same label correlations as in the
training label matrix. While the success of these regulariza-
tion terms rely on a good approximation to label similarity,
which can be hard to learn. Moreover, their proposed meth-
ods cannot learn highly nonlinear features either.

3. PROBLEM FORMULATION AND NOTATIONS

Given a training data set {(x(i), y(i))}mi=1 with m training
instance-label pairs, in which x(i) ∈ Rd is a real value vector
representing one instance and y(i) is the corresponding label
vector. Specifically, y(i) ∈ {0, 1}n, and n is the cardinality
of whole label set. For any j ∈ [n], y(i)j = 1 indicates that
the ith sample belongs to the concept of jth label and 0 oth-
erwise. In the rest of this paper, we would use X to denote
a batch of input data instances and Y for the corresponding
labels. For the special case with missing labels, we consider
two possible situations as explained in the Fig. 1. A com-
mon setting assumes that the positions of missing labels can
be obtained, so in this paper we use another notation mask to
record this information. Matrix mask is in the same shape of
label matrix Y , in particular, mask(i)j = 0 means that the la-

bel of concept j is missing for the ith sample and mask(i)j = 1
means the label is not missing (positive or negative). Another
setting also appears in practice where the missing labels are
mixed up with negative ones. In other words, only positions
assigned with value 1 are undoubtedly positive labels while
those assigned with value 0 could be either negative or miss-
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Fig. 2. Maximal correlation embedding network designation

ing labels. In real life, these two settings are both possible, so
our work will take both into consideration.

4. THE PROPOSED METHOD

4.1. Maximal correlation embedding network

In the field of natural language processing, embedding is
widely used [12]. Through the embedding process, we ob-
tain continuous vectors rather than one-hot representations for
each word, and words with similar semantics would be closer
to each other. Andrea Frome et al. [13] first integrates the idea
of embeddings in NLP to multilabel learning problems. They
first get the dense vector embeddings for all candidate labels
from a pre-training process with extra corpus and then apply
those vectors in subsequent classifiers. This kind of operation
extremely relies on the quality of corpus from other sources
rather than the intrinsic logic of the task itself. Moreover, it
requires huge computing resources.

To overcome these shortcomings, we adopt the setting in
NLP that words often appear in the same context (within dis-
tance of a certain number of words) should be more similar,
and propose a method to learn label embeddings in which la-
bels frequently co-occur within one instance are closer to each
other in the embedded label space.

We design the Maximal Correlation Embedding Network
(MCEN) to address the multilabel learning problem as shown
in Fig. 2. In additional to the classification module shown in
the blue dotted box, MCEN integrates an autoencoder mod-
ule to learn label representations in purple dotted box. The la-
bel similarity regularization attached to the label embedding
layer is the key component to handle missing labels. The final
optimization goals (described in subsection 4.4) include three
kind of losses: prediction error, autoencoder error (descried in
subsection 4.2) and label similarity regularization (described
in subsection 4.3).

Fig. 3. The architecture of undercomplete autoencoders

4.2. Handling label correlations

Previous works such as [4] attempt to handle label correlation
by label matrix decomposition. In particular, for label matrix
Y , they consider a low rank transformation matrix V and then
minimize the term ∥∥Y − Y V TV

∥∥2
F

(1)

Instead of doing this way, we adopt the undercomplete
autoencoders [14] shown in Fig. 3 to be the label encoding-
decoding network. The nature of undercomplete autoen-
coders, i.e. the latent feature dimension is less than the input
dimension, forces the model to capture correlations among
labels. Compared with (1), the autoencoder error defined by

L(Y, h(g(Y ))) = ‖Y − h(g(Y ))‖2F
has stronger nonlinear expressiveness because the transforma-
tion functions g(·) and h(·) could be any nonlinear functions.

The autoencoder module aims at extracting correlations
among labels, while at the same time we should connect it
with the classification module. The idea is to share the param-
eters in the decoding network of both modules. The feature
extraction network can adopt any network structure for inputs
such as CNN for images and so on. The latent features f(X)
must have the same dimension with label embedding vectors
g(Y ) to make it possible to share the decoding function h(·).
Finally we can get the logits h(f(X)) for classification. For a
particular instance x(i), the corresponding prediction for the
jth label concept is denoted as

ŷ
(i)
j =

1

1 + e−[h(f(x
(i)))]j

where [h(f(x(i)))]j is the jth component of the n dimensional
logits.

Rather than the softmax loss function for multi-class clas-
sification, we use the summation of sigmoid-cross-entropy
loss for each label as the prediction error

L(Y, h(f(X))) = −
n∑

j=1

m∑
i=1

l(y
(i)
j , ŷ

(i)
j )

where l(y(i)j , ŷ
(i)
j ) is the log-loss between prediction ŷ(i)j and

ground truth y(i)j , and n, m is the number of labels and in-
stances respectively.



4.3. Handling missing labels

As we mentioned before, extracting the information of la-
bel similarity can mitigate the effects caused by missing la-
bels. We proposed a novel label similarity regularization term
for the label embedding vectors. The main idea is to max-
imize total correlation among embedding vectors of labels,
and it’s proved to be equivalent to force the correlations be-
tween labels proportional to their co-occur counts within the
same instance. A well-known correlation measure is the HGR
(Hirschfeld-Gebelein-Rényi) maximal correlation:

max
E[f ]=0,Cov[f ]=I
E[g]=0,Cov[g]=I

E[fT(X)g(Y )]

It can find highly related features between two random vari-
ables X and Y .

To generalize the idea of maximal correlation to multiple
random variables, Huang et al. [15] proposed the Generalized
Maximal Correlation (GMC). For jointly distributed random
variables Y1, Y2 . . . Yn, the definition of GMC is defined as:

maximize
g1,g2,...gn

E

[∑
i6=j

(gi(Yi))
T(gj(Yj))

]
subject to E[gi(Yi)] = 0, i = 1, . . . , n.

E

[
n∑

i=1

‖gi(Yi)‖2
]

= 1

However, solving the problem with constraints is rather
difficult. So, in our paper we transform the original GMC
into a relaxed unconstrained optimization problem:

maximize
g1,g2,...gn

E

[∑
i 6=j

(gi(Yi))
T(gj(Yj))

]
−1

2

n∑
i=1

E
[
‖gi(Yi)‖2

]
(2)

In our multilabel classification problem, we use n binary
random variables Y1, Y2 . . . Yn to represent each label com-
ponent in a multilabel random vector ~Y . Through the label
encoding network g(·), the representation g(~Y ) for each la-
bel vector ~Y , (Y1, Y2 . . . Yn) could be derived from a linear
combination of embedding components corresponding with
positive labels. It’s defined as

g(~Y ) =

n∑
j=1

gi(Yi), gi(Yi) =

{
vi Yi = 1
0 Yi = 0

where gi(Yi) is the function of component variable Yi and vi
stands for the embedding vector for positive value.

We rewrite the optimization objective in (2) as a label sim-
ilarity regularization Ω(Y ), derivation details may be found in
Appendix A in the supplemental material.

Ω(Y ) = − 1

m

 n∑
i=1

∑
j 6=i

Si,j · vTi vj −
1

2

n∑
i=1

Si,i ‖vi‖2


in which Si,j indicates how many instances have both positive
label i and positive label j:

Si,j =

m∑
k=1

y
(k)
i · y(k)j

The practical purpose of Ω(Y ) is rather straightforward.
It guarantees that the relative magnitude of vTi vj is propor-
tional to the coexistence counts between label i and label j. In
other words, labels that frequently co-occur within the same
instance will be closer in the embedded label space.

Guided by the theoretical proof in [15], our regulariza-
tion is actually finding the optimal feature functions which
could maximize the total correlation among multiple la-
bels. What’more, in the cases with missing labels, the co-
occurrence counts will fall down proportionately so that this
regular term still works.

4.4. Optimization goals for two missing label settings

4.4.1. Setting 1: hidden missing labels
In this situation as in Fig. 1 (a), the missing labels are mixed
up with negative labels. The final optimization goal is to
minimize all the three losses we mentioned above. Consid-
ering that different losses have different scales so we use two
hyper-parameters α and β to weight autoencoder error and la-
bel similarity regularization respectively. Then the final loss
function is

Loss1 = L(Y, h(f(X))) + α · L(Y, h(g(Y ))) + β · Ω(Y )

4.4.2. Setting 2: revealed missing labels
Recall that the matrix mask records the information of miss-
ing positions as in Fig. 1 (b), we can use it to eliminate the
corresponding loss in missing positions. Under this setting,
the prediction error and autoencoder error turn into

L̃(Y, h(f(X)),mask) = −
n∑

j=1

m∑
i=1

mask(i)j · l(y
(i)
j , ŷ

(i)
j )

L̃(Y, h(f(Y )),mask) = ‖(Y − h(g(Y ))) ◦mask‖2

where ◦ means element-wise product operation. Conse-
quently, the final loss becomes

Loss2 = L̃(Y, h(f(X)),mask)+

α · L̃(Y, h(f(Y )),mask) + β · Ω(Y )

5. EXPERIMENTS

Table 1 shows all the data sets used in our experiments where
APL stands for Average Positive Labels in a sample. These
data sets include images, texts and medical data and the label



Table 1. Data sets description

Dataset Instance Feature Labels APL TypeTrain Test
corel5k 4500 499

1000

260 3.4

image
espgame 18689 2081 268 4.7
iaprtc12 17665 1962 291 5.7
pascal07 5011 4952 20 1.5
mirflicker 12500 12500 38 4.7

bibtex 4880 2515 1836 159 2.4 textdelicious 12920 3185 500 983 19.0
nuswide 161789 107859 1134 1000 5.8 image

yeast 1500 500 103 14 4.2 medical

Table 2. F1-score performance on complete labels

Dataset MCEN LCML CPLST
α, β = 0 α, β 6= 0

corel5k 0.2526 0.2752 0.2071 0.1980
espgame 0.2603 0.2682 0.2273 0.2219
iaprtc12 0.3524 0.3541 0.2405 0.2304
pascal07 0.3707 0.3945 0.3493 0.3181
mirflickr 0.5082 0.5083 0.4665 0.4608

Table 3. Top-3 precision and AUC on complete labels

Dataset MCEN LEML
Top-3 AUC Top-3 AUC

bibtex 35.94 0.8870 36.53 0.9015
delicious 61.82 0.9038 61.23 0.8827
nuswide 18.29 0.8081 16.00 0.7718

cardinality varies in a wide range. For the first five image data
sets, we use their 1000 dimensional SIFT features1, and the
remaining features are from a open source multilabel learning
library called Mulan2.

To demonstrate the effectiveness of our proposed method,
MCEN will be compared with a traditional method CPLST
[4] and the state of the art methods, including LCML [6],
LEML [5] and SSWL [10].

Several popular evaluation metrics for multilabel classifi-
cation are used in our paper: F1-score, top-k precision, av-
erage Area Under Curve (AUC) and hamming loss. See Ap-
pendix B in the supplemental material for details.
Experimental Setup. We use two hidden layers with relu ac-
tivation and batch normalization for the feature extraction net-
work and label encoding network. We adjust the dimension
of embedding layer to be smaller than the cardinality of labels
in different data sets. Grid search strategy is used to select op-
timal values for hyper parameters α and β in the final losses.
We minimize the loss using ADAM optimizer. To simulate
cases with missing labels, we randomly drop out some labels
and observe the performance by varying the missing rate.

1http://lear.inrialpes.fr/people/guillaumin/data.php
2http://mulan.sourceforge.net/datasets-mlc.html

Table 4. F1-score performance on 50% missing labels

Dataset MCEN LCML
α, β = 0 α, β 6= 0

corel5k 0.2508 0.2770 0.2380
espgame 0.2359 0.2448 0.2212
iaprtc12 0.3216 0.3283 0.2309
pascal07 0.3160 0.3283 0.3426
mirflickr 0.4823 0.4857 0.4367
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Fig. 4. Performance tendency on dataset yeast

5.1. Performances on complete labels

We first performed experiments on data sets with full la-
bels. Table 2 shows the compared results between our method
(MCEN) with LCML and CPLST under F1-score metric and
table 3 shows the comparision of MCEN and LEML with top-
3 precision and AUC for evaluation. The results across differ-
ent data sets and different evaluation criteria demonstrate that
our proposed approach outperforms all the competing meth-
ods, especially it improves the F1-score by 24% than the sec-
ond best method on average. Table 2 also proves that the per-
formance will improve by using autoencoder error and label
similarity regularization (α, β 6= 0).

5.2. Performances on missing labels

We randomly drop a percentage of the labels to simulate the
situation with missing labels. First, we consider the setting
with revealed missing labels. Table 4 shows the F1-score
on 50% missing labels (every label has 50chance of miss-
ing). The results prove that our method performs better even
in missing label data. On Corel5k, it even outperforms the
complete label case. One possible reason is that the number
of training examples is so small that complete labels lead to
over-fitting. The method SSWL studied the performance by
varying the missing rate, compared with it, our method shows
excellent stability when dealing with large missing rate, as
shown in Fig.4. Using MCEN, F1-score drops 3.5% lower
and hamming loss increases 9.1% lower than SSWL when
missing rate climbed to 0.6.

For the setting with hidden missing labels, all compet-
ing methods are not applicable. so we conducted a series of
experiments using MCEN to observe the difference between
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Fig. 5. Performance tendency under two settings

two settings mentioned in subsection 4.4. For convenience,
we will use “without mask” to denote the first setting and
“with mask” to denote the second one since we use a mask
to adjust the final loss in the second setting. The result is
shown in Fig.5. It shows that the performance with hidden
missing labels is acceptable when the missing rate is less than
0.2 while the information of missing positions can make the
model more robust to missing rate.

6. CONCLUSION

In this paper, we studied the multilabel learning problem es-
pecially for cases with missing labels. To the best of our
knowledge, we proposed the first end-to-end architecture to
address this problem. We designed a maximal correlation em-
bedding network which integrates a undercomplete autoen-
coder and a novel label similarity regularization to handle la-
bel correlation and missing labels. Our experiments demon-
strate that our method outperforms the state of the art both in
data sets with complete labels and missing labels.
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